
Elihu: A Project to Model-Driven Development with Naked Objects and
Domain-Driven Design

Samuel Alves Soares1 and Mariela Inés Cortés2

1Federal Institute of Education, Science and Technology of Ceará, Tauá, Ceará, Brazil
2State University of Ceará, Fortaleza, Ceará, Brazil

Keywords: Model Driven Development, Naked Objects, Domain Driven Design, Domain Patterns, Design Patterns.

Abstract: The model-driven development is a approach to creating software through well-defined models containing the
information needed to generate the application. However, the software modeling in this approach requires
the definition of application infrastructure artifacts in the model, such as user interface technologies and
data persistence scheme, in order to transform modeling in final application. This makes the modeling
complex, difficult to understand and maintain since new artifacts need to be added, failing to keep the focus
on application business domain. To resolve this problem, we propose the Elihu project, a solution based on
Naked Objects Pattern, Domain-Driven Design and software design patterns where the developer models just
business objects and their characteristics related to the application domain. The full application is generated
based on these software patterns and a Naked Objects Pattern framework is responsible for the application
infrastructure code and the display of objects to users. The proposed solution benefits the creation of less
complex models, that support evolution and modification of requirements along the development and the
generation of full applications without manual intervention in the generated code.

1 INTRODUCTION

The focus on the problem domain is pointed
out as the ideal approach to the development of
computer systems (Pawson, 2004). Thus, throughout
its evolution, Software Engineering has sought to
abstract the computing infrastructure of the developer
(Hailpern and Tarr, 2006).

In order to achieve this goal, in Model-Driven
Development (MDD) models are used as primary
artifacts in the development of systems (Brambilla
et al., 2012; Mohagheghi and Aagedal, 2007). In
this approach, the system implementation is carried
out from high-level models (Hailpern and Tarr,
2006; Mohagheghi and Aagedal, 2007) through
transformation mechanisms (Brambilla et al., 2012).

However, even in the MDD approach, only
application domain modeling is not enough for the
development of a complete application. Infrastructure
aspects such as user interface (UI) technologies and
persistence are also required (Hailpern and Tarr,
2006; Pawson, 2004). Thus, in addition to the
application domain, new platform-specific artifacts
need to be considered, making modeling more
complex and less intelligible (Hailpern and Tarr,

2006). On the other hand, the ambiguous nature of
models and information redundancy along different
views of the same object make it difficult to maintain
and make it difficult to adopt the MDD in the industry
(Haan, 2008; Hailpern and Tarr, 2006; Whittle et al.,
2013).

In order to solve these problems, complementary
approaches in association with MDD are required
(Whittle et al., 2013). In the context of object-
oriented development, the Naked Objects Pattern
(NOP) (Pawson, 2004) solves this problem by
promoting the software development from the
application domain objects. Research shows that
NOP in association with the Domain-Driven Design
(DDD) approach (Evans, 2003) is helpful to create
robust systems (Haywood, 2009; Laufer, 2008).

In this scenario, the MDD project Elihu, based on
NOP, DDD and software patterns has been developed.
The adoption of patterns promotes the construction
of models that are less complex, more intelligible,
and therefore easier to maintain. From the tool
the complete application, including the infrastructure
aspects of the application, can be generated and
executed without the need for manual interventions.

272
Alves Soares, S. and Cortés, M.
Elihu: A Project to Model-Driven Development with Naked Objects and Domain-Driven Design.
DOI: 10.5220/0006702602720279
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 272-279
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 THEORETICAL REFERENTIAL

2.1 Model-Driven Development

Model driven development represents a set of
approaches, and methodology for software
development using models as primary artifacts
and transforming models into source code (Hailpern
and Tarr, 2006; Mohagheghi and Aagedal, 2007).
The ultimate objective of MDD is the automated
development. Thus, models created must be
sufficient to be executed or required minimal human
intervention to transform it into executable code.

To achieve this objective, the approach requires
not only the modeling of the application domain
and definition of business constraints, but also
about infrastructure aspects, such as UI, persistence,
and security technologies (Hailpern and Tarr, 2006;
Soares et al., 2016). This makes the modeling
more complex since platform-specific artifacts need
to be added, taking the development focus of
the application domain (Hailpern and Tarr, 2006).
In addition, redundancy of information entails
consistency and synchronization problems along the
artifacts after changes. Finally, difficulties to test
through MDD tools hinder the use of MDD in the
industry (Haan, 2008; Hailpern and Tarr, 2006).
Frequently the developers are taken to maintain only
the code, leaving the outdated model (Haan, 2008).

2.2 Naked Objects Pattern

The Naked Objects Pattern (NOP) (Pawson, 2004) is
an architectural pattern that emphasizes the creation
of domain objects with behavioral completeness in
order to avoid spreading the business logic over
several objects, avoiding the need for many layers.

According to NOP, the UI must fully reflect
domain objects, including all their operations
(Pawson and Matthews, 2001). All the infrastructure
mechanism required to objects presentation and
persistency must be provided by a framework (such
as Apache Isis1, Entities2, and Naked Objects
Framework (NOF)3) (Pawson, 2004). The software
developer focuses the development of the domain
classes to construct the application domain model and
the application is executed from the domain objects.
Thus, the model can be quickly validated by the
end user, promoting high reliability in the modeling
(Brandão, 2013).

1Apache Isis - https://isis.apache.org/
2Entities - entitiesframework.blogspot.com.br
3NOF - http://nakedobjects.net/

In this way, its adoption in the context of MDD
is promising (Soares et al., 2015), since the benefits
of NOP directly contribute to mitigate the difficulties
raised in development in MDD (Soares et al., 2016).

2.3 Domain-Driven Design and Domain
Patterns

DDD (Evans, 2003) is a software development
approach that defines a set of principles, techniques
and patterns focused in the creation of the domain
model. The Domain Model defines relationships
and responsibilities of the objects that belong to
the application domain, regardless the infrastructure
aspects. In this way, the model is less sensitive to
changes and closer to the experts domain.

The DDD patterns are named Domain Patterns
and aims to identify the responsibility of each domain
objects in the application and its characteristics in
order to create the Domain Model (Evans, 2003;
Nilsson, 2006). Domain Patterns are also termed
building blocks, since are used to identify the element
in the contruction of the application. The main
Domain Patterns are: Entity - an object that maintains
continuity, it has a identity, and it has a well-defined
life cycle; Value Object - an object used to describe
other objects and it has no identity concept; Service -
a class that provides services to objects and without
keeping a state; Aggregate - it represents related
Entities and Value Objects that are treated as a unit;
Repository - a mechanism to querying of persistent
objects abstracting the database.

There are studies that show the usefulness of
DDD approach with NOP in the creation of robust
systems (Brandão, 2013; Haywood, 2009; Laufer,
2008). In this context, the MDD application
development requires the construction of a Domain
Model indicating the Domain Patterns associated with
the classes of the application. Finally, the code is
generated for execution by a NOP framework (Soares
et al., 2016).

2.4 Design Patterns

Design Patterns are reusable solutions to recurring
problems in the object-oriented software design
(Gamma et al., 1995). These patterns allow the
creation of a common communication language of
solutions used in different projects.

Design patterns can be used together with Domain
Patterns to refine the domain model (Nilsson, 2006)
and it assist the identification of the responsibility of
each class in the application, in order to facilitate

Elihu: A Project to Model-Driven Development with Naked Objects and Domain-Driven Design

273



the model of understanding and generation of the
appropriated code (Brandão, 2013; Nilsson, 2006).

2.5 UI Conceptual Patterns

Despite the possibility of taking the whole application
just creating domain objects, the NOP can generate
only one UI (Pawson, 2004). Patterns of UI, called
UI Conceptual Patterns (Molina et al., 2002b), can be
used to specify UI for platform-independent devices.
Through these patterns the developer can customize
the view of the objects to the user via multiple visions
without having to deal directly with UI infrastructure
code.

The UI Conceptual patterns are categorized into
four types, namely Presentation Patterns (Molina
et al., 2002a): Service Presentation, Instance
Presentation, Population Presentation and Master-
Details Presentation.

3 RELATED WORKS

There are modeling tools and projects that proposes
MDD of object-oriented systems focused in the
application domain and its business logic.

In general, modeling tools workin association
with a modeling language such as UML4. Many of
these allow for the creation of platform-independent
models and subsequent generation of code in an
object-oriented programming language. Examples
of tools with these characteristics are: ArgoUML5,
Enterprise Architect (EA)6, and Modelio7. However
little or no support is provides for the generation of
infrastructure code, being necessary the modeling of
required classes or manual implementation by the
developer.

Some of these tools support the creation
of templates to the automatic generation of
infrastructure code. However, future changes
in the generated code must be made manually,
compromising the synchronization between the
model and the application code.

Thus, the lack of tools to support the modeling
of the domain and infrastructure aspects, attempting
to the relationships between the diagrams in an
integrated way turn the MDD develoment complex
(Alford, 2013).

Other projects aimed at MDD seek to support
the transformations of models (Brambilla et al.,

4UML - http://www.uml.org/
5ArgoUML - http://argouml.tigris.org/
6EA - http://www.sparxsystems.com.au/products/ea/
7Modelio - https://www.modelio.org/index.php

2012). With these projects it is possible to automate
the generation of application artifacts, including the
infrastructure aspects. Examples of these projects are
AndroMDA8, Jamda9, and openMDX10.

In this case, the utilization of UML models
requires the identification of the elements through
stereotypes, so that the corresponding business
classes and infrastructure are created. Through
plugins they can generate even the whole system.
However, after the first generation of the application,
changes through the model require manual
synchronization by the developer in order to
avoid the overwriting of previously altered parts.
Also, changes in the infrastructure generated to
meet UI customization and to adjust the behavior
of the application must be maked manually. Since
applications are typically based on the layered
architecture, redundant code between layers is
generated, thus, modifications in the business logic
entails changes all application layers (Pawson, 2004).

4 THE MDD PROJECT Elihu

Elihu11 is an MDD project developed through a set of
plugins on the Eclipse platform12 and it is dedicated
to the development of enterprise applications. Elihu
project is based on the concepts and patterns of DDD,
NOP, and software design patterns to create models
that contain all application functionality on domain
objects, abstracting the application infrastructure
aspects from the developer. The generation of UI of
objects, persistence, security, among other aspects, is
under the responsibility of the NOP.

There is a favorable perspective for the application
development using MDD and NOP (Pawson, 2004).
An appropriate MDD tool that works directly with
NOP and DDD can circumvent the complexity in
MDD (Soares et al., 2015) by creating simpler and
more complete templates so that they can be modified
as new requirements need to be implemented.

The development in Elihu occurs with the creation
of the Domain Model from elements that represent
the DDD Domain Patterns and design patterns.
Domain Patterns represent the building blocks of the
application (Evans, 2003) and they are associated
with design patterns to enable the representation of
all features, operations, and views of domain objects
(Nilsson, 2006). After modeling the domain objects,

8AndroMDA.org - http://andromda.sourceforge.net/
9Jamda Project - http://jamda.sourceforge.net/

10openMDX - www.openmdx.org/
11Elihu - http://elihu.webnode.com/
12Eclipse - https://eclipse.org

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

274



the Elihu automatically generates the application that
can be executed with the help of the NOP framework
adopted. The NOP framework allows the application
to run without requiring manual implementation of
the application infrastructure.

4.1 Elihu’s Metamodel Analysis

Elihu’s metamodel is presented in Figure 1. Each
element of the metamodel describes a Domain Pattern
or Design Pattern that composes the Domain Model,
its characteristics and the relationship.

The metamodel defines the DomainModel
metaclass to represent the application model.
Elements that can be added in the model are
associated with this metaclass. Domain Patterns are
defined by the Aggregate, Entity, ValueObject, and
Service metaclasses. These are used to represent
the application classes (Soares et al., 2016).
Relationships between model elements are defined by
the Association metaclass. Associations to a Service
has been defined by the Dependency metaclass.

The Classifier metaclass defines the common
characteristics to the Entity and ValueObject
metaclasses. Classifiers have properties, and
operations. The Aggregate metaclass defines a set of
Entities and Value Objects that behave as a logical
unit and it has a Entity as root. The Service metaclass
defines an element that only has operations.

The Property metaclass defines the characteristics
of each property and represents the state of a
Classifier object.

The Operation metaclass is a generalization of the
Function and Method metaclasses. Function refers
to the operation of a class that is not associated with
a particular instance. Method refers to the operation
used exclusively through a class instance (an object)
and it can change the state of that object. Operation
can have input parameters, defined in the Parameter
metaclass. Also, the Algorithm metaclass has been
defined so that it is possible to implement the behavior
of an operation in different ways, be they in a textual
way, through behavioral diagrams, and others.

Figure 1 also shows the relationship of the
Entity, ValueObject and Aggregate metaclasses with
metaclasses representing software patterns. The main
patterns and their metaclasses are:
• Business ID (Nilsson, 2006) - definition of the

properties that are business keys of Entity;
• Coarse-Grained Lock (Fowler et al., 2003) - it

informs a Entity have concurrency control;
• Encapsulate Collection (Fowler et al., 2003) -

it defines the way a collection in Aggregate is
accessed;

• Identity Field (Fowler et al., 2003) - it defines how
Entity is identified in the application database;

• Presentations Pattern (Molina et al., 2002a) -
setting the UI of a class. These metaclasses have
attributes corresponding to the Naked Objects
View Language (NOVL)13 properties (Brandão
et al., 2012).

• Specification (Evans, 2003) - definition of queries
based on domain concepts, reused several times
through a name;

• State (Gamma et al., 1995) - representation of the
states of an object during its life cycle.

Based on this metamodel, the concrete
syntax of Elihu is defined. The metaclass
attributes of the Elihu metamodel are detailed at
http://elihu.webnode.com/doc/.

4.2 Elihu Concrete Syntax

Concrete syntax is the graphic or textual
representation of the metamodel’s elements used by
the developer to model the application (Brambilla
et al., 2012). This section presents the graphical
representation defined in Elihu for the metaclasses of
the metamodel presented in Section 4.1.

The main elements used in the construction of the
Domain Model are Domain Patterns (Figure 2). The
blank area in Figure 2 represents the Domain Model.
Elements arranged to the right are placed in the blank
area, constituting the application domain model. For
the identification of the elements in the model the
concept of color distinction (Coad et al., 1999) is
used. Figure 3 shows the graphical representation of
Entity. Entity is represented by the blue color and the
ValueObject by the gray color. These elements have
compartments for class name information, properties,
operations, and to inform the patterns that the class
uses.

Figure 4 shows the graphical representation of
Service. It is represented by the orange color and it
has compartments to inform the name of the class and
to add the operations. Only Function elements are
accepted as operations.

Figure 5 shows how Aggregate is represented. It
must be superimposed on the Entity representing the
root of the aggregation. When this is done, a yellow
rectangle is added to the edge of the Entity diagram.
All elements of Aggregate are identified by the yellow
color on the left side of the diagram and their original
color is kept on the right side to identify their type.

13NOVL - layout description language for the Naked
Objects Pattern, platform independent.

Elihu: A Project to Model-Driven Development with Naked Objects and Domain-Driven Design

275



Figure 1: Elihu’s Metamodel.

Figure 2: Elihu’s modeling elements.

Figure 3: Graphical representation of Entity.

Figure 4: Graphical representation of Service.

Figure 5 also shows the graphical representation
of an association between Classifiers elements.

When a Property or a Operation is inserted

Figure 5: Graphical representation of Aggregate and its
items.

Figure 6: Diagram for setting parameters and body of
Operation.

into a Classifier, corresponding attributes can be
configured. In the case of entering an operation,
Method or Function, a new diagram can be opened,
as shown in Figure 6. Operation diagram allows the
configuration of the operation name, the addition of
the parameters and the inclusion of the Algorithm
element to implement the operation body.

Elements that represent software design patterns
are added into the fourth compartment of the Entity

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

276



and Value Object diagrams. In Elihu’s modeling
tool, group of these patterns are available in several
sections identified by the name of the catalog to which
they belong. Elements grouped in the UI Conceptual
Patterns section are responsible for defining the UI
of the objects in which they are inserted. When you
double-click on Presentation, a new diagram opens as
shown in Figure 7. This diagram has compartments
that represent the structure of a UI (Brandão, 2013)
so that the object’s user interfaces are defined through
the NOVL textual notation (Brandão et al., 2012).

Figure 7: Diagram for setting of Presentation.

When creating a model that can be executed,
the code generation of the application can be made
according to the characteristics of each pattern used.
The generation of code occurs from the reading of
the file that represents the Domain Model, extension
.elihu. Elihu has templates for the generation of code
specified according to the NOP framework used.

Soon after the complete generation of code,
without manual intervention, the application can be
executed. At this point, the NOP-based framework
identifies the domain objects and it presents them to
the user (Pawson, 2004) without the need for changes
to the application code.

5 CASE STUDY

This section presents a case study of an real
application. The case study refers to a module
of the Scholarship Management System in use at
the State University of Ceará (UECE), available
at http://bolsas.uece.br/. This module deals with
applications for scholarships for university extension
activities. Its main features are:

• Request of Scholarship Holders - employees can
request scholarship holders for their work unit
to carry out administrative, and other activities.
Criteria for selection are given as course, etc.;

• Definition of Scholarships - after the request,
the administrator defines which scholarships are
offered and the number of vacancies;

• Student Registration and Selection - after
publication of the vacancies, students can apply
to compete for scholarships. Registration is done
by completing a form. The analysis of the records
is carried out, students are selected for interviews
and the final classification is made;

• Allocation of Scholarship Holders - students
classified based on the reported criteria are
allocated in the units of origin of the request.

Figure 8 shows the modeling of the
Request of Scholarship Holders. The
RequestOfScholarshipHolder and Criterion Entities
have been created to record the request data by the
employees. The RequestOfScholarshipHolder Entity
contains the properties of the identification of the
request and the justifications.

Figure 8: Modeling of classes related to Request of
Scholarship Holders.

The ActivitiesOfScholarshipHolder Value Object
has been created with Boolean data type properties.

Elihu: A Project to Model-Driven Development with Naked Objects and Domain-Driven Design

277



These properties refer to the types of activities
to be performed. The Criterion Entity refers to
the definition of the criteria for the selection of
scholarship holders. This criterion contains the
number of scholarships requested for a given shift and
the indication of the course of the student. The Shift
Value Object has been created with the properties
morning, afternoon and night to set the required
workshift.

The Criterion Entity is bound to the life cycle
of RequestOfScholarshipHolder. They form an
Aggregate where RequestOfScholarshipHolder is the
root. Thus, the Encapsulate Collection pattern has
been added to the root, the effect of which was
to automatically add the addCriterion method in
RequestOfScholarshipHolder and the remove method
(renamed to remover) in Criterion. The Coarse
Grained Lock pattern has also been added in
RequestOfScholarshipHolder for concurrency control
and the developer has created the request method to
validate and register the request.

Considering the requests are made to the units
of the UECE, Unit Entity has been created.
RequestOfScholarshipHolder has an association with
a Unit. The Course Entity has been created due to
the need for information from the UECE courses in
Criterion. Criterion has an association for a Course.

Finally, the Presentations of the Aggregate have
been created. The MasterDetailRequestOfHolders
Presentation (Figure 9) is used by the employees
to make the requests of scholarship holders and the
PopulationQueryRequests Presentation is used by the
administrators to query the requests.

Figure 9: Presentation for Requests of Scholarship Holders.

From the described model the application code
can be generated and executed without manual
modification of the source code. Thus, you can
make the necessary tests, validations and adjustments

Figure 10: Presentation for Requests of Scholarship
Holders after application running.

with the users of the application. Figure 10
shows MasterDetailRequestOfHolders Presentation
after running the application.

After validating the implementation of this
requirement, one can follow the development of
Domain Model with the next requirements. This same
procedure is performed after the implementation
of each requirement, allowing the incremental
development.

The complete modeling of the application
as well as the generated code are available at
http://elihu.webnode.com/exemplos/.

6 CONCLUSION AND FUTURE
WORK

In the context of MDD, application infrastructure
aspects need to be taken into account in modeling
the software in order to create complete models that
can be used to generate functional software. As a

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

278



result, the developer starts to focus on application
infrastructure issues, taking their focus from the
application domain, and the models become more
complex.

In this paper we present the MDD project Elihu,
which includes the use of Domain Patterns, software
design patterns and NOP for the modeling and
generation of the application in order to abstract the
computational infrastructure and allow the focus on
the domain of the problem.

The development of Elihu has involved the
construction of the metamodel from the definition of
the metaclasses that represent the Domain Patterns
and design patterns. Next, a concrete notation has
been created for the elements of the metamodel and
templates for generating code based on the NOP
framework.

To demonstrate the use of Elihu and validate
suitability, a case study based on an real application
has been developed. With each requirement
implemented, the application code has been generated
and executed to perform the necessary validations
with the users of the system. It was possible to
verify the proposed approach supports the generation
of complete domain models, with system behavior,
and understanding the objective of each class in the
system due to the use of patterns. The developer does
not need to change the infrastructure code. If new
changes to the application are required, the domain
model can be modified without requiring manual
changes to the code.

As future works can be cited: add support for
textual modeling languages, such as Xtext14, to
implement class operations in order to guarantee
independence of programming languages; add
behavioral diagrams to define the behavior of objects;
allow the definition of new patterns as modeling
elements by the developer; implementation of code
generation templates for NOP frameworks from
different technology platforms; comparative study
between development through Elihu and development
through NOP frameworks.

REFERENCES
Alford, R. (2013). An evaluation of model driven

architecture (mda) tools. Mestrado, University of
North Carolina Wilmington, Wilmington, NC.

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
driven software engineering in practice. Morgan &
Claypool Publishers.

Brandão, M. (2013). Entities: Um framework java baseado
em naked objects para desenvolvimento de aplicações

14Xtext - https://eclipse.org/Xtext/

web através da abordagem domain-driven design.
Mestrado, Universidade Estadual do Ceará, Fortaleza.

Brandão, M., Cortés, M., and Gonçalves, Ê. (2012). Naked
objects view language. InfoBrasil.

Coad, P., Luca, J. d., and Lefebvre, E. (1999). Java
modeling in color with UML: Enterprise Components
and Process. Prentice Hall.

Evans, E. (2003). Domain-Driven Design: tackling
complexity in the heart of software. Addison Wesley,
Boston.

Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., and
Stafford, R. (2003). Patterns of enterprise application
architecture. Addison-Wesley Professional, Boston.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design patterns: elements of reusable object-oriented
software. Addison Wesley, Indianapolis.

Haan, J. D. (2008). 8 reasons why model-driven approaches
(will) fail. InfoQ.

Hailpern, B. and Tarr, P. (2006). Model-driven
development: The good, the bad, and the ugly. IBM
systems journal, 45(3):451–461.

Haywood, D. (2009). Domain-driven design using naked
objects. Pragmatic Bookshelf.

Laufer, K. (2008). A stroll through domain-driven
development with naked objects. Computing in
Science and Engineering, 10(3):76–83.

Mohagheghi, P. and Aagedal, J. (2007). Evaluating quality
in model-driven engineering. In Proceedings of
the International Workshop on Modeling in Software
Engineering, MISE ’07, pages 6–, Washington, DC,
USA. IEEE Computer Society.

Molina, P. J., Meliá, S., and Pastor, O. (2002a). Just-ui: A
user interface specification model. In Computer-Aided
Design of User Interfaces III, pages 63–74. Springer.

Molina, P. J., Meliá, S., and Pastor, O. (2002b). User
interface conceptual patterns. In Interactive Systems:
Design, Specification, and Verification, pages 159–
172. Springer.

Nilsson, J. (2006). Applying Domain-Driven Design and
patterns - with examples in C# and .NET. Addison
Wesley Professional.

Pawson, R. (2004). Naked Objects. Doutorado, Trinity
College, Dublin.

Pawson, R. and Matthews, R. (2001). Naked objects:
A technique for designing more expressive systems.
SIGPLAN Notices, 36(12):61–67.

Soares, S. A., Brandão, M., Cortés, M. I., and Freire, E.
S. S. (2015). Dribbling complexity in model driven
development using naked objects, domain driven
design, and software design patterns. In Computing
Conference (CLEI), 2015 Latin American, pages 1–
11. IEEE.

Soares, S. A., Cortés, M. I., and Brandão, M. G.
(2016). Dealing with the complexity of model driven
development with naked objects and domain-driven
design. In Proceedings of the 18th International
Conference on Enterprise Information Systems, pages
528–535.

Whittle, J., Hutchinson, J., Rouncefield, M., Burden,
H., and Heldal, R. (2013). Industrial adoption of
model-driven engineering: are the tools really the
problem? In Model-Driven Engineering Languages
and Systems, pages 1–17. Springer.

Elihu: A Project to Model-Driven Development with Naked Objects and Domain-Driven Design

279


