
PopRing: A Popularity-aware Replica Placement for Distributed
Key-Value Store

Denis M. Cavalcante, Victor A. Farias, Flávio R. C. Sousa,
Manoel Rui P. Paula, Javam C. Machado and Neuman Souza

LSBD, Departament of Computer Science, Federal University of Ceara, Fortaleza, Brazil

Keywords: Replica Placement, Consistent Hashing, Data Access Skew, Multi-objective Optimization, Genetic Algorithm.

Abstract: Distributed key-value stores (KVS) are a well-established approach for cloud data-intensive applications, but
they were not designed to consider workloads with data access skew, mainly caused by popular data. In this
work, we analyze the problem of replica placement on KVS for workloads with data access skew. We formally
define our problem as a multi-objective optimization and present the PopRing approach based on genetic al-
gorithm to find a new replica placement scheme. We also use OpenStack-Swift as the baseline to evaluate
the performance improvements of PopRing under different configurations. A moderate PopRing configura-
tion reduced in 52% the load imbalance and in 32% the replica placement maintenance while requiring the
reconfiguration (data movement) of only 6% of total system data.

1 INTRODUCTION

Distributed key-value stores (KVS) are a well-
established approach for cloud data-intensive appli-
cations. Their success came from the ability to ma-
nage huge data traffic driven by the explosive gro-
wth of social networks, e-commerce, enterprise and
so on. In this paper, we focus on the particular type
of KVS which can ingest and query any type of data,
such as photo, image and video. This type of KVS
is also called object store, such as Dynamo (DeCan-
dia et al., 2007) and OpenStack-Swift (Chekam et al.,
2016). These systems evolved to take advantage of
peer-to-peer and replication techniques to guarantee
scalability and availability, however, they are not ef-
ficient for dynamic workloads with data access skew,
once their partitioning technique, based on distribu-
ted hash table (DHT) and consistent hashing with vir-
tual nodes (CHT), assumes uniformity for data access
(DeCandia et al., 2007) (Makris et al., 2017).

Data access skew is mainly a consequence of po-
pular data (hot data) due to high request frequency.
Previous works suggest that popular data is one of the
key reasons for high data access latency and/or data
unavailability in cloud storage systems (Makris et al.,
2017). The authors (Mansouri et al., 2017) affirm that
a data placement algorithm should dynamically load
balance skewed data access distribution so that all ser-
vers handle workloads almost equally. To overcome

that limitation, the reconfiguration of replica place-
ment is necessary, although it requires data movement
throughout the network. Minimizing load imbalance
and replica reconfiguration are NP-hard (Zhuo et al.,
2002).

Additionally to the mentioned challenges, there is
the replica maintenance of cold data where conside-
rable storage and bandwidth resources may be wasted
at keeping too many replicas of data with low request
frequency, i.e., unnecessary replicas. To get worse,
the authors (Chekam et al., 2016) affirm that the data
synchronization of too many replicas is not a good
choice due to network overhead.

From the discussed issues of hot and cold data
in KVS systems, important questions should be ans-
wered: should be data migrated and/or replicated?
Which node should be the new host of the replica-
ted/migrated data? Could replica maintenance and re-
configuration costs be minimized while still minimi-
zing the load imbalance of Get requests submitted to
the system during last observed time?

To the best of our knowledge, our work is the first
to answer those questions at investigating the trade-
off between load balance, replica maintenance and re-
plica placement reconfiguration for KVS systems ba-
sed on CHT partitioning.

The major contributions of this paper are as fol-
lows:

440
M. Cavalcante, D., Farias, V., Sousa, F., P. Paula, M., Machado, J. and Souza, N.
PopRing: A Popularity-aware Replica Placement for Distributed Key-Value Store.
DOI: 10.5220/0006703504400447
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 440-447
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

• A modeling of the multi-objective problem of
minimizing load imbalance, replica placement
maintenance and replica placement reconfigura-
tion costs on KVS systems based on CHT parti-
tioning;

• The PopRing strategy for replica placement on
KVS systems based on CHT partitioning as
well its implementation and evaluation against
the replica placement of OpenStack-Swift in a
simulation-based environment.

Organization: This paper is organized as follows:
Section 2 discusses related work. Section 3, provide
background information. Section 4, defines the sy-
stem model and formalizes the multi-objective op-
timization problem. Section 5 explains PopRing’s
theoretical aspects and implementation of the solu-
tion. Section 6 compares PopRing against the base-
line. Section 7 presents the conclusions.

2 RELATED WORK

In this section, we contrast our work with existing
works on replica placement problem by discussing
their characteristics as well as their solutions.

(Long et al., 2014) aimed to find a suitable replica
placement to improve five objectives including load
imbalance, but they did not consider the minimiza-
tion of replica placement maintenance and reconfigu-
ration costs. Another difference is that their appro-
ach was only evaluated with a few number of nodes
and files. (Mseddi et al., 2015) clarify that replica
placement systems may result in a huge number of
data replicas created or migrated over time between
and within data centers. Then, they focused on mi-
nimizing the time needed to copy the data to the new
replica location by avoiding network congestion and
ensuring a minimal replica unavailability. (Liu and
Shen, 2016) proposed a solution to handle both corre-
lated and non-correlated machine failures considering
data access skew, availability and maintenance cost.
(Long et al., 2014), (Mseddi et al., 2015), (Liu and
Shen, 2016) did not consider DHT/CHT techniques
when proposing their solutions, thus it is not possible
to know if their solutions are efficient for KVS based
on DHT/CHT.

(Mansouri et al., 2017) evaluated the trade-off be-
tween network and storage cost to optimize pricing
cost of replication and migration data across multiple
cloud providers. Beyond that, their replication factor
is the same for all data objects and is not adaptive to
data popularity. (Makris et al., 2017) report that re-
sponse times of Get requests quickly degrade in the

presence of workloads with power-law distributions
for data access. Then, they defined their objective
as the minimization of the average response time of
the system under a continuously changing load of Get
requests. They did not consider replica creation and
deletion, thus only focusing on data migration.

3 BACKGROUND

In this section, we present the partitioning, the repli-
cation and the architecture of our KVS system which
substantiate our system model, optimization problem
and replica placement strategy.

3.1 Partitioning and Replication

The partitioning of our system is based on consistent
hash with replicated virtual nodes as shown in Fig.
1. Our virtual nodes have the same concept of virtual
nodes in Dynamo and partitions in OpenStack-Swift
which is an abstract layer for managing all system
data into smaller parts, i.e., a set of objects.

The placement of every data object is mapped to
one virtual node through the consistent hash function
mapping. This mapping is the process of hashing the
identification of a data object to calculate its modulo
using the total number of virtual nodes defined by the
system admin. Our hash function outputs hashed va-
lues uniformly distributed, thus balancing the number
of objects on every virtual node. The hash function
mapping between an object and a virtual node is fixed
because the hash function is the same during all sy-
stem operation.

In our system, the system administrator sets the
total number of virtual nodes to a large value at the
first deployment of the system and never changes it.
Otherwise, it would break the property of the consis-
tent hashing technique by creating the side-effect of
huge data movements.

Figure 1: Objects, virtual nodes and storage nodes map-
pings.

A virtual node can be replicated multiple times
into different storage nodes. This mapping of the vir-
tual node replicas and storage nodes is called replica
placement scheme where it describes the replication
factor and the placement of every virtual node replica

PopRing: A Popularity-aware Replica Placement for Distributed Key-Value Store

441

as shown in Fig. 1. That scheme allows dynamically
management of data through operations of replica cre-
ation, migration and deletion.

3.2 Architecture

Our system architecture is composed by three types
of nodes: service node, storage node and coordinator
node. The service nodes handle data access requests
as a reverse proxy to storage nodes by using the re-
plica placement scheme for data location.

The service nodes accepts write/read operations of
data objects by supporting Put requests for creating
objects creation and Get requests for accessing data
objects. An object is any unstructured data, i.e., a
photo, a text, a video and so on. The system is able to
handle any object size and is write-once, read-many.
The service nodes use shuffle algorithm for replica se-
lection, thus spreading equally Get requests to the vir-
tual node replicas.

The coordinator node is a centralized controller
which monitors the total number of Get requests per
virtual node served by the service nodes. It moni-
tors the available storage capacity of the storage no-
des. The coordinator node also maintains a copy of
the replica placement scheme in-use by the other no-
des.

The main mission of the coordinator node is to
use our replica placement strategy to compute peri-
odically and incrementally a new replica placement
scheme. The administrator of the coordinator node
sets up a period constant to compute and to apply the
new scheme into the other nodes as well. An instance
of the architecture is shown in Fig. 2.

Figure 2: System architecture.

A new replica placement scheme is synchronized
by a peer-to-peer asynchronous process in the storage
nodes different from the process to serve data access
requests. This process aims to synchronize all re-
plicas units of the current replica placement scheme.
Every storage node knows exactly which replicas it
manages because every node has a copy of the replica
placement scheme.

The data availability of the system is maintained
by the minimum number of replicas of a virtual node
and by the minimum number of replicas to not re-
configure. This last one, it is important to avoid data
unavailability due to aggressive replica placement re-
configuration, i.e., all replicas of a virtual node are
reconfigured to migrate at the same time.

4 SYSTEM MODEL AND
OPTIMIZATION PROBLEM

In this section, we introduce important definitions of
our system model and we formalize our objectives as
a multi-objective optimization problem.

4.1 System Model

Table 1 gives the meaning of the symbols used in the
definitions below.

Definition 4.1 (Storage Nodes Specification). The
system is composed of a set of distributed and in-
dependent storage nodes D, where each d ∈ D is a
storage node connected to others by a network. Each
storage node can receive data until the maximum
storage capacity in gigabytes max stord is reached.

Definition 4.2 (Workload Specification). The wor-
kload submitted to our system is composed of a set
Get requests where virt node getp is the total number
of Get requests targeted to each virtual node p ∈ P,
where P is the set of virtual nodes.

Definition 4.3 (Replica Placement Scheme Variable).
The replica placement scheme S is a binary matrix of
sd p ∈ {0,1} values of size |D||P| where a row repre-
sent a storage node d ∈ D and a column represent a
virtual node p ∈ P. A virtual node p ∈ P is replicated
into the storage node d ∈D if the value is 1, otherwise
is 0. The minimum number of replicas of a virtual
node p ∈ P is min replp and the minimum number of
replicas not to be reconfigured of a virtual node p ∈ P
is min not recon f p, where both are set by the system
administrator.

Our replica placement scheme allows incremental
changes to a replica placement scheme already in-use
by a KVS system. A smart solution can improve an
existent replica placement scheme to evaluate dispen-
sable data redundancy and movement while reducing
load imbalance. We use O as a snapshot of a previous
replica placement scheme in-use and od p to represent
a cell in O. Both are constant for our model. We also
use M as the number of storage nodes |D| and N as
the number of virtual nodes |P|.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

442

Table 1: Definitions.

Symbol Meaning
D A set of storage nodes.
P A set of virtual nodes.
S A matrix representation of the re-

plica placement scheme.
O A snapshot of a previous replica

placement scheme in-use.
sd p A binary cell in the matrix of the re-

plica placement scheme.
od p A binary cell of a previous replica

placement scheme O.
M Total of storage nodes |D|.
N Total of virtual nodes |P|.
max stord Maximum storage capacity in GB

of a storage node i ∈ D.
used stord Used storage capacity in GB of a

d ∈ D.
min replp Minimum number of replicas of a

virtual node p ∈ P.
replp Number of replicas of a virtual node

p ∈ P.
min not recon f p Minimum number of replicas of a

virtual node p ∈ P not to reconfi-
gure.

not recon f p Number of replicas of a virtual node
p ∈ P not to reconfigure.

repl sizep Total size in GB of one replica of a
virtual node p ∈ P.

virt node getp Total number of Get requests sub-
mitted to a virtual node j ∈ P.

stor node getd Total number of Get requests sub-
mitted to a storage node d ∈ D.

ideal get Ideal number of Get requests to
submit to a storage node d ∈ D.

Cload imbalance Total load imbalance cost.
Cmaintenance Total replica maintenance cost.
Crecon f iguration Total replica placement scheme re-

configuration cost.

Definition 4.4 (Replica Placement Maintenance
Cost). The replica placement maintenance cost repre-
sents indirectly the network delay/overhead caused
by the data synchronization of already existing, but
dispensable replicas. To conform with this definition,
we give a cost in GB to the enabled cells in the previ-
ous scheme O that are still enabled in the new scheme
S according to the equation 1. This way, during the
evaluation of previous and new schemes, a solution
can focus on deleting already existing replicas.

Cmaintenance =
M−1

∑
i=0

N−1

∑
j=0

(oi jsi j)(repl size j) (1)

Definition 4.5 (Replica Placement Reconfiguration
Cost). The replica placement reconfiguration cost re-
presents indirectly the network delay/overhead cau-
sed by the movement/synchronization of replica cre-
ation and migration. To conform with this definition,

we give a cost in GB to the disabled cells in the previ-
ous scheme O that are now enabled in the new scheme
S according to the equation 2. This way, during the
evaluation of the previous and new schemes, a solu-
tion can focus on avoiding replica creation and migra-
tion. The reconfiguration cost of replica placement
scheme is defined according to the Equation 2.

Crecon f ig. =
M−1

∑
i=0

N−1

∑
j=0

(si j−oi jsi j)(repl size j) (2)

To better understand the differences between
replica placement maintenance and reconfiguration
costs, we describe examples bellow considering Ta-
bles 2 and 3:

Table 2: Example of Previous Replica Placement Scheme.

O =

p = 0 p = 1 p = 2 ... P
d = 0 1 0 0 ...
d = 1 1 1 1 ...
d = 2 1 1 1 ...
d = 3 0 0 1 ...

...
D

Table 3: Example of New Replica Placement Scheme.

S =

p = 0 p = 1 p = 2 ... P
d = 0 0 1 0 ...
d = 1 1 1 1 ...
d = 2 1 1 1 ...
d = 3 1 0 0 ...

...
D

• Replica Placement Maintenance Example.
Considering the previous scheme O in Table 2, the
virtual node p= 2 had to periodically synchronize
its three replicas at the storage nodes d = 1, d = 2
and d = 3. Considering the new scheme S in Table
3, the maintenance cost of the virtual node p = 2
was reduced from 3 to 2;

• Replica Placement Reconfiguration Example.
Considering the previous scheme O in Table 2 and
considering the new scheme S in Table 3, virtual
node p = 0 has a replica moved from storage node
d = 0 to d = 3 and virtual node p = 1 has a new
one replicated at storage node d = 0.

Definition 4.6. (Load Imbalance Cost): The amount
of Get requests submitted to each storage node d ∈ D
is measured according to the Equation 3.

stor node geti =
N−1

∑
j=0

si j(virt node get j/repl j) (3)

PopRing: A Popularity-aware Replica Placement for Distributed Key-Value Store

443

As we mentioned early, D has similar performance
capacities, then the ideal data access per storage node
is defined according to the Equation 4

ideal get = (
M−1

∑
i=0

stor node geti)/M (4)

Finally, to reduce the overload/underload of Get
requests on every storage node caused by data access
skew, we define the data access cost according to the
Equation 5

Cload imbalance =(
M−1

∑
i=0
|stor node geti− ideal get|)/M

(5)

4.2 Problem Formalization

Given the system model as well as the load imbalance,
replica maintenance and replica placement reconfigu-
ration costs that were previously defined, we set the
goal of the system as the minimization of the three
object functions according to the Equation 6:

min
S

Cload imbalance,Cmaintenance,Crecon f iguration

s.t. used stord<= max stord

replp>= min replp

not recon fp>= min not recon fp

(6)

5 PopRing REPLICA
PLACEMENT

PopRing is a replica placement strategy for distribu-
ted key-value stores with the ability to automatically
create, migrate and delete replicas. PopRing aims
to minimize the load imbalance, replica placement
maintenance and replica placement costs where these
different objectives may conflict with each other, re-
quiring optimal tradeoff analyses among the objecti-
ves of a system.

The authors (Cho et al., 2017) surveyed many ap-
proaches to resolve multi-objective (MOO) problems.
The weighted sum (WS) method is computationally
efficient in generating a strong non-dominated solu-
tion (Cho et al., 2017). We chose WS to minimize the
multiple objective functions defined in the previous
section by using the weighted sum method to trans-
form the multi-objective optimization problem into
the minimization of a unique function F .

By using the WS method, any user has individual
control of the importance of each objective as shown

in the Equation 7, where C1, C2 and C3 are the impor-
tance constants corresponding to the objective functi-
ons Cload imbalance, Cmaintenance and Crecon f iguration., re-
spectively. This way, it is possible to customize F
to adapt the optimization to be computed and app-
lied to the storage nodes periodically with small time
intervals between iterations to reduce huge data mo-
vements, for example.

F =C1Cload imb.+C2Cmainten.+C3Crecon f ig. (7)

5.1 Randomized Search

Given a replica placement scheme matrix S with each
cell element {0,1} and dimension size of m×n where
m is the number storage nodes and n is the number
of virtual nodes, the worst-case time complexity for
performing brute-force search to evaluate F and find
the optimum replica placement has exponential time
complexity O(2mn) .

To substantially reduce the search time while not
getting stuck into local optimum at minimizing our
function F , we decided to use operators of genetic al-
gorithms (G.A.) such as selection, crossover and mu-
tation to guide the search process. The usage of these
operators simulates the survival of the fittest from
Darwin’s evolutionary theory and generates useful so-
lutions for optimization (Li et al., 2017).

The work (Li et al., 2017) surveyed many diffe-
rent approaches for each genetic algorithm and ran-
ked them according to the most used by the literature.
Considering the most popular approaches, PopRing
uses the binary coding, the tournament, the single-
point, the bit inversion, the total number generation
methods for coding, selection, crossover, mutation
and termination, respectively. These genetic opera-
tors are used by PopRing traditionally according to
the literature to generate randomly a population of in-
dividuals and update that population during a number
of generations to guide the search process to find the
best individual, i.e., a new replica placement scheme

To reduce convergence time and maintain popula-
tion diversity, we add two special individuals to the
population to give clues when exploring the search
space to find good solutions as quickly as possible.
The first one is an individual based on the exact ac-
tual replica placement scheme used by the system to
reduce the replica migration/creation once this indi-
vidual has the smaller cost for Crecon f . The second
one is an individual is based on the actual replica
placement, but with randonmly reduced replicas until
the min replp. At including this second individual,
the randomized search reduces the total replicas of a

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

444

new replica placement, because this individual has the
smaller cost for Cmainten..

5.1.1 Sparse Matrix Improvement

The matrix calculations on the replica placement
scheme S have O(mn) complexity where m is the
number storage nodes and n is the number of virtual
nodes. The total number of virtual nodes may be too
high such as 1024, 65536, 1048576 and so on, thus re-
sulting in huge dimensions for the replica placement
scheme. These huge dimensions slow the evaluation
of F at performing mathematical operations on ma-
trix/vectors structures.

Our approach reduces dispensable data redun-
dancy and reconfiguration, then the percentage of the
average of non-zeros in S is very low when the popu-
lation of individuals is getting closer to the optimum.
Near to the optimum, the number of enabled replicas
is much lower than the number of virtual nodes |P|.

This way, we converted our matrix to the Com-
pressed Row (CSR) format (Grossman et al., 2016)
and reduced the time complexity of matrix operations
to O(n).

6 EXPERIMENTAL EVALUATION

For evaluating our proposed solution PopRing against
the OpenStack-Swift, our simulated environment is
described in Section 6.1. Finally, the improvements
of our solution under different configurations regar-
ding the importance of the objectives are discussed in
Section 6.2.

6.1 Simulated Environment

First, we setup replica placement settings of the
OpenStack-Swift as 3, 50, 1024 for replication factor,
number of storage nodes and number of virtual nodes,
respectively. Then, we simulated the creation of 300
thousand objects using Zipf law with its exponent 1.1
for object size and the submission of 1 million Get
requests using Zipf distribution to represent different
data popularity levels according to (Liu et al., 2013).
For the problem constraints described in Section 4,
we used the maximum storage capacity of storage no-
des, the minimum replication factor of virtual node
and minimum replicas not to reconfigure are set to
500 GB, 2, 1 respectively.

For the setup of the evolutionary parameters of
PopRing, we used 1000, 50, 3, 0.5, 0.1 and 0.0005
for generation size, population size, tournament size,
cross-over rate, mutation rate and gene mutation

rate, respectively. We used the versions 1.0.2 of
DEAP, 0.19.1 of scipy libraries and Mitaka to per-
form evolutionary algorithms, matrix calculations and
OpenStack-Swift baseline, respectively. Our algo-
rithm was been processed on a desktop computer with
core i7 3.40GHz and 16GB memory, but it required
much less computer resources than the maximum ca-
pacity and took less than 2 minutes to finish.

Table 4: Popring Parameters.

(C 1, C 2, C 3) Importance
(1, 1, 1) Low maintenance and re-

configuration.
(1, 10, 100) Low maintenance and mo-

derate reconfiguration.
(1, 100, 10) Moderate maintenance and

low reconfiguration.
(1, 100, 100) Moderate maintenance and

reconfiguration.
(1, 200, 200) High maintenance and re-

configuration.

To evaluate our strategy, we experimented Pop-
Ring under different configurations. We organized
these configurations by keeping constant the impor-
tance of the load imbalance cost and varying the im-
portance of other costs. Low, moderate and high re-
present the level of importance of each objective. The
values of function costs are not normalized, thus we
adjusted C 1, C 2 and C 3 to represent the levels des-
cribed at the Table 4.

6.2 Results

Fig. 3 shows the percentage of Get requests each
storage node has to handle in comparison to the total
Get requests submitted to the system. For our expe-
riment, the ideal load per storage node is 20000 Get
requests according to the Equation 4. Fig. 3(a) shows
that the Swift baseline overloads three storage nodes
by submitting to them around 30% of the system total
load while the majority of the storage nodes manages
each one less than 1% of total system load.

Considering the configuration (1, 1, 1), it is pos-
sible to verify that PopRing obtained a replica pla-
cement with only 746.95 Get requests of load imba-
lance, i.e., almost the ideal line of Get requests per
storage node. This performance on load balance is
obtained because PopRing configuration is able to de-
dicate much more importance to the load imbalance
problem than the replica placement maintenance and
reconfiguration as shown in Fig. 3(b). The configu-
rations (1, 10, 100) and (1, 100, 10) had similar load
imbalance of 3980.15 and 3246.52 as shown in figu-
res 3(c) and 3(d). The configurations (1, 100, 100)

PopRing: A Popularity-aware Replica Placement for Distributed Key-Value Store

445

(a) OpenStack-Swift. (b) PopRing (1,1,1). (c) PopRing (1,10,100).

(d) PopRing (30,100,10). (e) PopRing (1,100,100). (f) PopRing (1,200,200).
Figure 3: Total Get Requests Per Storage Node.

and (1, 200, 200) obtained 8984.42 and 14667.23 of
load imbalance, respectively as shown in figures 3(e)
and 3(f). The most conservative PopRing configura-
tion (1, 200, 200) still had good performance at redu-
cing the three most overloaded nodes to less than 50%
of their previous loading.

Fig. 4 represents the percentage of the amount of
data according to their replication factor. The configu-
ration (1, 1, 1) has the higher increase for replication
cost due to the low importance given to replica main-
tenance and replica placement reconfiguration costs.
The configuration (1, 10, 100) decreased only less
than 5% of virtual nodes to only two replicas and
required less than 10% of virtual nodes to increase
their number of replicas. In contrast, the configura-
tion (1,100,10) reduced almost 20% of virtual nodes
to only two replicas and and required almost 20% of
virtual nodes to increase their number of replicas.

Figure 4: Replication Factor Evaluation.

Our system has a minimum replication factor
which limits the amount of data redundancy which
can be reduced. It is possible to confirm that limit at

comparing (1,100,100) and (1,200,200), where the
performance improvement of data maintenance cost
has not changed significantly.

PopRing reduced the load imbalance in 96%,
79%, 83%, 52% and 22% while reducing the main-
tenance cost of current replicas in 8%, 2%, 36%, 33%
and 33% for the configurations (1, 1, 1), (1, 10, 100),
(1, 100, 10), (1, 100, 100) and (1, 200, 200), respecti-
vely as shown at Fig. 5. PopRing also required the
reconfiguration of 54%, 5%, 38%, 6%, 1% of total sy-
stem data for the configurations (1, 1, 1), (1, 10, 100),
(1, 100, 10), (1, 100, 100) and (1, 200, 200)., respecti-
vely as shown at Fig. 6. These results make possible
to understand that the performance of load imbalance
cost is impacted by the other two objectives.

Figure 5: Relative Costs: How much load imbalance (Get
requests) and replica maintenance costs were reduced in
comparison to the replica placement of the OpenStack-
Swift. And how much data movement relative to the total
previous total storage was needed by our replica placement
scheme.

In Fig. 5, it is verified a decline in the load ba-
lance performance and a rising in the replica main-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

446

tenance performance. The same applies for replica
placement reconfiguration as shown in Fig. 6. The
increase in the importance of replica maintenance
and replica reconfiguration make the load imbalance
more difficult to minimize. Figures 5 and 6 shown
the trade-offs among load imbalance, replica place-
ment maintenance and replica placement reconfigura-
tion objectives.

Figure 6: Total data movement relative to the total previous
replica placement scheme.

7 CONCLUSION AND FUTURE
WORK

In this work, we analyzed the problem of replica pla-
cement on KVS systems based on consistent hashing
with virtual nodes for workloads with data access
skew. We formally defined our problem as a multi-
objective optimization and presented the PopRing ap-
proach based on genetic algorithm to solve the multi-
objective optimization.

Finally, we compared PopRing against the
OpenStack-Swift replica placement under different
configurations. In most configurations, PopRing
could balance workloads with data access skew
while reducing unnecessary data redundancy and mo-
vement. A moderate PopRing configuration reduced
in 52% the load imbalance and in 32% the replica pla-
cement maintenance while requiring the reconfigura-
tion (data movement) of only 6% of total system data.
As future work, we intend to evaluate PopRing not
only on simulated environment, but on real deploy-
ments as well while extending it to consider dyna-
mic workloads with restrictive agreements for service
quality.

ACKNOWLEDGEMENTS

This work was partially funded by Lenovo, as part of
its R&D investment under Brazil’s Informatics Law,
and also by LSBD/UFC.

REFERENCES

Chekam, T. T., Zhai, E., Li, Z., Cui, Y., and Ren, K. (2016).
On the synchronization bottleneck of openstack swift-
like cloud storage systems. In Computer Communica-
tions, IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on, pages 1–9. IEEE.

Cho, J.-H., Wang, Y., Chen, R., Chan, K. S., and Swami, A.
(2017). A survey on modeling and optimizing multi-
objective systems. IEEE Communications Surveys &
Tutorials.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. (2007). Dynamo: ama-
zon’s highly available key-value store. ACM SIGOPS
operating systems review, 41(6):205–220.

Grossman, M., Thiele, C., Araya-Polo, M., Frank, F., Al-
pak, F. O., and Sarkar, V. (2016). A survey of
sparse matrix-vector multiplication performance on
large matrices. arXiv preprint arXiv:1608.00636.

Li, T., Shao, G., Zuo, W., and Huang, S. (2017). Genetic
algorithm for building optimization: State-of-the-art
survey. In Proceedings of the 9th International Con-
ference on Machine Learning and Computing, pages
205–210. ACM.

Liu, J. and Shen, H. (2016). A low-cost multi-failure re-
silient replication scheme for high data availability
in cloud storage. In High Performance Computing
(HiPC), 2016 IEEE 23rd International Conference on,
pages 242–251. IEEE.

Liu, S., Huang, X., Fu, H., and Yang, G. (2013). Under-
standing data characteristics and access patterns in a
cloud storage system. In Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM Interna-
tional Symposium on, pages 327–334. IEEE.

Long, S.-Q., Zhao, Y.-L., and Chen, W. (2014). Morm:
A multi-objective optimized replication management
strategy for cloud storage cluster. Journal of Systems
Architecture, 60(2):234–244.

Makris, A., Tserpes, K., Anagnostopoulos, D., and Alt-
mann, J. (2017). Load balancing for minimizing the
average response time of get operations in distributed
key-value stores. In Networking, Sensing and Control
(ICNSC), 2017 IEEE 14th International Conference
on, pages 263–269. IEEE.

Mansouri, Y., Toosi, A. N., and Buyya, R. (2017). Cost
optimization for dynamic replication and migration
of data in cloud data centers. IEEE Transactions on
Cloud Computing.

Mseddi, A., Salahuddin, M. A., Zhani, M. F., Elbiaze, H.,
and Glitho, R. H. (2015). On optimizing replica mi-
gration in distributed cloud storage systems. In Cloud
Networking (CloudNet), 2015 IEEE 4th International
Conference on, pages 191–197. IEEE.

Zhuo, L., Wang, C.-L., and Lau, F. C. (2002). Load balan-
cing in distributed web server systems with partial do-
cument replication. In Parallel Processing, 2002. Pro-
ceedings. International Conference on, pages 305–
312. IEEE.

PopRing: A Popularity-aware Replica Placement for Distributed Key-Value Store

447

