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Abstract: Working with average-sized event logs is still a major task in process mining, where the main goal is to gain
process-related insights based on event logs created by a wide variety of systems. An event log contains a
sequence of events for every case that was handled by the system. Several discovery algorithms have been
proposed and work well in specific cases but fail to be generic strategies. Moreover, there is no evidence
that the existing strategies can handle events with a large number of variants. For this reason, a generic
approach is needed to allow experts to explore event log data and decompose information into a series of
smaller problems, to identify outliers and relations between the analyzed cases. In this paper we present a
visual filtering approach for event logs that makes process analysis tasks more feasible and tractable. To
evaluate our approach, we have developed a visual filtering tool and used it with the event log from BPI
Challenge 2017.

1 INTRODUCTION

The business world is complex: various actors are in-
volved in designing, delivering, and offering services
(Mendling et al., 2017), and the knowledge of how
these processes behave is essential in the field of Bu-
siness Process Management (BPM). BPM is related
with the management activities around daily business
processes. During the last decade, the need for com-
panies to learn more about how their processes work
in the real world has increased the use of Process
Mining techniques (Tiwari et al., 2008). Grounded
in the data mining field, such techniques aim to re-
trieve relevant information from the analyzed work-
flow. Among the topics used in data-driven process
analysis, we highlight Process Discovery, Confor-
mance Checking, and Process Improvement (Van der
Aalst, 2016).

Information retrieval related to BPM aims to ans-
wer several questions to support making decisions
and managing process execution by offering several
features, such as analysis, prediction, monitoring,
control, and optimization.

Following a bottom-up approach, process mining
deals with information gathered as the processes are
executed, recording events of each case as they occur,

and then building a structured process description
from those recorded events (Van der Aalst and Wei-
jters, 2004). In sum, process mining is a research
field that acts on the intersection of methods like ma-
chine learning, data mining, and BPM (Van der Aalst,
2016).

In the field of Process Discovery, we aim to get an
actual event log and create another controlled struc-
ture, such as a workflow, which represents most of the
cases captured by that log. When dealing with sim-
ple examples, the reconstruction of a workflow can
be quite easy. However, for large workflow models
this can be much more difficult (Van der Aalst et al.,
2004). A recent approach to deal with large datasets
consists of simplifying the large event log into smaller
sublogs, applying the discovery algorithm to these su-
blogs, and then merging the results to generate a solu-
tion to the whole system. By mining smaller logs and
later merging the (sub)solutions, this approach signifi-
cantly speeds the discovery algorithm (Verbeek et al.,
2017). With this in mind, we want to expand the range
of approaches that simplify a model to make it easier
to understand.

In recent years, various techniques were propo-
sed to visualize and generate clusters of BPM data.
Most of these techniques focus on optimizing soluti-

38
Schirmer, L., Quatrin Campagnolo, L., Fiol González, S., M. B. Rodrigues, A., G. Schardong, G., França, R., Lana, M., D. J. Barbosa, S., Poggi, M. and Lopes, H.
Visual Support to Filtering Cases for Process Discovery.
DOI: 10.5220/0006708200380049
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 38-49
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



ons based on a similarity measure between traces of
data, i.e., the event log is split into homogeneous sub-
sets and for each subset a process model is created
(De Koninck and De Weerdt, 2016). In this paper,
we propose a new visual filtering approach to event
logs, based on multidimensional projection techni-
ques. With this approach, we create a lower dimensi-
onal representation of the cases, preserving their dis-
similarity to one another, and visually select the ones
that stand out or spark interest. Then, we generate
a new, filtered event log using only the selected ca-
ses. Such event log can then be further analyzed using
standard process mining approaches.

The main contribution of our work is a visual ap-
proach for filtering processes based on their low di-
mensionality representation. Our second contribution
is the proposal of a dissimilarity function that uses not
only the attributes of the process cases, but also the
dissimilarity of their paths. Our third and final contri-
bution involves the use of entropy to analyze the va-
riability of the processes’ attributes. With those con-
tributions, we expect that our work can be used as a
support tool for process discovery.

The remainder of this paper is organized as fol-
lows: Section 2 presents related work. Next, in
Section 3 we introduce the main components of our
approach and explain the visualization techniques
employed. Section 4 introduces the filtering tool pro-
posed, as well as the interaction mechanisms provi-
ded. Section 5 presents an application of the proposed
approach using real process data in order to demon-
strate its advantages. Finally, Section 6 presents some
concluding remarks and directions for future works.

2 RELATED WORK

In the past, activities related to BPM were conducted
by process analysts with almost no automatic support
for process modeling (Mendling et al., 2017). This
has been changing with the creation of new techni-
ques and algorithms developed to automate or pro-
vide intelligent support for process mining and pro-
cess analysis. The visualization of cases from an
event log, however, still presents challenges.

To overcome problems related to data analysis and
visualization, Van Dongen et al. (2005) have deve-
loped the ProM framework, an extensible environ-
ment for process mining. The system is flexible with
respect to input and output parameters, and easy to
reuse code during the implementation of new process
mining features. It combines different techniques for
data mining and process flow analysis. However, with
Prom it is not possible to look at the log and group ca-

ses by attributes similarities.
Verbeek et al. (2017) proposed a generic appro-

ach to group similar sequences of activities, splitting a
unique event log file into a number of event logs with
fewer variants each. This was implemented as a plug-
in in ProM6 and allows for easier decomposed disco-
very, using six different discovery algorithms. For the
decomposed discovery, the framework allows the end
user to select the classifier, which maps the event log
at hand onto an activity log; the miner (or discovery
algorithm); and a configuration.

Low et al. (2017) have developed visualization
techniques to provide targeted analysis of resource re-
allocation and activity rescheduling. They have ana-
lyzed differences between event logs and the changes
are conceptualized and realized with a number of vi-
sualizations. Using such visualizations, analysts can
identify resource and time-related changes, which re-
sult in a cost reduction of the process, and investi-
gate them further. They use social network graphs
to illustrate the reallocation of resources and a time-
line visualization approach to depict time-related in-
formation and identify temporal patterns. Moreover,
the system provides a clear view of two event logs
side-by-side, so that differences and similarities can
be visually identified. However, the proposed system
does have some issues. With a large number of vari-
ants and cases, it is difficult to identify issues in the
data with a visual analysis. In some cases, the use of
the graph and the timeline visualization can confuse
the users (Low et al., 2017).

To solve some of the aforementioned issues, we
developed a visual interactive filtering tool which al-
lows the generation of smaller event logs by selecting
a subset of cases. Contrasting with the approach of
Verbeek et al. (2017), presented in Figure 1, we cre-
ate a visual application to filter cases and generate su-
blogs. Our strategy can be considered more flexible
and tractable than theirs, as in our approach domain
experts and analysts can freely explore and analyze
the data, and then create sublogs according to their
insights.

3 VISUAL FILTERING
APPROACH

Our visual filtering approach is based on evaluating
the difference between cases using a set of attributes.
There is a multitude of metrics available to accom-
plish this. Paixão et al. (2009) propose the use of
weighted additive distances to denoise a vector field.
We adapt this metric to our problem, where each at-
tribute f of a case receives a weight α f ∈ [0,1]. We
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Figure 1: Conceptual view of a decomposed discovery al-
gorithm given by (Verbeek et al., 2017) and our proposed
approach.

calculate the similarity between each attribute of two
cases i, j|i 6= j and weigh that attribute’s importance
using α f . The product of each attribute similarity for
cases i, j results in a measure of similarity between
the cases. Subtracting this value from 1 gives a mea-
sure of the dissimilarity between i and j, as defined in
Equation 1,

di, j = 1−
|F |

∏
f=0

[
e−α f ( fi− f j)

]
(1)

where F is the attribute set, (i, j)|i 6= j are the i-th and
j-th case, |F | is the cardinality of the attribute set, α f
is a weight factor associated to attribute f ∈ F and
fi− f j is the difference between attribute f of cases
i and j. When dealing with categorical variables, the
fi− f j term is replaced by a boolean comparison bet-
ween the categories, which means that we argue whet-
her fi == f j.

We have also implemented two measures to cal-
culate the distance between the path of two cases: the
Levenshtein distance and the Jaccard index. The Le-
venshtein distance, or edit distance, measures the mi-
nimum number of operations needed to transform a
string into another (Levenshtein, 1966). Here, the in-
sertion, removal or change of characters are conside-
red as valid operations. For example, the edit distance
between case I with an activity sequence of ABCD
and case J with an activity sequence of ABDE is 2,
since activity C of I would be converted to D and acti-
vity D of I would be converted to E. Equation 2 pre-
sents the mathematical definition of the Levenshtein

distance.

LI,J(a,b) =


max(a,b) min(a,b) = 0

L(a−1,b)+1
L(a,b−1)+1
L(a−1,b−1)+1(Ia 6=Jb)

otherwise

(2)
where I and J are two different cases, a and b are
activities belonging to case I and J respectively and
1(Ia 6=Jb) is the indicator function, resulting in 0 if Ia =
Jb and 1 otherwise.

The Jaccard index measures the fraction of com-
mon samples between two finite sets of samples and
is defined by the number of common samples divided
by the total number of samples in both sets (Jaccard,
1901). We applied this metric by considering that
each case is composed of a set of activities. Thus,
to measure the dissimilarity between cases I and J,
we subtracted their Jaccard index from 1. Equation 3
presents the definition of the Jaccard dissimilarity.

J(i, j) = 1− |I∩ J|
|I∪ J|

(3)

In order to visually assess the similarity between
the cases, we employ two multidimensional pro-
jection techniques: Multidimensional Scaling (MDS)
(Kruskal and Wish, 1978) and t-Stochastic Neig-
hbor Embedding (t-SNE) (Maaten and Hinton, 2008).
MDS is a set of algorithms aimed at providing a lo-
wer dimensionality representation of a distance ma-
trix. The main goal is to create a simpler representa-
tion of the cases, but maintaining their relative distan-
ces as close to the original values as possible.

The classical MDS algorithm uses an eigenvalue
decomposition of the distance matrix to calculate a
coordinate matrix in a lower dimensionality space.
This approach requires a full representation of the
distance matrix, which is costly in terms of memory
usage. In addition, the eigenvalue decomposition is
performed by using the power iteration, or power met-
hod (Mises and Pollaczek-Geiringer, 1929), which in
turn is a computationally costly algorithm. Wickel-
maier (2003) provides a good intuition on this parti-
cular algorithm, as well as worked examples.

The primary outcome of an MDS projection is a
spatial configuration, in which the objects are repre-
sented as points and arranged in such a way that their
euclidean distances correspond to the dissimilarities
of the objects in the original space, i.e., similar objects
are represented by points that are close to each other,
whereas dissimilar objects by points that are further
apart. A prominent application of MDS is the visuali-
zation of high-dimensional correlational data, such as
data from process cases.
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The weights assigned to each attribute in Equation
1 have direct influence on the dissimilarity matrix and
its eigenvalue decomposition. This leads to different
spatial configurations for different sets of weights. A
careful study of the attributes variability and subse-
quent weight assignments may lead to a configura-
tion that naturally highlights the different groups in
the data, such as the one presented in Figures 2 and 7.

The second multidimensional projection techni-
que employed is called t-Distributed Stochastic Neig-
hbor Embedding (t-SNE) (Maaten and Hinton, 2008).
The goal of this technique is to embed high dimen-
sional data into a low dimensional space, typically
of 2 or 3 dimensions. Since its inception, it became
widely popular to visualize results of machine lear-
ning techniques (Wattenberg et al., 2016). t-SNE
builds upon the original Stochastic Neighbor Em-
bedding (SNE) algorithm, proposed by Hinton and
Roweis (2003). Both t-SNE and SNE work in two
stages: First, they convert the pairwise dissimilarities
between the data points in the high-dimensional space
into conditional probabilities, such that points with
small dissimilarities will have a high probability of
being neighbors and points with large dissimilarities
will have a lower probability of being neighbors. The
second stage involves the same construction, only for
the low dimensional space. The algorithm then pro-
ceeded by minimizing the sum of Kullback-Leibler
divergences between these two probability distribu-
tions. However, SNE suffers from two problems
that motivated the creation of t-SNE: The Kullback-
Leibler divergence function is difficult to minimize;
and a so-called ”Crowding problem”. Both problems
are heavily detailed by van der Maaten and Hinton
(2008). t-SNE partially solves both problems by pro-
posing a joint probability distribution, called symme-
tric SNE, which solves the Kullback-Leibler minimi-
zation issues; and by proposing the use of a Student
t-distribution to map dissimilarities onto probabilities
in the low dimensional space, alleviating the crow-
ding problem (Maaten and Hinton, 2008).

In practical terms, t-SNE is capable of revealing
both local and global aspects of the data. However, as
stated by Wattenberg et al. (2016), t-SNE is heavily
dependent on the input parameters, and may show
group structures where there are none, besides defor-
ming existing groups, misrepresenting their true size
and inter-group distance.

Figures 2 and 3 show the results of applying the
MDS and t-SNE algorithms, respectively, over the
same 3,000 cases sampled uniformly at random.

Figure 2: Our proposed case filtering visualization using
MDS projection using 3,000 cases.

Figure 3: Our proposed case filtering visualization for t-
SNE projection with 3,000 cases and a perplexity of 50.

4 VISUAL FILTERING TOOL

Our filtering tool comprises a set of 2D charts (MDS
and t-SNE), onto which we project the cases, and a
set of user interface elements to adjust visibility and
weight parameters. Figure 4 shows a prototype of our
tool with some cases plotted. Using the sliders, we
can define the α f weight for each feature included in
the measure of dissimilarity presented in Equation 1.

Besides the features, it is important to know all
activities of each case. A case can be considered un-
defined if, when analyzing the event log, its end is
not identified. In our approach, we consider all case
types with a defined endpoint, i.e., either successful
or unsuccessful. We can group cases into different
sets of points, using a specific marker for each group.
In Figure 4, we project cases which ended in success
(Approved), denial (Denied) or cancellation (Cancel-
led). It is essential to be able to filter and group the
data, so we can later use them to retrieve information
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about the identified groups.
Given the log projected into a 2D chart, we may

select multiple cases, as exemplified in Figure 5. We
can also select multiple cases based on projections ge-
nerated with different weights for each feature. Then,
we can export a CSV file with the filtered cases to be
used in a process mining software, such as ProM (Ver-
beek et al., 2010) and Fluxicon Disco (Mining, 2014).
These softwares help analyze the activity flow of the
cases.

Our visual filtering tool was implemented in Py-
thon using Sklearn and Matplotlib Packages (Pedre-
gosa et al., 2011; Hunter, 2007).

Figure 4: Our visual filtering prototype with 400 cases.

5 APPLYING VISUAL FILTERING

Process mining results reveal what goes on inside pro-
cesses and can be used to diagnose problems and sug-
gest solutions (Van Der Aalst, 2012). An event log
is composed of a list of events, where all data ex-
tracted from systems is converted to this log. Each
event should have a minimal set of attributes: a case
id (a unique number to represent the case), an activity
name to indicate the performed action, and the date
and time when the action was executed (Rodrigues
et al., 2017).

We have tested our approach using the event log
of BPI Challenge 2017, a real-life log taken from a
financial institution. The BPI Challenge provided an
event log that contains all applications filed in 2016,
and at the beginning of 2017. In total, there are
31,509 loan applications, i.e. cases. Our goal with
the application is to find patterns and correlations be-
tween different cases based on the similarity among
attributes that define a process, because this is an im-
portant task in process discovery.

With this event log, for all applications, the avai-
lable data (attributes) are the following:

• Requested load amount (in Euro),

• The application type,

• The reason for the loan request (Loan Goal), and

• An application ID.

For all offers, the following data are available:

• An offer ID

• The offered amount,

• The initial withdrawal amount,

• The number of payback terms agreed to,

• The monthly costs,

• The customer’s credit score,

• The employee who created the offer,

• Whether the offer was selected, and

• Whether the customer accepted the offer.

For each uniquely identifiable event, the employee
who triggered the event is recorded, as well as time
stamp and life-cycle information. In this dataset, there
are more than 1.2 million events, and each event cor-
responds to one of the 26 possible activities of the
process.

Each application is a single case in this dataset
and, for each case, a number of offers can be sent to
a client. A case may have one of three possible en-
dings in the event log: Approved (A Pending), Denied
(A Denied), or Cancelled (A Cancelled). In the event
log, 100 cases were undefined, meaning that none of
the possible endings had been reached. Because of
this, they were discarded in our experiments. In our
preliminary experiments, we performed tests with the
entire data set, i.e., 31,409 cases.

With this data, we aim to assess our approach use-
fulness in answering questions of common problems
in the domain, by clustering data and analyzing pat-
terns in each of the attributes. This can be considered
an initial step for process discovery, and a meticulous
analysis of the filtered data is needed afterwards.

We transform the event log into a dataset, where
the rows represent the cases and the columns charac-
terize each case, based on the following features: Cre-
dit Score, Requested Amount, Number of Offers, and
Loan Goal. We selected these features to find simi-
larities between cases. Also, we added the pairwise
Jaccard index and Levenshtein distance as additional
features.

We use MDS to explore the data. As shown in Fi-
gure 5, we experimented with different projections,
trying to identify visual patterns and relations bet-
ween the cases. We experimented with different weig-
hts for the dissimilarity metric, in order to evaluate the

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

42



(a) (b) (c)

(d) (e) (f)
Figure 5: Exploring the data and selecting cases using MDS dimensionality reduction. We can select and deselect cases
changing the visualization. For each choice of weights for each feature, we maintain the selection of the cases. In the Figure
(a)(b), we start selecting two groups of points. With a different set of weights, as in Figure (c), we can explore different
visualizations maintaining the same selected points. In the Figures (d)(e), we deselect some other points and then, in Figure
(f), we adjust the weights to visualize the similar projection of (a), but now with a smaller set of selected points.

data and find which attributes had a grouping factor in
the dataset.

Using our prototype, it is possible to manually se-
lect a subset of cases using click-and-drag interaction
and export the selection to a CSV file to load it into a
Process Mining software, such as Disco or ProM. Fi-
gure 6 shows the process flow using Disco with all the
31,409 valid cases and with a sublog obtained with
our filtering tool.

Unfortunately, MDS is not efficient when dealing
with a large number of cases, both in terms of com-
putational time and memory used. In our study, we
projected 31,409 cases, with considerable time spent
for each projection, in average 2 hours for each ex-
periment and 60 GB of memory used to store all
data structures used in this technique. We perform
our test in a computer with an Intel core i7-5820K
CPU@3.30GHz, 64GB of memory, 1TB of hard disc
and a graphics card Nvidia Titan Xp DDR5 with 12
GB of memory. However, for smaller dataset, the
MDS does not have such problem. Table 1 shows the
computational time for the same dataset with less ca-
ses.

As a quality measure, we considered the stress of
the projection. This measure depends on the weights
chosen by the user in the dissimilarity equation but,
in the best case, considering only the features of Le-
venshtein distance and loan goal, the stress is 0.15.

Table 2 shows the weights assigned to each at-

Table 1: Run time for each test.

Number of cases time (min)
1 1000 0.366
2 2000 0.576
3 5000 2.010
4 10000 6.880
5 20000 31.400
6 31409 130.02

tribute of the dataset when calculating the pairwise
dissimilarity between the cases. Using these weights,
we projected the full set of cases. The resulting pro-
jection is shown in Figure 7. We then selected 6 clus-
ters using our prototype tool, also shown in Figure 7.

Table 2: Parameters defined to filter the 31409 cases.

Attribute Value
1 Loan Goal 1.00
2 Credit Score 0.50
3 Number of Offers 0.00
4 Requested Amount 0.50
5 Levenshtein Distance 0.00
6 Jaccard Index 1.00

In order to validate our approach, we used a clus-
tering algorithm on the complete event log to au-
tomatically find 6 clusters. We used a version of
K-Medoids (Kaufman and Rousseeuw, 2009) named
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(a) (b)
Figure 6: Difference between the process map using all 31,409 cases (a) and the filtered sublog(b).

Figure 7: Filtered image with 6 clusters selection using the
parameters specified in Table 2 with MDS.

Partitioning Around Medoids (PAM). The algorithm
searches for k representative objects i.e. medoids of
the clusters, which minimize the sum of pairwise dis-
similarities between each object (case) and the closest
medoid. The k clusters are constructed by assigning

each object of the dataset to the nearest representative
object.

To evaluate how cohesive the clusters are, we cal-
culated their entropy. Shannon’s entropy (Shannon
and Weaver, 1963) quantifies this cohesiveness, i.e.
the uncertainty associated with a discrete random va-
riable X with N possible outcomes (Lopes and Bar-
bosa, 2015). Equation 4 describe this measure.

H(S)[P] =−
N

∑
j=1

p jln(p j) (4)

Where p j is the probability of the outcome j appea-
ring in the variable. Since our dissimilarity measure is
normalized, we decided to use the normalized version
of the Shannon entropy, as shown in Equation 5.

H(S)[P] =
H(S)[P]
H(S)[Pe]

=−
N

∑
j=1

p jln(p j)

ln(n)
(5)

Where H(S)[P] ∈ [0,1]. When the entropy is close to
0, the cluster is homogeneous. Conversely, when it is
closer to 1, the cluster is heterogeneous.
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Using K-Medoids with k = 6 and 31,397, which
is the number of clusters and data points, respectively,
obtained using our filtering tool, we calculated the en-
tropy of each cluster with respect to the variables. Fi-
gure 10 shows this result.

Similarly, we calculated the entropy for each of
the visually selected clusters. Figure 11 shows this
result. It is important to note that we use a gradient
color scale to identify the entropy. Lower entropies
(the most interesting ones for this study) appear in
shades of blue, where the darker blue is entropy close
to 0. The higher (less interesting) entropies appear in
shades of red, where the darker red is entropy near 1.

In general, the separation of data points through
the filtering tool resulted in clusters with low uncer-
tainty value for the Goal and similar to Credit Score
variables, when compared to K-Medoids.

To assist in the descriptive analysis of clusters, we
calculated the frequency of the values in each of the
variables of the MDS approach. The result can be
seen in Figure 12, where each row represents a cluster.
Histogram colors match entropy colors.

From this moment it is possible to describe the
clusters defined by MDS method (see Figures 7, 11
and 12).

Cluster 1 is characterized by a higher percentage
of cases that were Cancelled (10.817%, row 1 in Ta-
ble 3) at the end of the process. Regarding Goal and
Credit Score, the entropy is 0, meaning there is no un-
certainty (Figure 11). In this cluster, all cases have
Goal = Car and Credit Score in the range [0,500)
(row 1 in Figure 12). Entropy increases for the Num-
ber of Offers (0.42), where most cases received 1 of-
fer, and also to the Requested Amount (0.77), where
the amounts requested are heavily distributed between
cases.

Cluster 2 has similar characteristics to Cluster 1 in
terms of Cancelled cases (7.383%, row 2 in Table 3)
and entropy of the same variables (Figure 11). Howe-
ver, the purpose of the loan for this cluster is Home
Improvement (row 2 in Figure 12). This is evident
when we look at the clusters of Figure 7: they are vi-
sually alike but distant.

Cluster 3 also has mostly Cancelled cases
(15.009%, row 3 in Table 3). The entropy is high
for the variables considered, except for Credit Score,
which is 0 (Figure 11). In this cluster all cases have
Credit Score in the range [0,500) (row 3 in Figure 12).

Cluster 6, in spite of having practically all Ap-
proved cases (20.350%, row 6 in Table 3), has high
entropy in all considered variables (Figure 11). Only
one case was not approved, getting a Denied endpoint.
This behavior caught our attention and, for this re-
ason, we analyze this particular case. We detected

that the values of the variables are within the limits of
each of these clusters (red dots in Figure 12 represents
this particular case), but it presented a path between
the events totally different from the rest of the cluster.
This, in fact, proves that the MDS can group cases ac-
cording to the similarity of the variables, regardless of
the defined paths.

Clusters 4 and 5, again, have similar characteris-
tics. Both have high entropies, very close to each ot-
her (Figure 11). The types and frequency of values
for the Credit Score, Number of Offers, and Reque-
sted Amount variables are very similar too (rows 4
and 5, respectively in Figure 12). However, Cluster
4 has Goal = Car and Cluster 5, Goal = Home im-
provement. Again we can compare this behavior with
the visual clusters. These clusters are distant but si-
milarly shaped (Figure 7). As we can see in Figure
6, the sublog represents the process obtained with the
filtered log representing cluster 4.

In general, we can verify that the Credit Score se-
parates the clusters in two groups by the diagonal,
where the high entropy are on the left-hand side and
the low entropy are on the right-hand side in Figure 7.

In order to visualize the results of the K-Medoids
clustering, we plotted the projections of 31,397 ca-
ses selected using our visual approach and colored the
points by their assigned K-Medoids cluster label. Fi-
gure 8 shows this result.

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
MDS - 31397 cases - KMedoids clusters

Figure 8: MDS projection of the 31,397 cases colored by
their K-Medoids assigned cluster.

K-Medoids obtains clusters with silhouette mea-
sure (Rousseeuw, 1987) equivalent to our approach,
as seen in tables 4 and 5, but it visually scrambles
some of the cases (Figure 8). Using the same colors of
the K-Medoids clusters, we painted the concordance
matrix in Figure 9, showing how the data points are
distributed among clusters of each approach. We also
quantified the amount of information shared between
K-Medoids clustering results and the visual clusters
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Table 3: Cluster characterization of MDS approach in terms of process (* %with respect to all 31,397 cases).

Cluster #Cases #Variants Approved %Approved* Denied %Denied Canceled %Canceled
1 5075 656 556 1.771 1123 3.577 3396 10.817
2 3724 570 569 1.812 837 2.666 2318 7.383
3 7349 949 846 2.695 1791 5.705 4712 15.009
4 4524 851 4524 14.410 0 0.000 0 0.000
5 4335 850 4335 13.808 0 0.000 0 0.000
6 6390 1482 6389 20.350 1 0.003 0 0.000

5075 0 311 0 0 0

0 3724 272 0 0 0

0 0 6766 0 0 0

0 0 0 4230 1 12

0 0 0 294 402 4280
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Figure 9: Frequency of datapoints in each cluster. Colors
represent the relation between clusters in K-Medoids and
MDS.

Table 4: K-Medoids silhouette.

Method Cl Mean(sd) Minvalue Maxvalue
1 0.270 (0.090) -0.105 0.550
2 0.271 (0.093) -0.109 0.543

KMed. 3 0.060 (0.049) -0.019 0.241
4 0.258 (0.049) -0.083 0.477
5 0.115 (0.077) -0.011 0.342
6 0.118 (0.085) -0.021 0.352

obtained with our prototype. To do this, we calcula-
ted the Normalized Mutual Information Index (NMII)
(Strehl and Ghosh, 2002). We obtained a NMII value
of 0.84, meaning that 84% of the cases fall into the
same groups in the two approaches. Also, as we can
see in Table 6, there is high variability for some at-
tributes, especially the Requested Amount. This may
explain the high entropy values for this attribute.

The Loan Goal attribute was not included in Table
6 because it is a categorical variable with 14 different
classes.

6 CONCLUSION

In this paper, we proposed a novel approach for un-
derstanding and filtering cases of general event logs.
Our approach is based on evaluating the similarity
between pairs of cases and using multidimensional
projection techniques to plot those cases into a 2D

Table 5: MDS silhouette.

Method Cl Mean(sd) Minvalue Maxvalue
1 0.306 (0.049) 0.236 0.583
2 0.311 (0.044) 0.251 0.582

MDS 3 0.068 (0.040) -0.006 0.219
4 0.220 (0.083) -0.137 0.456
5 0.215 (0.093) -0.150 0.472
6 0.086 (0.054) -0.008 0.243
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Figure 10: Entropy value of each cluster by variable in K-
Medoids approach.
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Figure 11: Entropy value of each cluster by variable in MDS
projection chart.

chart. Using the BPI Challenge 2017 data, our ap-
proach shows that we can not only select some cases,
but also see some correlation of the data, projected
into our reduced space. Also, this filtering approach
allows us to decompose a large event log into small
pieces and analyze them separately, a useful approach
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Figure 12: Characteristics of each cluster, by variable. Histogram colors match entropy colors. For the Loan Goal variable,
which is a categorical variable, the values are abbreviated as follows: UN = Unknown, TP = Tax payments, RD = Remaining
debt home, OT = Other, see explanation, NA = Not specified, MO = Motorcycle, HI = Home improvement, EP = Extras
pending limit, EL = Existing loan take over, DR = Debt restructuring, CC = Caravan/Camper, CA = Car, BO = Boat and BG
= Business goal.
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Table 6: Summary results for the numeric attributes of the
BPI 2017 dataset.

Statistics Credit Score Nb. Offer R. Amount
Min. 0.000 1.000 0.00
1st Qu. 0.000 1.000 6000.00
Median 0.000 1.000 12500.00
Mean 436.100 1.363 16210.00
3rd Qu. 901.000 2.000 21000.00
Max. 1145.000 10.000 450000.00

in the process discovery field (Verbeek et al., 2017).
We are still making improvements to our pro-

totype based on interesting demands that should help
to understand the process and to filter cases. As fu-
ture work, we want to incorporate our tool as a ProM
plug-in. We also intend to include Local Affine Mul-
tidimensional Projection (LAMP) (Joia et al., 2011;
Pagliosa et al., 2015) in our prototype, which will
enable us to set a group of control points and dyn-
amically project new instances. Another interesting
idea is to incorporate attribute-level linkage, similar
to the analysis we performed in Section 5, to the pro-
totype itself. This way, an analyst may quickly dis-
cover which attributes contribute to the dataset varia-
bility and, thus, fine-tune the attribute weights for the
dissimilarity metric.

ACKNOWLEDGEMENTS

We thank Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico (CNPq) and Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (CA-
PES) for partially financing this research.

REFERENCES

De Koninck, P. and De Weerdt, J. (2016). Multi-objective
trace clustering: finding more balanced solutions. In
International Conference on Business Process Mana-
gement, pages 49–60. Springer.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environ-
ment. Computing In Science & Engineering, 9(3):90–
95.

Jaccard, P. (1901). Étude comparative de la distribution flo-
rale dans une portion des alpes et des jura. Bull Soc
Vaudoise Sci Nat, 37:547–579.

Joia, P., Coimbra, D., Cuminato, J. A., Paulovich, F. V., and
Nonato, L. G. (2011). Local affine multidimensional
projection. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2563–2571.

Kaufman, L. and Rousseeuw, P. J. (2009). Finding groups
in data: an introduction to cluster analysis, volume
344. John Wiley & Sons.

Kruskal, J. B. and Wish, M. (1978). Multidimensional Sca-
ling, volume 31.

Levenshtein, V. I. (1966). Binary codes capable of cor-
recting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10, pages 707–710.

Lopes, H. and Barbosa, S. (2015). Learning and Inferring:
Festschrift for Alejandro Frery, chapter Uncertainty
Measures and the concentration of probability density
functions. College Publications.

Low, W. Z., Van der Aalst, W. M., ter Hofstede, A. H.,
Wynn, M. T., and De Weerdt, J. (2017). Change vi-
sualisation: Analysing the resource and timing diffe-
rences between two event logs. Information Systems,
65:106–123.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of Machine Learning Research,
9(Nov):2579–2605.

Mendling, J., Baesens, B., Bernstein, A., and Fellmann, M.
(2017). Challenges of smart business process mana-
gement: An introduction to the special issue.

Mining, P. (2014). Automated process discovery soft-
ware for professionals-fluxicon disco. Adres:
http://fluxicon. com/disco/Erişim Tarihi, 11.
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