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Abstract: In this paper, we propose a novel method for reconstructing high resolution 3D structure and texture of the

scene. In the image processing, it is known that image super-resolution is possible from multiple low resolution

images. In this paper, we extend the image super-resolution into 3D space, and show that it is possible to

recover high resolution 3D structure and high resolution texture of the scene from low resolution images taken

at different viewpoints. The experimental results from real and synthetic images show the efficiency of the

proposed method.

1 INTRODUCTION

Recovering structure of the scene is one of the very

important objectives in computer vision, and many ef-

ficient reconstruction methods have been proposed in

the past research.

The early studies in this field revealed what kind

of constraints exist in multiple images, and what

kind of information can be obtained from these ima-

ges (Hartley and Zisserman, 2000; Faugeras et al.,

2004). For this objective, two-view, three-view

and multi-view geometry have been studied extensi-

vely (Longuet-Higgins, 1981; Shashua and Werman,

1995; Hartley and Zisserman, 2000; Faugeras et al.,

2004). The bundle adjustment (Triggs et al., 1999)

has been combined with these theoretical advances,

and the sparse 3D reconstruction has been achieved.

More recently, multiple images are used for reco-

vering large scale structures of the scene efficiently.

One of the mile stone research in this field was pre-

sented by Agarwal et al. (Agarwal et al., 2011), who

showed that whole buildings and cities can be recon-

structed automatically from vast amount of images.

Furthermore, the accuracy of 3D reconstruction of

large scale scenes has been improved drastically in

recent years (Galliani et al., 2015; Schonberger et al.,

2016). However, these existing methods use multi-

ple images mainly for reducing outliers and noises

in reconstructed 3D structures. That is, the multiple

images have been used for improving the stability of

3D reconstruction. On the contrary, we in this paper

propose a method which uses multiple images for re-

covering finer 3D structures of the scene.

In the image processing research field, the super-

resolution of 2D images has been studies extensively.

The existing methods in this field can be classified

into two groups. The first group of methods are based

on statistical priors which are obtained from advanced

learning (Glasner et al., 2009; Kim et al., 2016; Ledig

et al., 2016). These methods can obtain a high reso-

lution image just from a single low resolution image,

since the statistical priors can compensate the lack of

high frequency term in the image. However, these

methods are heavily depend on the priors, and if the

priors do not agree with the input images, they out-

put wrong high resolution images. The second group

of methods are based on multiple observations (Har-

die et al., 1997; Tom et al., 1994). Although these

methods needs multiple images, they can recover high

resolution images accurately without any wrong infe-

rence. In this paper, we propose a new method for re-

covering fine 3D structures of the scene by extending

the image super-resolution based on multiple images.

In our method, we recover fine 3D structures of

the scene, whose resolutions are much higher than the

input image resolutions. For this objective, we reco-

ver the high resolution structures of the scene directly

from the image intensity of low resolution images.

Thus point correspondences among multiple images

are not required in our method. Instead, we recover

the high resolution texture of the scene as well as the

high resolution 3D structure of the scene. By esti-

mating the high resolution textures and the high reso-

lution 3D structures simultaneously, we can recover
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Figure 1: Image super-resolution from multiple images. By
obtaining multiple image, I0 and I1, with different sam-
pling phases, a high resolution image W can be recovered
by combining these images.

fine structure of the scene from low resolution ima-

ges. As as result, we can recover fine 3D structures,

which could not be recovered by the existing multiple

view reconstruction methods.

2 IMAGE SUPER-RESOLUTION

Before considering the super-resolution 3D recon-

struction, we revise the standard image super-

resolution from multiple images. In the image super-

resolution, multiple images observed at different vie-

wpoints are combined together, so that these multi-

ple observations compensate the lack of observation

in single image as shown in Fig. 1. The maximum a

posteriori probability (MAP) estimation is often used

for obtaining a high resolution image W from multi-

ple low resolution images Ii (i = 1, · · · ,N) under the

existence of image noise as follows:

Ŵ = argmin
W

N

∑
i=1

‖Ii −AiW‖2 +α‖LW‖2 (1)

The first term in Eq.(1) is a data term, and Ai deno-

tes a matrix which represents down sampling in ith

image, i.e. a down sampling at ith viewpoint. The

second term is a regularization term, and L denotes

the Laplacian filter for smoothness constraints. ‖ · ‖2

denotes the L2 norm, and α denotes the magnitude of

the regularization term.

The image super-resolution assumes that the ob-

jective surface is planar, and the difference of sam-

pling phase in each image is constant. Thus, if the

objective surface is not planar, the standard image

super-resolution fails. On the contrary, we in this pa-

per consider non-planar objects, and propose a met-

hod for reconstructing high resolution 3D surfaces as

well as their high resolution textures. We call it super-

resolution 3D reconstruction.

(a) 3D scene

⋯

(b) observed images

⋯

(c) reprojection images

Figure 2: observed images and reprojection images.

3 SUPER-RESOLUTION 3D

RECONSTRUCTION

Our super-resolution 3D reconstruction is achieved by

estimating high resolution 3D structures and high re-

solution textures simultaneously by minimizing a cost

functions defined by low resolution images observed

at multiple viewpoints.

Let us consider a 3D surface whose high resolu-

tion structure and texture are D and W respectively.

Suppose the 3D surface is projected into N cameras

Ci (i = 1, · · · ,N), and N low resolution images Ii (i =
1, · · · ,N) are observed as shown in Fig. 2. Then, these

projections can be described by projection functions

Pi (i = 1, · · · ,N) as follows:

Ii = Pi(D,W) (2)

The projection functions Pi represent not only the re-

lative position and orientation among N cameras, but

also the down sampling in these cameras. In this rese-

arch, we assume that the cameras are calibrated, and

the projection functions Pi are known. Also, we as-

sume the ambient light is constant in all the orienta-

tions around the 3D surface, and the local orientation

of the surface does not affect the intensity in images.

Then, the objective of our method is to estimate

the high resolution structure D and the high resolution

texture W simultaneously, which best fit low resolu-

tion images Ii (i = 1, · · · ,N) observed by N cameras

as follows:

{D̂,Ŵ}= argmin
D,W

N

∑
i=1

‖Ii −Pi(D,W)‖2 (3)
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In the real scenes, we can assume that the struc-

ture and the texture of the 3D surface does not change

drastically except the boundary of objects and the

boundary of textures.Thus, we can make the estima-

tion more stable by adding the smoothness constraints

S(·) on structure and texture as follows:

{D̂,Ŵ}= argmin
D,W

N

∑
i=1

‖Ii −Pi(D,W)‖2

+S(D)+S(W) (4)

Unfortunately, the simultaneous estimation of

high resolution structures and textures described in

Eq.(4) is very difficult and unstable, since we have

to minimize the cost function in very high dimensio-

nal space. In the next section, we describe a practical

method for estimating high resolution structures and

high resolution textures based on Eq.(4).

4 PRACTICAL

SUPER-RESOLUTION 3D

RECONSTRUCTION

Suppose we have N cameras, and each of which

obtains a low resolution image Ii = [I1, · · · , IP]
⊤ (i =

1, · · · ,N), where P denotes the number of pixels in

a low resolution image. Then, we consider one of

these cameras as a basis camera, and its camera coor-

dinates are considered as the basis 3D coordinates of

the scene. Thus, the high resolution 3D structure of

the scene is represented by a high resolution depth

image D = [D1, · · · ,DQ]
⊤ observed at the basis ca-

mera, where Q denotes the number of pixels in a high

resolution image. Also, the high resolution texture of

the scene is represented by a high resolution inten-

sity image W = [W1, · · · ,WQ]
⊤ observed at the basis

camera. Naturally, we assume P ≤ Q. Then, our ob-

jective is to estimate D and W from Ii.

Since the simultaneous estimation of high resolu-

tion structures and textures shown in Eq.(4) is difficult

and unstable, we in this paper estimate high resolution

structures and high resolution textures alternately by

iterating the following two steps.

4.1 Estimation of High Resolution

Textures

We fist estimate a high resolution texture W given an

estimated high resolution structure D.

Suppose we have a high resolution structure D =
[D1, · · · ,DQ]

⊤. Then, the low resolution images Ii

(i = 1, · · · ,N) observed by N cameras can be descri-

bed by using the high resolution texture W as follows:

Ii = Ai(D)W (5)

where, Ai(D) denotes a P×Q matrix, which repre-

sents a projection from the high resolution texture at

the basis camera to the low resolution image at the ith

camera given a high resolution structure D. Thus, the

high resolution texture W can be estimated from low

resolution images Ii observed at N cameras by solving

the following minimization problem:

Ŵ(D) = argmin
W

N

∑
i=1

‖Ii−Ai(D)W‖2 +α‖LW‖2 (6)

where, L denotes a matrix for computing the Lap-

lacian of W, and ‖ · ‖2 denotes the L2 norm. Thus

the second term represents the smoothness constraints

S(W) on high resolution textures, and α is its weight.

From Eq.(6), the high resolution texture W can be es-

timated given a high resolution structure D.

Note, the estimation of W in Eq.(6) is a linear pro-

blem, and thus W can be estimated linearly.

4.2 Estimation of High Resolution

Structures

We next estimate a high resolution structure D given

an estimated high resolution texture W.

Given a high resolution texture W =
[W1, · · · ,WQ]

⊤, the low resolution camera ima-

ges Ii can be described by Eq.(5) as before. Then,

the high resolution structure D can be estimated from

low resolution images Ii observed at N cameras as

follows:

D̂(W) = argmin
D

N

∑
i=1

‖Ii −Ai(D)W‖2 +β‖LD‖2 (7)

The second term represents the smoothness con-

straints S(D) on high resolution structures, and β is

its weight. α and β are chosen empirically in our ex-

periments.

By iterating Eq.(6) and Eq.(7) alternately, we can

estimate the high resolution structure D and texture

W of 3D surfaces. In this estimation, we also use co-

arse to fine technique to stabilize the super resolution

estimation. That is, we gradually increase the scale

of estimated texture and structure during the iteration.

Since we need initial values of 3D structure and 2D

texture in our estimation, we used a flat surface as the

initial structure and used the low resolution image of

the basis camera as the initial texture. By using the

proposed method, the high resolution structures and

textures can be estimated efficiently.

Super-Resolution 3D Reconstruction from Multiple Cameras

483



(a) 3D object and 7×7 cameras

(b) low resolution camera images

Recovered high resolution 3D structure

(c) proposed (d) stereo (e) ground truth

Recovered high resolution texture

(f) proposed (g) bi-cubic (h) ground truth

Figure 3: Results of super-resolution reconstruction (lenna).

5 EXPERIMENTS

We next show the efficiency of the proposed method

by using synthetic images as well as real images.

(a) 3D object and 7×7 cameras

(b) low resolution camera images

Recovered high resolution 3D structure

(c) proposed (d) stereo (e) ground truth

Recovered high resolution texture

(f) proposed (g) bi-cubic (h) ground truth

Figure 4: Results of super-resolution reconstruction (man-
drill).

5.1 Synthetic Image Experiments

We first show that high resolution 3D structures and

textures can be obtained from the proposed method

by using synthetic images.

Fig. 3 (a) shows a 3D object used in our synthe-

tic image experiment. The 7 × 7 quadrangular py-
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ramids in this figure show the position and the orienta-

tion of 49 cameras used in our super resolution recon-

struction. These cameras were assumed to be calibra-

ted in this experiment. The image resolution of each

camera is 6 pix × 6 pix, and 49 images obtained from

Fig. 3 (a) are shown in Fig. 3 (c). The intensity range

of these images is 0 to 1, and the random Gaussian

noise with the standard deviation of 0.01 was added to

the image intensity for simulating the image noise in

observation. These low resolution images were used

for recovering high resolution 3D structures and tex-

tures with the resolution of 24 pix × 24 pix.

Fig. 3 (c) shows a high resolution 3D structure

obtained from the proposed method. The ground truth

structure is shown in Fig. 3 (e). For comparison, we

also reconstructed the 3D structure from the low re-

solution images by using the standard stereo method.

The obtained 3D structures is shown in Fig. 3 (d). As

shown in these figures, the proposed method provides

us fine structure of the original shape, while the stan-

dard stereo method suffers from the aliasing problem,

and cannot recover correct shape of object.

We next show a high resolution texture, i.e. high

resolution image at the basis camera, recovered from

the proposed method. Fig. 3 (f) shows the result from

the proposed method, and Fig. 3 (h) shows the ground

truth texture. For comparison, the result from the

standard bi-cubic interpolation is also shown in Fig. 3

(g). As shown in these figures, the proposed method

provides us the high resolution texture of the object

accurately, even if the input images are very low re-

solution. On the contrary, the result from the standard

bi-cubic interpolation is very bad.

Fig. 4 shows the results from another synthetic 3D

object. Again, the proposed method provides us very

accurate high resolution structure and texture, while

the standard stereo method and bi-cubic interpolation

cannot recover high resolution structure and texture.

The numerical accuracy of recovered structures and

textures shown in table 1 and table 2 also show the

efficiency of the proposed method.

Table 1: Accuracy of recovered high resolution 3D struc-
ture.

proposed method existing method

lenna 0.0185 0.0405

mandrill 0.0195 0.0406

Table 2: Accuracy of recovered high resolution texture.

proposed method existing method

lenna 0.0636 0.0910

mandrill 0.1035 0.1734

5.2 Real Image Experiments

We next show the results from real image experiment.

In this experiment, we recovered the high resolution

structure and texture of a plaster face shown in Fig. 5.

The plaster face was observed by a camera which was

translated in 2 directions by using a moving stage

shown in Fig. 5, and 5×5 images were obtained with

every 2cm translation. For obtaining the ground truth

image of high resolution texture, we generated the

low resolution images by taking the average of 4× 4

pixels, and used these low resolution images for super

resolution 3D reconstruction. The ground truth shape

of the object was measured by using structured lig-

hts projected from the projector in Fig. 5, and the ca-

mera internal parameters were calibrated in advance

by using a calibration board. Fig. 6 shows 5× 5 low

resolution images obtained from the camera. The re-

solution of these images is 8× 8. We used these low

resolution images for recovering the high resolution

structure and texture whose resolution is 32× 32.

Fig. 7 (a) shows the high resolution 3D structure

recovered from the proposed method, and (c) shows

the ground truth of the structure. For comparison the

result from the standard stereo method is shown in

Fig. 7 (b). As shown in this figure, the result from the

proposed method is very fine and accurate, while the

result from the standard stereo is very rough and in-

accurate. The high resolution textures recovered from

the proposed method is also compared with that of the

Figure 5: The experimental setup of our real image experi-
ment.

Figure 6: Low resolution images obtained from a moving
camera.
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(a) proposed (b) stereo

(c) ground truth

Figure 7: The high resolution 3D structures recovered from
low resolution images.

(a) proposed (b) bi-cubic (c) ground truth

Figure 8: The high resolution textures recovered from low
resolution images.

bi-cubic interpolation in Fig. 8. Again, the proposed

method is superior to the standard bi-cubic method.

From these results, we find that the proposed met-

hod is very efficient to recover accurate high resolu-

tion 3D structures and textures.

6 CONCLUSION

In this paper, we proposed a novel method for recon-

structing high resolution 3D structure and texture of

the scene. For this objective, we extended the 2D

image super-resolution into 3D space, and showed

that it is possible to recover high resolution 3D struc-

ture and high resolution texture of the scene from low

resolution images taken at different viewpoints.

We showed the efficiency of the proposed method

by using real and synthetic image experiments com-

paring with the existing methods.
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