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Abstract: In this paper, we propose a novel method for recovering 3D human poses and camera motions from sequential

images by using CNN and LSTM. The human pose estimation from deep learning has been studied extensively

in recent years. However, the existing methods aim to classify 2D human motions in images. Although some

methods have been proposed for recovering 3D human poses recently, they only considered single frame poses,

and sequential properties of human actions were not used efficiently. Furthermore, the existing methods

recover only 3D poses relative to the viewpoints. In this paper, we propose a method for recovering 3D

human poses and 3D camera motions simultaneously from sequential input images. In our network, CNN is

combined with LSTM, so that the proposed network can learn sequential properties of 3D human poses and

camera motions efficiently. The efficiency of the proposed method is evaluated by using real images as well

as synthetic images.

1 INTRODUCTION

In recent years, human poses and actions are measu-

red and used in various applications, such as movies

and games. The motion capture systems are often

used for measuring human poses and actions (Lab,

2003; Shotton et al., 2011). While the early mo-

tion capture systems (Lab, 2003) require special mar-

kers on the human body, recent systems such as Ki-

nect sensors (Shotton et al., 2011) do not need to

use markers. Although these motion capture sys-

tems are very useful for short range measurements

in well-maintained environments, they cannot be used

for long range measurements or uncontrolled environ-

ments, such as outdoor scenes. In such situations, pas-

sive methods such as camera based pose recognition

methods are very useful.

For measuring human poses and actions from ca-

mera images, silhouette images were often used for

neglecting the texture of clothes etc. (Agarwal and

Triggs, 2004; Sminchisescu and Telea, 2002). The

shading information was also used for estimating 3D

poses from a single view (Guan et al., 2009). More

recently, the deep learning has been used for pose

estimation (Toshev and Szegedy, 2014). As shown

in many recent papers, the deep learning provides us

with the state of the art accuracy in various fields (Le-

Cun et al., 1989; LeCun et al., 1998; Le et al., 2011;

Le, 2013; Taylor et al., 2010), and the use of deep le-

arning in the human action recognition is promising.

Although many neural nets have been proposed for

recognizing 2D human poses and actions (Toshev and

Szegedy, 2014), the research on neural nets for 3D hu-

man pose recovery has just started (Chen and Rama-

nan, 2017; Tome et al., 2017; Lin et al., 2017; Mehta

et al., 2017), and it requires more work to obtain bet-

ter accuracy and to use in various situations. In par-

ticular, most of the current works on 3D human pose

recovery are based on a single image (Chen and Ra-

manan, 2017; Tome et al., 2017; Mehta et al., 2017).

However, human poses are highly dependent in time,

and the sequential properties may be very useful to

recover 3D poses and actions.

Thus, in this paper, we propose a novel method

for recovering 3D human poses from images by using

the sequential properties in 3D poses. For this ob-

jective, we combine the standard convolutional neu-

ral network (CNN) with Long Short-Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997). The

LSTM can represent the sequential properties in 3D

human poses, and hence our network can recover 3D

human pose at each time instant considering the se-

quence of human motions. As as result, our method

can recover 3D human poses, even if some body por-

tions are occluded by other body portions.

Furthermore, our network considers not only 3D

human poses, but also 3D motions of a camera which

observes the human. For separating 3D human moti-

Shimizu, T., Sakaue, F. and Sato, J.
Recovering 3D Human Poses and Camera Motions from Deep Sequence.
DOI: 10.5220/0006718603930398
In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018) - Volume 5: VISAPP, pages
393-398
ISBN: 978-989-758-290-5
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

393



σ

+×

×

tanhσ

×

tanh

h�

σ

X�

σ

+×

×

tanhσ

×

tanh

h���

σ

X���

σ

+×

×

tanhσ

×

tanh

h���

σ

X���

Figure 1: The structure and the state transition of LSTM.
Xt and ht denote input and output at time t. σ denotes a
sigmoid function, which acts as a gate of data flow. By
controlling these gates, the LSTM can preserve sequential
information and learn time varying properties.
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Figure 2: The outline of human pose and camera motion
estimation.

ons and 3D camera motions, we fix the basis 3D coor-

dinates at the waist of a human body, and 3D human

motions and 3D camera motions are described based

on this basis coordinates. By using our method, we

can estimate 3D human poses and 3D camera moti-

ons simultaneously.

In section 2, we briefly review the convolutional

neural network (CNN) and the Long Short-Term Me-

mory (LSTM). In section 3, we propose a method for

estimating 3D human poses and camera motions by

combining CNN with LSTM. The results from the

proposed method are shown in section 4, and the con-

clusions are described in the final section.

2 CNN AND LSTM

While the fully connected neural network learn the

weight of connection between individual nodes in

adjacent layers, the convolutional neural network

(CNN) consists of convolution layers which connect

adjacent layers by convolution, and learns the net-

work by optimizing the kernels of convolution. As

a result, CNN can optimize feature extraction from

images, which had been conducted by man made fe-

ature detectors such as SIFT and HOG traditionally.

Nowadays, CNN is the world standard in image re-

cognition and used in various applications.

Although CNN is very useful and efficient in

image recognition, the output of CNN is determined

just from the current input images. As a result, it can-

not process sequential data such as movies properly,

since the output of sequential data depends not only

on the current input, but also on the past input data.

Figure 3: 3D human body model and the DOF of each joint.

For learning sequential data, Recurrent Neural

Network (RNN) has been proposed (Mikolov et al.,

2010).The recurrent neural network preserves sequen-

tial past data as the internal state, and can process

sequential data properly. For learning long term de-

pendency in sequential data, Long Short-Term Me-

mory (LSTM) has also been proposed (Hochreiter and

Schmidhuber, 1997). While the original RNN can

only process short term data, LSTM can learn long

term properties of data.

Fig. 1 show the network structure and the state

transition of LSTM. The LSTM controls learning pro-

cess by using gates, σ. The input gate controls in-

put from the previous time, and the output gate con-

trols the effect of the current layer to the next layer.

The forget gate controls the destruction of data which

are no longer needed. By controlling these gates, the

LSTM can preserve sequential information and learn

time varying properties in the data efficiently.

3 HUMAN POSE AND CAMERA

MOTION ESTIMATION FROM

CNN AND LSTM

In this research, we combine CNN and LSTM for es-

timating 3D human poses and camera motions simul-

taneously. For avoiding the effect of the variation of

background scenes, we first transform camera images

into silhouette images of human body and use the sil-

houette images as the input of our network as shown

in Fig. 2.

3.1 Representation of 3D Human Poses

In this research 3D human poses are represented by a

set of rotation angles at body joints. Suppose we have

N joints in a human body. Then, since each joint has

3 rotation axes, the human pose can be represented by

3N rotation parameters.
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Figure 4: Proposed network structure for 3D human pose
and camera motion estimation.

However, the rotations of arms and legs around

their axes are irrelevant to human poses. Therefore,

we consider each of the upper arms, lower arms, up-

per legs and lower legs has only 2 DOF, and only the

waist has 3 DOF. Thus, in this research, we represent

the 3D human pose by using 19 parameters as shown

in Fig. 3.

The world coordinates are fixed at the waist of the

human body, and 3D positions and orientations of all

the objects in the scene are represented by using the

waist based world coordinates.

3.2 Representation of Camera Motions

In this research, we assume that not only the human

body but also the camera which observes the human

body moves in the sequential observations. Thus, we

estimate camera positions as well as human poses at

each time instant. We assume that the viewing di-

rection of the camera is fixed to the center of the hu-

man body, i.e. waist, and the camera positions are

represented by using the orientation, θ, φ, and the dis-

tance d from the waist based world coordinates. The

camera can also rotate around the viewing axis with

ω. Thus, the camera position and orientation have 4

parameters.

In this research we estimate these 4 parameters of

camera motions as well as 19 parameters of human

poses. Hence, we estimate totally 23 parameters.

3.3 Network Structure

We next describe the network structure of the propo-

sed method. In this research, we combine CNN and

LSTM for estimating 3D human poses and camera

motions simultaneously by using the sequential pro-

perties of human motions and camera motions effi-

ciently.

Suppose we have an input image xt from the ca-

mera at time t. Then our network estimates camera

motion parameters Ct and human pose parameters Pt

at time t from the input image xt . Considering the

sequential properties of human poses and camera mo-

tions, our network can be considered as a function F

which estimate the current state of the network St as

(a) input images (b) silhouette images

Figure 5: Examples of input images and silhouette images.

Figure 6: Changes in test loss in network training. The red
line shows the loss of the proposed branch net which uses
2 separate LSTMs for human pose and camera motion, and
the green line shows the loss of a straight net which uses a
single LSTM for both human pose and camera motion.

well as the camera parameters Ct and human pose pa-

rameters Pt from the current input image xt and the

previous state St−1 of the network as follows:

{Ct ,Pt ,St}= F(xt ,St−1) (1)

Thus, learning of the network is considered as the es-

timation of function F by regression analysis.

For realizing the estimation, our network consists

of 4 convolution layers, a pooling layer and 2 fully

connected layers followed by 2 sets of LSTMs and

fully connected layers as shown in Fig. 4. Our net-

work first extract image features by using 4 convo-

lution layers and a pooling layer. Then 2 fully con-

nected layers transform the result into a low dimensi-

onal feature vector. Then, the result is separated and

analyzed by two different LSTMs, one for the esti-

mation of human pose parameters and the other for

the estimation of camera motion parameters. These

LSTMs derive feature parameters of human pose and

camera motions updating their internal state. Then,

the final layers transform these feature parameters

into 19 human pose parameters and 4 camera motion

parameters.

In this network, we consider the transition of hu-

man pose and the transition of camera position are in-

dependent to each other, and estimate the human po-

ses and camera motions by using 2 different LSTMs.

By using the LSTM, we can estimate 3D human po-
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Figure 7: The result of 3D human pose estimation. The es-
timated 3D human poses were reprojected into the original
images by using the estimated camera motion.

ses efficiently, even if some body portions are occlu-

ded by other body portions, which happens often in

silhouette images. By learning the network from the

back propagation, we realize the simultaneous esti-

mation of human poses and camera motions.

3.4 Learning Network by using CG

Models

We next consider the training of our network. For

training the network avoiding overlearning, we need

huge amount of training data in general. However,

it is not easy to obtain huge amount of image data of

human poses under various camera motions in the real

scene. Therefore, we in this research use synthetic

images generated by using CG models.

We generated human models with various body

shapes, and added various pose parameters to them.

We also generated a virtual camera with various mo-

tions, and observed the human poses to generate se-

quential CG images. For generating the pose of hu-

man, we used Mocap database (Lab, 2003) provided

by Carnegie Mellon University. The Mocap database

Figure 8: The result of camera motion estimation. The red
quadrangular pyramid shows the estimated camera positi-
ons and orientations, and the green quadrangular pyramid
shows the ground truth.

Table 1: The error of 3D human pose estimation and camera
motion estimation with and without LSTM.

human pose (◦) camera (m)

with LSTM 11.8 2.6

without LSTM 18.2 5.7

consists of 2605 different motions, such as walking,

dancing, playing sports etc. We used 2000 of them

for training and used 605 of them for testing in the

synthetic image experiments. The virtual camera was

moved around the human body fixating the viewing

direction to the center of the world coordinates, i.e.

center of the waist of the human body.

The use of synthetic images enables us to learn

large variations of human pose parameters and ca-

mera motion parameters easily and efficiently. We

can also simulate various types of human body, and

control these parameters according to the objective of

application systems. By using the synthetic training

data, we train our network efficiently, and use it for

estimating human poses and camera motions simulta-

neously.

4 EXPERIMENTS

We next show the results of simultaneous estimation

of human poses and camera motions by using the pro-

posed network. The experiments are conducted by

using synthetic images as well as real images.

In our experiments, a 3D human body model
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(a) batting

(b) exercise

Figure 9: The result of 3D human pose estimation. The estimated 3D human poses were reprojected into the original images
by using the estimated camera motions.

shown in Fig. 3 was used for synthesizing training

images. As we explained in section 3.4, we used Mo-

cap database (Lab, 2003) for generating 3D human

poses. The synthetic images were generated by chan-

ging human poses and camera motions. The image

size was 100× 100. Fig. 5 shows some examples of

synthetic images and their silhouette images. We ge-

nerated 9000 sets of 10 sequential images from 2000

motions in Mocap database randomly, and used them

for training our network. We also generated 1200 sets

of 10 sequential images from the remaining 605 mo-

tions in Mocap database randomly, and used them for

testing in the synthetic image experiment. The net-

work training was executed by using Caffe frame-

work.

We first evaluated the efficiency of our network

structure, which uses 2 different LSTMs for human

pose estimation and camera motion estimation. For

comparison, we also evaluated a network which es-

timates human poses and camera motions by using a

single LSTM at the middle of our network shown in

Fig. 4. Fig. 6 shows the changes in test loss in these

2 networks. The red line shows the loss of the pro-

posed branch net which uses 2 separate LSTMs for

pose estimation and camera motion estimation, and

the green line shows the loss of a straight net which

uses a single LSTM for both pose estimation and ca-

mera motion estimation. As shown in this figure, the

test loss of the proposed network decreases much fas-

ter than that of the straight net. This is because the

proposed network can learn the pose and motion pa-

rameters more efficiently without learning irrelevant

parameters by separating pose net and motion net.

We next show the results of 3D human pose esti-

mation from synthetic images in Fig. 7. The estima-

ted 3D poses were reprojected into the original input

images by using the estimated camera motions in this

figure. As shown in these images, various poses were

estimated well by using the proposed network. Fig. 8

shows the camera motions estimated by the proposed

network. The red quadrangular pyramid shows the

estimated camera positions and orientations, and the

green quadrangular pyramid shows the ground truth.

As shown in this figure, the 3D camera motions were

also estimated properly. The accuracy of estimated

3D human poses and 3D camera positions is as shown

in table 1. For comparison, we also evaluated the

accuracy of a network without LSTM. As shown in

this table, the proposed network with LSTM provides

us with much better accuracy, and we find that the use

of sequential properties of pose and motion is very

important.

Finally, we show the results of 3D human pose

estimation from real image sequences. Fig. 9 shows

sequential images of batting motion and exercise mo-

tion, and the estimated 3D human poses projected

into images. The silhouette images were extracted by

using the background subtraction method in these ex-

periments. Although there are some estimation errors

in the output of our network, the estimated results are

reasonable.

These results show that the proposed method ena-

bles us to estimate sequential 3D human poses and

camera motions properly.

5 CONCLUSION

In this paper, we proposed a novel method for re-

covering 3D human poses and camera motions from

sequential images by using CNN and LSTM. While

the existing methods recover just 3D poses relative to

the viewpoints, our method estimates 3D human po-
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ses and 3D camera motions simultaneously. For using

the sequential properties of human poses and camera

motions, we combined CNN with LSTM, and sho-

wed that they can represent sequential properties in

input data properly. We also showed that the network

structure which uses 2 separate LSTMs for 3D pose

estimation and camera motion estimation is efficient.
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