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Abstract: This paper proposes a model for 3D reconstruction of polyp in endoscopic scene. 3D shape of polyp enables 

better understanding of the medical condition and can help predict abnormalities like cancer. While there 

has been significant progress in monocular shape recovery, the same hasn’t been the case with endoscopic 

images due to challenges like specular regions. We take advantage of the advances in shape recovery and 

suitably apply these with modifications to the scenario of endoscopic images. The model operates on 2 

nearby video frames. ORB features are detected and tracked for computing camera motion and initial rough 

depth estimation. This is followed by a dense pixelwise operation which gives a dense depth map of the 

scene. Our method shows positive results and strong correspondence with the ground truth. 

1 INTRODUCTION 

Endoscopy is a Minimally Invasive Surgery (MIS) 

for examining and operating on the medical 

condition. It benefits patients through smaller 

trauma, shorter hospitalization, lesser pain and lower 

risk of infection than traditional open cavity 

surgeries. A device called endoscope is inserted into 

the body through a natural orifice. 

In colonoscopy, the colon and the large intestine 

is examined. One of the major benefits is the 

detection of malignant (cancerous) polyp in 

endoscopy through properties such as shape, texture 

and size of the polyp. Shape cannot be judged 

directly from 2D images of a monocular endoscope. 

Specialized endoscopes with a laser light beam head 

(Nakatani et al., 2007; Hayashibe et al., 2005) or 

with two cameras mounted on the head for stereo 

vision (Chang et al., 2014; Stoyanov et al., 2010; 

Mourgues et al., 2001) are available. However, the 

sizes of such endoscopes are large. A 3D scanner is 

developed by Schmalz et al. (2012). Here, we 

consider a general purpose endoscope, of the sort 

still most widely used in medical practice. Shape 

from shading approach using single monocular 

endoscope has been explored (Iwahori et al., 1990; 

Wang et al., 2009). Wu et al., (2010) used Multi-

view Shape from Shading. 

We explore the possibility of using multiple 

images or video for shape recovery. Shape recovery 

from multiple images constitute the SfM (Structure 

from Motion) or SLAM (Simultaneous Localization 

And Mapping) problem. Both the scene’s structure 

and the camera’s ego-motion are unknown, and the 

challenge is to simultaneous solve them. EKF 

(Extended Kalman Filter) based Monocular SLAM 

is used by Grace et al. (2009). Mahmoud et al. 

(2016) used ORB SLAM. Grace et al. and Mahmoud 

et al. give real time performance but produce sparse 

or semi-dense reconstruction which may not be 

sufficient for the medical practitioner to understand 

the medical condition. 

There has been significant progress in monocular 

SLAM in terms of both camera tracking and shape 

recovery. Newcombe et al. (2011) made a dense 

reconstruction of the scene (non-medical) from an 

input video. We take some ideas from this paper for 

our approach. 

We propose a simple method for dense 3D shape 

reconstruction. We use feature based method for 

tracking the camera and creating an initial sparse 

depth map. We then use the estimated camera 

motion to obtain a dense depth map of the scene by 

minimizing a cost function. Section 3 discusses the 

proposed method in detail. In many cases, validating 

a 3D reconstruction algorithm for endoscopy images 

/ video is difficult as ground truth data is not 

available. We use the Tsukuba dataset for validating 
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the algorithm (Peris et al., 2012; Martull et al., 

2012). Final test is performed on real endoscope 

images that we obtained from Aichi Medical 

University, Japan. 

2 NOTATIONS 

1) T: Rigid Body Transformation matrix in 

homogeneous coordinate 

T = 

[

cos𝜃1cos𝜃2 𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃2 𝑠𝑖𝑛𝜃3 − 𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃3 𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃3 + 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃3  
𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃2 sin 𝜃1 𝑠𝑖𝑛𝜃2 𝑠𝑖𝑛𝜃3 + 𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝜃3 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃3 − 𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃3

−𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃3 𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝜃3

𝑐0

𝑐1

𝑐2

 

              0                                        0                                                              0                                  1 

] 

Where θ1, θ2 and θ3 are the translation angles along 

the 3 axes and c0, c1 and c2 and the translation values 

along the 3 axes. 

Multiplication by T converts from converts from 

coordinate system of one camera frame to another. 

2) Ω ⊂ R2: image domain 

Any image point u=(u,v)T ∈ Ω 

3) I: Ω → R3 

RGB value at pixel point 

4) Ƹ(u): Ω → R  

Inverse Depth Map: The range of values the 

reciprocal of depth can take. 

d= Ƹ(u) gives 1/depth 

5) K: Camera intrinsic matrix 

K = [
𝑓𝑥 𝑠 𝑥0

0 𝑓𝑦 𝑦0

0 0 1

] 

        = [
𝐾11

𝐾21

𝐾31

  
𝐾21

𝐾22

𝐾23

  

𝐾31

𝐾32

𝐾33

]  

fx, fy are focal lengths of the camera in the x and y 

axes respectively. We use Kij’s to refer to the terms 

in the camera intrinsic matrix. All elements in these 

matrices are in units of pixels. 

6) Π−1(𝐮, d) = (
1

d
) ∗  K−1 ∗  ů 

where ů=(u,v,1) T 

 

7) Π(x) : Dehomogenization function 

Π(x) = (x/z, y/z) 

8) K* = [    𝐾    
0
0
0

] = [
𝑓𝑥

0
0

  

𝑠
𝑓𝑦

0
  

𝑥0

𝑦0

1
  
0
0
0

] 

9) K-1  =  [

𝐾11
−1

𝐾21
−1

𝐾31
−1

  

𝐾21
−1

𝐾22
−1

𝐾23
−1

  

𝐾31
−1

𝐾32
−1

𝐾33
−1

] 

1) K-1* = [ 𝐾−1

0      0     𝑑

] 

 

2) ¥ = [𝑐0 𝑐1 𝑐2    𝑑1 𝑑2 .    . . 𝑑𝑛]T 

Where c0, c1 and c2 denote the translations in the 3 

axes respectively and d1 to dn denote the inverse 

depth values at each of the n feature points in the 

view of image 1. 

A point u1 in image 1 (Im1) corresponds to a 

point u2 in image 2 (Im2), which can be found as: 

u2= Π (KT21Π−1(𝐮𝟏, d)) 

We can represent this operation using only 

matrix multiplications in homogeneous coordinates: 

[
𝑢1 ∗ 𝑤
𝑣1 ∗ 𝑤

𝑤
]  = (K*) x (T21) x (1/d) x (K-1*) x [

𝑢1

𝑣1

1
] 

  = (1/d) x (K*) x (T21) x (K-1*) x [
𝑢1

𝑣1

1
] 

  = (1/d) x  ϒ  

Where ϒ  = (K*) x (T21) x (K-1*) x [
𝑢1

𝑣1

1
] 

  = [

ϒ0

ϒ1

ϒ2

] 

3 PROPOSED METHOD 

The outline of the algorithm is shown in Fig.1. Two 

nearby frames from a video are taken as input. These 

two images are of the same scene with a slight 

movement of the camera (3DOF translation). 

Specularity is removed using method of [17]. The 

endoscope camera is calibrated using a 3rd party 

software. 

The algorithm can be divided into 2 parts. These 

two parts deal with the feature points and remaining 

points respectively. The idea is that a few number of 

number of good and distinct feature points are 

generally available in endoscope scene. So we use 

those to track the camera and obtain depth at those 

points. For the remaining points we use the obtained 

camera tracking information to obtain depth. 

3.1 Feature Points 

Feature points are detected and matched in the 2 

images. We randomly initialize the camera 

transformation matrix. Thereafter, we keep changing 

the transformation matrix till the pairs of 

corresponding feature points are correctly mapped 
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Figure 1: Block diagram of the proposed approach. 

from one image to the other. The value of camera 

transformation when the mapping aligns with direct 

matching of feature points is supposed to be the 

correct camera transformation. 

a) Mask is applied to the specular region and ORB 

(Oriented FAST and rotated BRIEF) Features are 

extracted from both the images (Im1 and Im2) in 

regions where specularity is absent. n best matching 

pairs of points are taken (Fig.1). 

b) ¥  is initialized to: 

[0 0 0   𝑑0 𝑑0 .   . . 𝑑0]T  (1) 

(¥  is (n+3)x1 dimensional) 

That is, we initialized with no translation between 

the two images and uniform inverse depth of d at all 

n feature points. 

c) At every feature point u1 in Im1, we can compute 

u2 in Im2 using (1). We also have u2_true, which is 

obtained by matching ORB feature points. 

Thus we can define IE (Individual Error) at each 

(ith) point as: 

IE(i) = ½(|u2-u2_true|2)2 
 

Total Error (TE) is defined as: 

TE = ∑ IE𝐴𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑃𝑜𝑖𝑛𝑡𝑠  
 

We wish to minimize TE by varying the entries in ¥. 

d) We use gradient descent for m steps to minimize 

¥. 

e) The iteration step of gradient descent is: 

¥n+1 = ¥n - ⟨µ|
𝜕(𝑇𝐸)

𝜕(¥)
⟩ (2) 

Where, µ is vector storing the gradient descent rates 

for each of the entries in ¥. 
⟨ | ⟩ denotes dot product operation. 

f) 
𝜕(𝑇𝐸)

𝜕(¥)
 = ∑

𝜕(𝐼𝐸(𝑖))

𝜕(¥)

𝑛
𝑖=1  

(3) 
g) 

𝜕(𝑇𝐸)

𝜕(𝐜𝐢)
 = ∑

𝜕(𝐼𝐸(𝑖))

𝜕(𝐜𝐢)

𝑛
𝑖=1  

 

= ∑ (u2(i) − u2true(i))x 
𝜕(𝑢2(𝑖))

𝜕(ci)
 +𝑛

𝑖=1

(v2(i) − v2true(i)) x 
𝜕(𝑣2(𝑖))

𝜕(ci)
  

(4) 

 

Where: 
𝜕(𝑢2(𝑖))

𝜕(ci)
 = 

ϒ2𝐾1𝑖−ϒ0𝐾3𝑖

ϒ2
2 𝑑 (5) 

𝜕(𝑣2(𝑖))

𝜕(ci)
 = 

ϒ2𝐾2𝑖−ϒ0𝐾3𝑖

ϒ2
2 𝑑 (6) 

h) 
𝜕(𝑇𝐸)

𝜕(di)
 = (u2(i) − u2true(i)) x 

𝜕(𝑢2(𝑖))

𝜕(di)
 +

                   (v2(i) − v2true(i)) x 
𝜕(𝑣2(𝑖))

𝜕(di)
 

(7) 

 

Where: 

𝜕(𝑢2(𝑖))

𝜕(di)
 = 

ϒ2(𝐾11𝑐0+𝐾12𝑐1+𝐾13𝑐2)−ϒ2(𝐾31𝑐0+𝐾32𝑐1+𝐾33𝑐2)

ϒ2
2  

(8) 
𝜕(𝑣2(𝑖))

𝜕(di)
 = 

ϒ2(𝐾21𝑐0+𝐾22𝑐1+𝐾23𝑐2)−ϒ2(𝐾31𝑐0+𝐾32𝑐1+𝐾33𝑐2)

ϒ2
2  

i) 
𝜕(𝑇𝐸)

𝜕(¥)
 = 

[
𝜕(𝑇𝐸)

𝜕(c0)

𝜕(𝑇𝐸)

𝜕(c1)

𝜕(𝑇𝐸)

𝜕(c2)
    

𝜕(𝑇𝐸)

𝜕(d1)

𝜕(𝑇𝐸)

𝜕(d2)
.      .

𝜕(𝑇𝐸)

𝜕(dn)
]

𝑇
  

(9) 

j) We use µ of dimension (n+3)x1 as: 

µ=[µ𝑇 µ𝑇 µ𝑇    µ𝑑 µ𝑑 .    . . µ𝑑]T (10) 

There is several order of magnitude difference in 

gradient descent rates: µT and µd for ci’s and di’s 

respectively. This is because of ci’s are roughly near 

to 0 (Camera is not moved much in two nearby 

frames). However, initial values of di’s are assigned 

randomly to a constant d0 and they can vary a lot 

from it. 

3.2 Remaining Points 

Photometric error at every pixel u1 in Im1 is defined 

as: 

ρ(Im1,u1,d) = | Im1(u1)-Im2(Π(KTmrΠ-1(u1,d))) | 

An exhaustive search is performed between dmin and 

dmax for every pixel and doptimal is chosen as the d that 

given minimum error. 

Dense 3D Reconstruction of Endoscopic Polyp

161



 

𝑑𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛_(d) 𝜌(𝐼𝑚1, 𝑢, 𝑑) 

dmin is chosen as smaller than all di’s among the 

feature points. Similarly, dmax is chosen as larger 

than all di’s among the feature points. 

DTAM (Newcombe et al., 2011) uses pixel 

intensity values for both tracking and reconstruction. 

We chose to use feature points for tracking as pixel 

intensity values can give ambiguous tracking results 

in case of our target medical images where several 

similar intensity pixels can be found in the 

neighbourhood of each pixel. 

4 PARAMETERS 

We choose the parameters as follows: 

n (number of feature points used)    = 30 

d0 (initial inverse depth value, Eq.1)   = 50 

µT (gradient descent rate for translation, Eq.10) 

  = 9x10-14 

µd (gradient descent rate for inverse depth, Eq.10) 

  = 9x101 

m (number of gradient descent steps)   = 100 
 

The number of feature points n is considered low as 

in endoscopic image very less number of good 

distinct feature points can be found. A large number 

of feature points would lead to wrong matches and 

result in error in camera motion estimation. µT and 

µd have an order of 1015 difference. This is because 

translation value need not change much but the 

inverse depth value is initialized randomly. The 

number of gradient steps is considered sufficiently 

high at 100. 

5 EVALUATION 

We use Tsukuba dataset’s [14, [15] stereo image 

pair to validate our approach. Though the images are 

taken from a stereo camera (1 DOF translation), our 

approach is designed to handle 3DOF translation.  

The images taken are from stereo vision dataset. 

Thus we can verify results with Stereo vision 

formula for this particular dataset. 

Depth   = (Bxf)/Disparity  

Where, 

Baseline is the distance between optical centres of 

the two cameras in stereo vision. Disparity is the 

distance between the pixels of the same point in the 

two images. 
 

Depth x Disparity  = Bxf 

   = constant 

In our case, 

Depth   = 1/d 

∴ Disparity/d  = constant 
 

We used disparity values from Tsukuba Ground 

Truth and inverse depth from the implementation. 

Disparity/d for the n (30) feature points are 

computed. The normalised standard deviation (ratio 

of standard deviation to mean) of the data is found to 

be 0.043<<1 implying the data is almost constant. 

Thus, the results are consistent with the stereo vision 

formula. 

Matched feature points are shown in Fig.2. 

Linear interpolation of the obtained inverse depth 

map is shown Fig.3. The final dense inverse depth 

map is shown in Fig.4. Fig.5 shows the final inverse 

depth map (with median filter) alongside the ground 

truth disparity. The black strip on the left part of the 

reconstruction is because of the absence of the 

corresponding points in the 2nd image. 
 

 

Figure 2: ORB features matched in the 2 input images. 
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Figure 3: Nearest neighbour interpolation of inverse depth 

at feature points. 
Figure 4: Final dense inverse depth map. 

 

Figure 5: Left- Median filter applied to dense inverse depth reconstruction, Right- Ground Truth disparity. In stereo vision 

disparity is proportional to inverse depth. 

6 RESULTS 

We tested the algorithm on endoscopic video which 

we collected from Aichi Medical University. We 

carefully selected two nearby video frames which 

had translation only motion. The feature tracking 

fails without specularity removal leads to matching 

points in specular region (Fig.6). This would result 

in erroneous camera tracking as specular regions are 

not static. Specularity removal is done using 2 

methods of separately as shown in Fig.7 (Bertalmio et 

al., 2001; Telea, 2004). We finally use the method 

proposed by Telea which gave better result. Even 

after specularity removal the matching gives poor 

results (Fig.8) This is because specularity removal is 

not perfect. Moreover, there is information loss 

wherever specularity is removed. We, therefore, use 

a mask to extract feature points only in regions 

where there was no specularity in the original image. 

This results in almost perfect matching (Fig.9). The 

final dense reconstruction is shown in Fig.10.  

7 CONCLUSIONS 

Our approach effectively applies feature matching 

for camera motion estimation and performs 

pixelwise operations to compute dense 

reconstruction. Even though ground truth 3D 

structure is not available for the endoscope images, 

we performed a check on our method using the 

Tsukuba dataset. The tracking results are highly 

accurate, and the dense reconstruction closely 

resembles the ground truth. 

Further developments could be to include 

rotation into the model. There is also the possibility 

to improve reconstruction by imposing smoothness 

constraint. Computational efficiency can also be 

improved. 
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Figure 6: Matching feature points without specularity removal. Feature points are selected in specular region which would 

result in wrong estimation of tracking. 

 

Figure 7: Top- Original Image. Bottom Left- Specularity Removal using method of Bertalmio et al., 2001. Bottom Right- 

Specularity removal using method of Telea, 2004. 
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Figure 8: Matched feature points after removing specularity using method Proposed by Telea (2004). 

 

Figure 9: Matched feature points after removing specularity and applying mask to specular region. 

 

Figure 10: Final dense reconstruction of endoscopic 

image. 
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