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Abstract: Assessment of cognitive impairments is of social and clinical importance for vulnerable populations, such as

elderly, athletes and soldiers, who are prone to falling victim to cognitive impairments. This paper presents

ongoing work for developing an application that predicts the neurological state of users with the state-of-

the art performance through analyzing the structural complexity of users’ utterances. We present a novel

method that estimates the neurological state of users with Pearson correlation of 0.66 with respect to the

Mini-mental state exam score. Unlike previous work, our method does not depend on assumptions of relating

linguistics representations to human language-processing capabilities, but discovers the discriminative patterns

automatically.

1 INTRODUCTION AND

MOTIVATION

In this paper, we present ongoing work on develop-

ment of a mobile application that estimates the degree

of cognitive impairment of a user with state-of-the-

art performance, upon collecting a speech sample by

prompting the user with a picture description task. We

expect a large portion of our users to be people with

cognitive impairments due to aging related neurode-

generative disorders, and people with traumatic brain

injury.

Dementia is a growing social and clinical pro-

blem, as three percent of people between the ages

of 65 and 74, 19% between 75 and 84, and nearly

half of those over 85 have the condition (Umphred,

2007). Early detection of the disorder, coupled with

access to care planning leads to better outcomes for

both patients and their caregivers (Bradford et al.,

2009). The true prevalence of missed and delayed

diagnoses of dementia is unknown but seems to be

very high (Bradford et al., 2009). Diagnosis of de-

mentia is prone to be delayed, because it is dependent

on suspicion and concern based on patients symp-

toms. A major factor for delayed diagnosis is lack of

access to affordable healthcare, as patients in lower

strata tend to go undiagnosed at a higher rate (Ma-

estre, 2012). Accordingly, economic issues are also

critical for control and management of dementia af-

ter diagnosis. Therefore, cost-effective, easy-to-use

and naturalistic tools for routine dementia-screening

and disease-progression monitoring could provide pa-

tients and medical professionals with the opportunity

to engage in efficient treatment planning.

Our tool is going to be useful for assessing not

only slow-developing cognitive impairments like de-

mentia, but also for sudden changes in cognitive ca-

pabilities, for example due to a traumatic brain in-

jury (TBI), or a stroke. In 2013, about 2.8 million

TBI-related emergency department visits, hospitaliza-

tions, and deaths occurred in the United States (Sosin

et al., 1996). Members of certain professions, such as

athletes and combat soldiers, are more prone to falling

victim to TBI (Cole et al., 2017). Currently, there are

several computerized neurocognitive assessment tests

used for TBI that engage various cognitive domains,

such as memory, attention, motor speed, processing

speed etc. (Cole et al., 2017). However, none of these

tests perform language analysis using NLP techno-

logy with linguistic sophistication that can quantify

structural complexity of a speakers utterances. There-

fore, our tool is going to be a significant contribution

to the existing battery of computerized neurocognitive

assessment tools used for TBI.

In this paper, we present a novel method for esti-

mating the degree of cognitive impairment, and also

describe our efforts on building a prototype. We vali-

date our method by performing regression to predict

the Mini-Mental State Examination (MMSE) score.

MMSE is a neuropsychological test that is used exten-

sively in clinical research to estimate the severity and

progression of cognitive impairment (Folstein et al.,
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1975; Pangman et al., 2000). It is the best studied

and the most commonly used test for the diagnosis

and longitudinal assessment of Alzheimer’s Disease -

the most common type of dementia (Burns and Iliffe,

2009). MMSE is also considered as an effective way

to document an individual’s response to treatment

(Pangman et al., 2000). MMSE is also used for eva-

luating cognitive outcome in patients with TBI, both

immediately following an injury and in the follow-up

period, although its sensitivity depends on the site of

injury (Lee et al., 2015; De Guise et al., 2013).

We use NLP techniques, in particular syntactic

analysis of constituent parse trees for feature ex-

traction. To validate our method, we used data

from the Pitt Corpus, which is part of the publicly

available DementiaBank corpus (Macwhinney et al.,

2011). Our method can successfully estimate the cog-

nitive impairment of subjects in the DementiaBank

study with Pearson correlation of 0.66 with respect

to MMSE, which is currently the state-of-the art in

predicting MMSE.

The outline of the paper is as follows: We first

summarize related work in Section 1.1; we then pro-

vide necessary background for presenting our feature-

extraction method in Section 2, present the feature-

extraction method for predicting MMSE in Section 3,

and the feature-selection method in Section 4; we dis-

cuss the performance of our method in Section 6, and

describe the current status of our implementation and

future development plans in Section 7.

1.1 Related Work

There is growing number of papers in the recent ye-

ars using the DementiaBank corpus, predominantly

doing classification of patients vs health controls (Fra-

ser and Hirst, 2016; Fraser et al., 2016; Orimaye et al.,

2014, 2017). Fraser et al. (2016) use syntactic, se-

mantic, lexical and acoustic features to classify Alz-

heimer’s disease patients vs healthy controls in De-

mentiaBank. They used context free grammar (CFG)

rule rates and proportions in sample interviews as fe-

atures, in addition to average length of the right hand

side of CFG rules, only for noun phrases (NP), verb

phrases (VP), and prepositional phrases (PP). They

obtained 81 percent classification accuracy, however

the results they reported were obtained with featu-

res that were selected using the entire data set. Ori-

maye et al. (2014) and Orimaye et al. (2017) also

used syntactic features for classification of Alzhei-

mer’s disease patients vs healthy controls in Demen-

tiaBank. They used syntactic features involving sen-

tence embeddedness, in particular they focused on

POS tags indicating coordinated, subordinated, and

reduced sentences (CC, S, VBG, VBN). They also

used counts of unique CFG rules, the valency of

verbs, lexical features involving repetition. Their re-

sults were also obtained using features that were se-

lected using the entire data set.

To the best of our knowledge, the only study that

predicted MMSE scores using linguistic features is

Yancheva et al. (2015), where they modeled longitu-

dinal progression of MMSE scores using subjects that

have more than one sample in DementiaBank. They

reported a mean-absolute-error (MAE) of 2.91 in pre-

dicting MMSE, significantly below the within-subject

inter-rater standard deviation of 3.9 to 4.8 (Molloy

et al., 1991). However, the lowest MAE they obtained

with a method generalizable to unseen data was 7.31,

as they also reported results obtained with using fea-

tures that were selected using the entire data set. They

did not report the correlation between the scores their

method predicted and the actual MMSE scores.

Our work differs from most psycholinguistics and

neuroscience studies on linguistic aspects of neurolo-

gical disorders in multiple ways: First and foremost,

our method is not intended for theoretical understan-

ding of human language production and processing

capabilities, but for practical applications.

Second, we present results that are generalizable

to unseen data. We perform feature-selection in each

cross-validation (CV) fold separately without obser-

ving the entire data set, and use all features selected

in the folds of CV, as opposed to related work that re-

port results obtained with features selected using the

entire data set.

Finally, a major difference between related work

and our method is that out method does not depend

on assumptions relating linguistics representations to

human-language-processing capabilities. Prior stu-

dies all use hand written rules involving node labels

(e.g. NP, VP, S), naturally supported by the psycholo-

gists literature, for feature extraction. Our method, on

the other hand, does not depend on the actual syntax-

tree labels. For example, the tree in Figure 1(a) has

node labels that are commonly used in language stu-

dies, however the trees in Figure 1(b) have node labels

that are variables. Our method can be used on either

types of trees, and thus can be applied to trees of any

syntactic theory, as long as we can obtain parse trees

of utterances for training and testing. A major advan-

tage of this approach is that we can, and do, apply our

method to languages other than English, which do not

use familiar node labels.
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Figure 1: Example syntax trees.

2 BACKGROUND

2.1 Syntax Trees

We model the structural complexity of users’ utteran-

ces through syntactic analysis. In particular, we ana-

lyze constituency parse of the utterances, which are

obtained by a statistical parser. In this section, we de-

fine basic syntactic tree relations in order to provide a

background for our feature extraction method.

Figure 1(a) shows a constituency parse for the sen-

tence “All linguists draw a diagram”. As shown in Fi-

gure 1(a), parse trees are graphs that are made up of

nodes (e.g. NP, VP), and edges that connect the nodes.

Nodes have labels, such as NP for a noun phrase, VP

for a verb phrase etc. The node labels in this study fol-

low the convention of constituent tags in Penn Tree-

bank (Marcus et al., 1993), as we used a statistical

parser trained on Penn Treebank to parse our data.

However, our method does not depend on having prior

knowledge of actual node labels, as we could have

used some other method, and obtained trees with a

different label set, for example if we apply our met-

hod to another language.

Nodes NP0 and NP1 have the same label, NP, as

the subscripts are not parts of the node labels. We use

the subscripts, e.g. NP0, on the labels in Figure 1(a)

for disambiguation between the nodes with the same

label. Branch out of a tree node is conveyed in a con-

text free grammar (CFG) rule, for example as ‘NP →
DT N’, which is instantiated twice in Figure 1(a): NP0

that branches to DT0 and N0, and NP1 that branches

to DT1 and N1. A CFG rule covers all and only the

nodes that branch out of a single node. Our work dif-

fers from related work using syntax, in that they mos-

tly use CFG rules, but not smaller or larger subtree

patterns.

In the definitions of this paper, we assume trees

have only directed edges, in that the nodes can be tra-

versed through the edges only in a top down fashion.

For example, there exists a path to all nodes in the tree

from node S, however there is no path that can reach

node S, as it is at the top of the tree and nodes can be

traversed only in a top down fashion. For this reason,

node S is called the root of the tree, and syntax trees

have a single root node. The tree under the root node

covers the entire sentence, whereas trees under other

nodes span subparts of the sentence. For example, the

tree under the node with label VP spans “draw a dia-

gram”. The subspan covered by a node is called the

yield of that node. In Figure 1(a), there are two NPs,

one has the yield “all linguists”, and the other has the

yield “a diagram”. Some nodes have yields that are

only single words. For example, the node with label

N1 yields only the word “diagram”.

2.2 Relations between Nodes

In this section, we define tree relations that span smal-

ler and larger subtrees than CFG rules. The most pri-

mitive relations between nodes in a tree are mother,

sister, dominance relations. Node a dominates node

b, if and only if (iff) there is a path between the root

node and b which passes through a. For example, NP0

dominates DT0, and VP dominates N1. Node a is the

mother of node b, iff a dominates b, and there is an

edge between a and b. For example, node NP1 is the

mother of node DT1. Node a is a sister of node b, iff

they have the same mother. For example, node DT1

and node N1 are sisters.

The root node S in Figure 1(a) dominates DT1,

and the path between them has three edges. There-

fore, the dominance relation can have a larger scope

than CFG rules, which can only represent relations of

depth one. For feature extraction, we use dominance

relations between nodes that are two edges apart.
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In addition, we make use of tree relations with

larger scope than CFG rules that were first defined

within the Chomskyan tradition. The first rule is c-

command (Haegeman, 1994). Within the scope of this

paper, c-command between two nodes could be des-

cribed informally as an aunt relation, if we continue

with the analogy of sisterhood and motherhood as re-

lations between nodes. Formally, c-command is defi-

ned as follows: node a c-commands node b, iff a does

not dominate b, b does not dominate a, and the lo-

west branching node c that dominates a dominates b.

For example in Figure 1(a), node V c-commands N1,

-i.e. V is the aunt of N1- because V does not domi-

nate N1, N1 does not dominate V, and VP is the mot-

her of V, which dominates N1. The formally-defined

c-command relation can span nodes of arbitrary dis-

tance. However, we limit our feature-extraction met-

hod to consider only the most local c-command re-

lations, which can informally be defined as aunt re-

lations. According to the formal definition, sister re-

lation is also a c-command-relation. However, we do

not consider sister relations as c-command relations in

this paper, as we already use sister relations for fea-

ture extraction, and want to keep c-command and sis-

ter relations mutually exclusive for feature extraction.

Next, we define a ternary version of the c-

command relation: c-command is defined between

two nodes, a and b, whereas c-command-via-node

is defined not only between a and b, but also in-

cludes c, where node c could be defined informally

as the grandmother of node b. Formally, node a c-

commands b via c, iff a does not dominate b, b does

not dominate a, and the lowest branching node c that

dominates a dominates b. For example in Figure 1(a),

node V c-commands N1 via VP. Within the scope of

this paper, this relation is constrained to cover only

ternary relations that exists between a node, the no-

des aunt, and the nodes grandmother, as defined in-

formally.

Finally, we also use a ternary dominate-via-node

relation, that includes a node, the nodes mother, and

the nodes grandmother, where a node is dominated

by its grandmother via its mother. To summarize,

we use the following relations for feature extraction:

sister, dominate, c-command, c-command-via-node,

dominate-via-node, and the node labels.

3 FEATURE EXTRACTION

3.1 Subtree Patterns

We illustrate our method of feature extraction with the

example trees in Figure 1(b). There are multiple trees

in Figure 1(b), as most samples consist of multiple

utterances. In the example, the node labels are not

from the Penn-Treebank constituent tag set. Instead,

we used variables for node labels in the example, first

to emphasize that our method does not depend on the

actual node labels, but their relations in the trees, as

defined in Section 2. Second, because it is common to

use variables for node labels for generalizability, and

also for easy-readability.

Table 1 lists instances of node labels, sister rela-

tions, and c-command-via-node relations observed in

the trees in Figure 1(b), and their counts. Let us first

look at the examples of node labels in the first column

in Table 1. Total number of nodes in the trees in Fi-

gure 1(b) is given in the last row. We divide the count

of a node label by the total count of nodes. For ex-

ample in Figure 1(b), there are three nodes labeled as

B, and the total count of nodes is 13. Thus the rate of

nodes labeled B is 3/13.

In the second column in Table 1, we show counts

of sister relations in the trees in Figure 1(b). We ob-

serve node B and C as sisters three times, C and D as

sisters two times, B and D as sisters only once. For

each sister relation instance, we divide the count of

that instance by the total number of sister relations.

For example in Figure 1(b), the count of sister(B,C)

is three, the total count of sister relations is six. Thus,

the rate of sister(B,C) is 3/6. The counts of all sister

relation instances, and the total count of sister relati-

ons are shown in Table 1. In sum, a rate is obtained

for each instance of the sister relation by dividing the

count of that instance by the sum of the counts of all

instances of the sister relation.

Similarly, the rates of instances of the c-

command-via-node relation are computed in the same

manner, as shown in Table 1. For all relations menti-

oned in the previous section, we obtain a rate for each

instance of the relation by dividing the count of that

instance by the sum of the counts of all instances of

that relation. We use logarithm of the rates as featu-

res, and use 10e-7 as floor in order to avoid computing

the logarithm of zero.

Finally, we also use features involving CFG rules:

We normalize the counts of instances of CFG rules

by the total number of CFG rules in a sample. For

example, the CFG rule A →B C occurs only once in

Figure 1(b), and there are total five CFG rules in Fi-

gure 1(b), thus the rate of A →B C is 1/5. We also use

statistics over the length of CFG rules -as the num-

ber of nodes at the right side of CFG rules- in a sam-

ple. We compute minimum, maximum, mean, stan-

dard deviation and percentiles over the length of CFG

rules as features.
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Table 1: Example counts of subtree patterns.

Unary Binary Ternary

Node-label Count Rate Sister Count Rate C-command-via-node Count Rate

A 3 3/13 Sister(B,C) 3 3/6 Comm-max(B,B,D) 1 1/5

B 3 3/13 Sister(C,D) 2 2/6 Comm-max(B,C,D) 1 1/5

C 4 4/13 Sister(B,D) 1 1/6 Comm-max(C,B,D) 1 1/5

D 3 3/13 Comm-max(C,C,D) 1 1/5

Comm-max(C,A,A) 1 1/5

Node total 13 Sister total 6 Comm-max total 5

3.2 Node Scores

Statistical parsing algorithms compute a score bet-

ween 0 and 1 for each node, indicating how gram-

matical the yield of a node is within the context of

the entire sentence. We obtain the node scores from

the statistical parsers data structures. For each node

label, we compute statistics over the scores assigned

to the nodes with that label in the sample. We com-

pute maximum, minimum, standard deviation, skew-

ness and kurtosis over the node scores for each label,

and use them as features.

4 FEATURE-SELECTION

METHODS

As we do not assume prior knowledge of what node

labels or subtree patterns indicate in terms of syn-

tactic complexity with respect to human language

processing, we generate a large number of features

for all observed subtree patterns in the samples. As

a res==ult, eliminating features of low quality is es-

sential to the performance of our method. We re-

sorted to an experimental method for eliminating low

quality features within a leave-one-subject-out cross-

validation setting (LOOCV). We split the data to folds

of train-test sets. Within each fold, we performed

feature-selection as explained below, and predicted

the scores of the samples from the left-out-subject

using the selected features.

Univariate Feature Selection. As initial filtering,

we used univariate feature selection methods. We

obtained a p-value for each feature by computing

Pearson r between the feature and the MMSE sco-

res. We eliminated features with p-value greater than

0.01. Then, we performed an ANOVA-F test, and mo-

deled the decreasing p-values as an exponential-decay

curve. We used curve fitting to obtain the τ parameter

for the decay curve. We learned a multiplier a for the

τ parameter with cross-validation, where α · τ is used

as a threshold to eliminate features that are at the tail

of the exponential-decay curve.

Stability-selection. We followed univariate

selection methods with stability-selection (Meins-

hausen and Bühlmann, 2010). We used the

scikit-learn implementation of Randomized

Lasso, which returns a score for each feature.

We modeled the decreasing feature scores as an

exponential-decay curve. We used curve fitting to

obtain the τ parameter, and learned a multiplier a for

the τ parameter with cross-validation, where α · τ is

used as a threshold to eliminate features that are at

the tail of the exponential-decay curve.

Recursive-feature-elimination. Next, we used re-

cursive feature elimination (RFE). Given an estima-

tor, RFE selects features by recursively considering

smaller and smaller sets of features. First, the estima-

tor is trained on the initial set of features and weig-

hts are assigned to each one of them. Then, featu-

res whose absolute weights are smallest are pruned

from the current set features. This procedure is recur-

sively performed on the pruned set until the features

are exhausted.

RFECV in the scikit-learn package performs

RFE in a cross-validation loop to find the optimal

set of features. RFECV requires an estimator to obtain

weights for the features, for which we used Linear Re-

gression. As RFECV returns an optimal set of features,

we rerun RFECV using the optimal set returned by the

previous run, until it no longer returned a smaller set.

In other words, we repeated RFECV until it converged.

Feature-selection in LOOCV. Within each fold of

LOOCV, we started with univariate feature-selection
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methods, as they can quickly eliminate a large number

of features of low statistical significance. Eliminating

large number of features is critical for subsequent fea-

ture selection methods, namely stability-selection and

recursive-feature-elimination, as they can be a lot slo-

wer than the univariate feature-selection methods.

Recursive-feature-elimination, unlike stability-

selection, can be unstable across folds in terms of

the number of features it eliminates. For that rea-

son, we perform stability-selection before recursive-

feature-elimination. Performing recursive-feature-

elimination as the last step of feature-selection ensu-

res that it evaluates only a small number of features

in each fold, thus the instability of the method can be

relatively constrained.

Finally, the selected features in each fold were

used for training, and the scores of the test samples

were predicted using the fitted estimators.

5 DATA

We validated the feature extraction method explained

in the previous section for prediction of MMSE using

the publicly available DementiaBank corpus (Macw-

hinney et al., 2011). Patients of various types of

dementia were included in the study, in addition to

age and education matched healthy controls. Demo-

graphics of DementiaBank can be found in Table 2.

All subjects were given the Cookie Theft picture

description task from the Boston Diagnostic Aphasia

Examination (Kaplan, 1983). This task was chosen,

because it is considered an ecologically valid approx-

imation to spontaneous discourse. We used each nar-

rative for the description as a sample, and parsed the

utterances using the Stanford Parser (Klein and Man-

ning, 2003). All subjects were associated with a pro-

fessionally administered MMSE score on a scale of

0 (greatest cognitive impairment) to 30 (no cognitive

impairment).

Table 2: DementiaBank Demographics.

Dementia Control

Number of samples 278 182

Number of subjects 192 96

Age (years) 72 (8.66) 64 (7.48)

Gender (male/female) 101/177 66/115

MMSE 20 (5.7) 29 (1.1)

Table 3: Feature-selection results for the baseline model,
which uses only features involving CFG rules, and the best
performing model, which uses all subtree patterns. The
second column shows the median number of features se-
lected across folds by the method given in the first column.
The feature-selection methods are listed sequentially with
respect to their application.

(a) CFG Rules

Total # Features 978 Pearson r MAE

1 Pearson r <0.01 65 0.60 4.08

2 ANOVA f-test 20 0.61 3.94

3 Stability 18 0.61 3.93

4 RFE 16 0.60 3.95

(b) Subtree patterns.

Total # Features 4297 Pearson r MAE

1 Pearson r <0.01 468 0.62 3.97

2 ANOVA f-test 99 0.66 3.86

3 Stability 35 0.64 3.91

4 RFE 35 0.64 3.91

6 EXPERIMENTS AND RESULTS

Features involving CFG rules were commonly used

in previous work for classification of patients vs con-

trols in DementiaBank. Therefore, we use features

involving CFG rules as a baseline model. Please note

that we used all CFG rules observed in the interviews,

not only CFG rules involving a pre-determined set of

node labels. We have in total three experimental con-

ditions:

• Baseline: CFG features

• All subtree patterns: CFG features plus features

involving other subtree patterns, e.g. sister, domi-

nance, and c-command relations, as explained in

Section 3.1.

• Node scores: As explained in Section 3.2.

Table 3 shows the results obtained after each

feature-selection step for each experimental condi-

tion. We do not report these detailed feature-selection

results for the node scores experiment, as it was the

worst performing experimental condition, as shown

in Table 4. It shows the sequential decrease in the

number of features after each feature-selection step.

In both experiment conditions, the largest decrease

in the number of features was obtained by the first

feature-selection step, and the smallest decrease in the
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Table 4: The best estimators.

Subtree patterns CFG rules Node scores

# Features 35 16 34

Pearson r 0.64 0.60 0.56

Estimator Lasso CD All Ridge CD

MAE 3.91 3.95 4.29

Estimator Ridge / Elastic Net eSVR Linear Regression

number of features was obtained by the last feature-

selection step. In Table 3, we report results obtained

with the selected features in terms of Pearson r cor-

relation between the predicted scores, and the actual

MMSE scores. In addition, we report mean-absolute-

error (MAE) between the predicted scores and the

actual MMSE scores. Although MAE is a scale-

dependent measure, we have to report results with this

metric, as previous results on predicting MMSE sco-

res both automatically and manually have been repor-

ted in terms of MAE.

Table 4 shows the best performing estimators on

the smallest number of features after all feature-

selection steps had been applied. In Table 4, the

first row shows the experimental conditions, the se-

cond row shows the median number of features se-

lected across folds per experimental condition. The

row for Pearson r shows the correlation between the

predicted MMSE scores and the actual MMSE sco-

res. The next row shows the estimator that obtained

the Pearson r performance. The MAE row shows the

mean-absolute-error between the predicted MMSE

scores and the actual MMSE scores. The row under

the MAE row shows the estimators that obtained the

MAE performance. The complete list of estimators

we experimented with, along with their initialization

and grid search parameters can be found in the Ap-

pendix. In Table 4, “All” stands for all estimators gi-

ven in the Appendix.

6.1 Discussion

The highest correlation for prediction of MMSE was

obtained by using all subtree patterns, with Pearson r

of 0.66, as shown in Table 3(b). The improvement in

Pearson r over the baseline, as shown in in Table 3(a),

was five percent. Therefore, using subtree patterns

that have smaller scope than CFG rules, such as sister

relations, and subtree patterns that have larger scope

than CFG rules, such as c-command relations, impro-

ved performance.

Table 3(b) shows that, the performance was op-

timal after using only the first two feature-selection

steps: using a p-value threshold and the ANOVA f-

test. However, stability-selection resulted in a large

drop in the number of features with a minor decre-

ase in performance. On the other hand, RFE resulted

in a minor decrease in the number of features, and

performance, in both experiment conditions. Follo-

wing the Occam’s razor principle, we decided to use

the settings with the smallest number of features, and

the estimators that performed best with the smallest

number of features, as seen in the second column of

Table 4, in our application, despite the minor decrease

in performance on our data.

Using only node scores provides 0.56 Pearson r

correlation, which shows that node scores, compu-

ted by a statistical parser solely for algorithmic pur-

poses can convey information with cognitive signifi-

cance. These results are in line with the interpretation

of node scores as indicating grammaticality of consti-

tuents. However, we observed that combining node

scores with subtree patterns did not improve perfor-

mance over using only subtree patterns.

Our best mean-absolute-error (MAE) score is

3.86, which is comparable to within-subject inter-

rater standard deviation of 3.9 to 4.8 (Molloy et al.,

1991). Yancheva et al. (2015) reported a MAE of

2.91, however the lowest MAE they obtained with a

method generalizable to unseen data is 7.31. They

used the entire data set to learn a hyper-parameter:

the optimal feature-set size for best performance on

the entire data set. Thus, although they used leave-

one-subject-out cross-validation, the test-sets in their

LOOCV folds effectively became validation sets for

learning this hyper-parameter. As a result, their re-

sults are not generalizable to unseen data. On the ot-

her hand, we performed feature-selection within the

training set of each fold, not using the samples in the

test-sets of LOOCV.

6.1.1 Selected-features

An examination of the features that have survived

the feature-selection process in each fold shows that

our method made use of features that have com-
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monly been suggested as relating to human-language-

processing capabilities, and have been used in prior

work. These features fall in four categories:

• Subtree patterns involving predicate argument

structure. For example, sister relations involving

modifiers, e.g. adjectives and adverbs.

• Subtree patterns involving sentence embedded-

ness.

• Ungrammatical parses, due to disfluencies. For

example, double determiners for “the the”.

• Statistics over CFG rule length.

Our method had the advantage that we did not have to

hand-code rules involving the node labels, but rather

use machine-learning techniques discover the features

among thousands of features generated using only a

few subtree patterns.

We have also observed that patterns that have

smaller scope than CFG rules are more useful than

patterns that have larger scope than CFG rules. It

seems that factoring out CFG rules into even smaller

tree relations allows us to extract more fine grained fe-

atures, which in turn improve learning performance.

7 PROTOTYPE

Initial deployment of the mobile application will be

for end-users that are the diagnosed patients of aging-

related neurodegenerative disorders enrolled in a cli-

nical study aimed at assessing drug effectiveness. The

scores predicted by the system will be provided to me-

dical professionals for evaluation.

Upon authentication, the app will prompt the user

with a picture description task, and request the user

to complete a short questionnaire. The questionnaire

will include a few questions to control for confoun-

ding factors such as general status of health, stress le-

vel, alcohol consumption etc., to be used for elimina-

tion of samples that were recorded under unfavorable

conditions.

The initial release of the tool to the medical pro-

fessionals will include the cookie-theft description

task, not only because we validated our method on

this task, but also it is the most-commonly used task

for eliciting syntactically complex utterances (Spreen

and Risser, 2003). Further deployments will include

other picture description tasks that have been accep-

ted and used by the scientific community as valid

tasks for eliciting syntactically complex utterances.

The tool will be deployed on IBM Bluemix plat-

form, which offers the following services: speech-

to-text for transcribing speech samples to text, NLP

analysis tools for obtaining parse trees and node sco-

res from transcribed text, HIPAA (U.S. Department

of Health and Human Services, 2003) compliant and

scalable data services. We have already developed a

test system that has speech-to-text and NLP analy-

sis capabilities. We plan to deploy a test system for

internal-use for the whole pipeline described in this

paper within a year.

8 CONCLUSION

We reported ongoing work on developing a tool that

estimates the degree of cognitive impairment of a user

with state-of-the-art performance comparable to hu-

man inter annotator reliability scores. We presented

a novel feature extraction method for prediction of

MMSE, and also a feature-selection methodology that

discovers useful features in a way that is generalizable

to unseen data.

A major advantage of our method over prior work

is that it does not rely on human determined set of

syntactic patterns, but discovers the discriminative

patterns automatically among all observed syntactic

patterns. As a result, it can be applied to trees gene-

rated under different syntactic assumptions, such as

trees of different languages, without any supervision

from linguists or subject-matter experts.

We estimate and hope that our mobile application

will have wide practical applicability in both clinical

and in-home use.
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APPENDIX

Initialization parameters of the estimators:

from sklearn.linear_model import
ElasticNet , Lasso , Ridge ,
LinearRegression

from lightning.regression import
CDRegressor , LinearSVR

from sklearn.svm import SVR ,NuSVR
"LinearRegression ":

LinearRegression ()
"Elastic_Net ": ElasticNet(max_iter

=int(1e3))
"Ridge_CD": CDRegressor(max_iter

=200, tol=1e-3, loss=’squared ’,
penalty=’l2’)

"Lasso_CD": CDRegressor(max_iter
=200, tol=1e-3, loss=’squared ’,
penalty=’l1’, debiasing= True)

"Lasso ": Lasso ()
"Ridge ": Ridge ()
"eSVR": SVR(kernel =’linear ’)
"NuSVR ": NuSVR(kernel =’linear ’)
"lightSVR": LinearSVR()

Grid search parameters of the estimators:

"LinearRegression ":{" normalize":[
False ,True], "fit_intercept ":[
True ,False ]}

"Elastic_Net ": {"alpha ": np.
logspace(-2, 4, 5), "l1_ratio":
10**np.array([-3,-2, -1, np.

log10 (.5), np.log10 (.9)])}
"Ridge_CD": {"alpha ": np.logspace

(-2, 2, 5)}
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"Lasso_CD": {"alpha": np.logspace
(-2, 2, 5)}

"Lasso ": {"alpha ": np.logspace(-2,
2, 5)}

"Ridge ": {"alpha ": np.logspace(-2,
2, 5)}

"eSVR": {"C": np.array ([1, .1,
.01, .001]) , "epsilon": np.
array ([.1, 1, 5, 10, 20])}

"NuSVR ": {"C": np.array ([1, .1,
.01, .001]) ,"nu": np.array ([.1,
.3, .5])}

"lightSVR": {"C": np.array ([1, .1,
.01, .001]) , "epsilon": np.

array ([.1, 1, 5, 10, 20])}
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