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Abstract: There has been increasing concern amongst the scientific community of a reproducibility crisis, particularly
in the field of bioinformatics. Often, published research results do not correlate with clinical success. One
theory explaining this phenomenon is that findings from homogeneous cohort studies are not generalizable
to an inherently heterogeneous population. In this work, we integrate data from 4 distinct tuberculosis (TB)
cohorts, for a total of 1164 samples, to find common differentially regulated genes which may be used to
diagnose active TB from latent TB, treated TB, other diseases, and healthy controls. We selected 25 genes
using random forest to get an AUC of 0.89 in our training data, and 0.86 in our test data. A total of 18 out of
25 genes had been previously associated with TB in independent studies, suggesting that integrating data may
be an important tool for increasing micro-array research reproducibility.

1 INTRODUCTION

Reproducibility of research findings is paramount to
scientific endeavors. However, there is increasing
concern in the scientific community that published re-
search findings are frequently irreproducible (Good-
man et al., 2016). In fact, in 2016 a survey of 1576
scientific researchers found that 90% of respondents
believed there is some degree of a reproducibility
crisis, with 52% believing this crisis is ‘significant’
(Baker, 2016). Biomedical research is not immune
to this crisis (Goodman et al., 2016). The National
Institute of Health (NIH) noted the failure of many
biomedical studies to present reproducible findings,
and is leading a variety of interventions to ameliorate
this phenomenon (Collins and Tabak, 2014).

Many factors have been implicated in contribut-
ing to the reproducibility crisis. An investigation
into whether false findings represent the majority of
scientific research identified that bias is often intro-
duced in experimental design, data collection, and
analysis. The study concluded that scientific results
need to be externally validated from many distinct
research groups before the findings can be consid-
ered truth (Ioannidis, 2005). Other studies have im-
plicated imperfect animal and cell models as causes
to the low correlation between research findings and

clinical success (Begley and Ellis, 2012; Mestas and
Hughes, 2004; Sweeney et al., 2016b). The empha-
sis on achieving statistical significance has been criti-
cized in the literature as well (Sweeney et al., 2016b;
Nuzzo, 2014).

While careful experimental design and increased
emphasis on external validation play important roles
in increasing the reproducibility of published research
findings, other solutions include sharing research data
(Collins and Tabak, 2014). A recent editorial in
Nature made recommendations for “improv(ing) the
transparency and reproducibility of research by means
of data accessibility” (Nature, 2017).

The Khatri Lab of Stanford University has taken
this notion one step further; they’ve proposed a frame-
work for meta-analysis using data from publicly avail-
able resources such as the NIH Gene Expression
Omnibus (GEO) (Sweeney et al., 2016a). Khatri
argues that part of the reason why clinical studies
cannot recapitulate biomarkers from research is due
to the inevitable heterogeneity in actual populations.
By embracing such heterogeneity, we can search for
biomarkers which are present above the noise, and
that these markers should be more robust in clinical
settings (Sweeney et al., 2016a; Titus et al., 2017).
Thus, by investigating biomarkers which have dis-
criminatory potential across many studies, the irrepro-
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Figure 1: A brief overview of the data analysis methodology.

ducibility due to study specific observations is miti-
gated. This meta-analysis framework has been suc-
cessfully applied on a variety of clinical settings, in-
cluding tuberculosis (Sweeney et al., 2016a).

Tuberculosis is a top 10 cause of death world-
wide, partly attributable to a significant gap in TB di-
agnosis (WHO, 2016). In 2015, only 6.1 million cases
of TB were reported to the WHO, leaving a 4.3 mil-
lion gap between incident and reported cases. More-
over, only 57% of cases were bacterially-confirmed,
most other cases were clinically diagnosed given the
symptoms presented (WHO, 2016). As such, there
has been significant scientific interest in alternative
diagnostic tools for TB, particularly in the realm of
transcriptional biomarkers, to allow for faster diag-
nosis and treatment (Sweeney et al., 2016a; Prada-
Medina et al., 2017; Sambarey et al., 2017).

In this work, we use Khatri’s idea of integrating
publicly shared datasets from previous TB research
to identify a transcriptional signature which is robust
to variations in study population. Instead of applying
the Khatri meta-analysis framework, we investigate
the potential of random forest to classify patients with
active TB from healthy controls, latent TB, and other
diseases. We hypothesize that by integrating publicly
available transcriptomic data sets and using machine
learning algorithms, we will be able fully leverage
data from individual samples in such a way that we
can capture more nuanced patterns for feature selec-
tion. These patterns may provide important insight
into the pathogenesis of TB. The work presented here
is a proof-of-concept exercise and the results will be
used to guide the design of a more comprehensive
study.

2 METHODS

Figure 1 gives an overview of the data analysis
methodology. Data was collected from the NIH GEO
depository (https://www.ncbi.nlm.nih.gov/gds) using
both ‘tuberculosis’ and ‘TB’ as search terms, and lim-
ited to studies using human subjects that collected ex-
pression array data. Eligibility for inclusion required

that the dataset include healthy controls, have at least
100 samples, and was from distinct institutions. The
studies accompanying these datasets can be found in
(Firszt and Vickery, 2011; Maertzdorf et al., 2011;
Bloom et al., 2013; Blankley et al., 2016). A brief
summary of the samples available in these datasets
is presented in Table 1. The datasets included pa-
tients aged 16-87 from from the UK, South Africa,
The Gambia, and France. This particular group of
data does not include any HIV+ patients. The other
diseases included in these studies are Streptococcal
Pharyngitis, Staphylococcus infection, Still’s disease,
Systemic Lupus Erythematosus, Sarcoidosis, Pneu-
monia, and Lung Cancer. In total, 1164 samples are
included in this analysis.

For the purposes of developing a diagnostic tran-
scriptional signature for TB, a “1 vs. The Rest” algo-
rithm was trained to separate active TB from latency,
healthy controls, treated TB, and other diseases. A
binary classification model (active TB vs. the rest) is
most relevant in a clinical context.

All expression and phenotype sets were down-
loaded to R using the ‘MetaIntegrator’ package
(Haynes et al., 2016). Expression sets were checked
to ensure that they had been log2 transformed, but
were otherwise used as deposited. GSE19491,
GSE42834, and GSE83456 were all analyzed using
Illumina systems, but GSE28623 was analyzed us-
ing an Agilent system. Integrating datasets requires
a unique identifier which can be used to match infor-
mation from each set. Since data could not be merged
on Probe ID, we first matched probes to their gene an-
notation, calculated the median expression value for

Table 1: Dataset by number of available samples. “LTB”
denotes latent TB, “treated” denotes treated TB, “HC” de-
notes healthy controls, and “OD” denotes other diseases.

GSE Number of Samples

TB LTB Treated HC OD

19491 89 69 14 133 193
28623 46 25 - 37 -
42834 65 - - 143 148
83456 92 - - 61 49



each gene, and then combined datasets based on the
unique gene annotation.

To adjust for batch effect, COmbat CO-
Normalization Using conTrols (COCONUT) was ap-
plied to the data. This method was implemented in
R using the ‘COCONUT’ package (Sweeney et al.,
2016c). COCONUT normalizes the data in an unbi-
ased way while maintaining the distribution of genes
both within and between studies. To achieve this, con-
trol samples are normalized using ComBat empiric
Bayes normalization method and the parameters from
the control samples are then applied to the diseased
components.

A random forest model was fit using the ‘ran-
domForest’ package in R (Liaw and Wiener, 2002).
Random forest algorithms generate many classifica-
tion trees, using randomly selected samples. A boot-
strapped sample of the data is selected, and each split
of the tree considers a random subset of candidate
variables. Features are selected based on which vari-
ables best divide the data according to class at each
split. By averaging over many classification trees,
the method demonstrates low bias and variance. This
method has proven to be particularly resilient for the
classification of microarray data (Diaz-Uriarte and
de Andres, 2006).

The data was split into a training ( 2
3 ) and test set

( 1
3 ) at random. Five hundred trees were used, at which

point the classification error had stabilized. We chose
to use 25 genes as our cut off for initial analysis and
comparison to the current literature. While previous
methods have emphasized using a small gene signa-
ture, we intend to examine a larger set to drive hy-
potheses regarding TB pathogenesis in future work.
The top 25 genes were selected from this model using
the Gini Impurity Index. We then refit a model using
only those features on our training data, and used the
refit model to predict classification on our test set.

To assess model performance, Area Under the
Receiving Operator Characteristic (AUROC) curves
are examined, as well as sensitivity, specificity, Posi-
tive Predictive Value (PPV), and Negative Predictive
Value (NPV) of the resulting model. A heat map
with hierarchical clustering using Jaccard’s index, a
distance metric which has demonstrated to be robust
to noise, is visualized to assess unsupervised cluster-
ing among the selected features. (Toldo and Fusiello,
2008). Second, an unsupervised dimensionality re-
duction using a t-distributed Stochastic Nearest Esti-
mate (t-SNE) is conducted, which allows for a non-
parametric and non-linear mapping of the features to
a reduced dimensional latent space (Maaten and Hin-
ton, 2008). While features were selected using a “One
vs. the Rest” algorithm, the unsupervised clustering

(a) PCA before Corrections

(b) PCA after Corrections
Figure 2: Applying COCONUT to adjust for batch affect.

methods are coloured using all categories in order to
better visualize how the selected features discriminate
between active TB and each subcategory.

3 RESULTS

RNA was analyzed using three different platforms:
Illumina HumanHT-12 V3.0 expression beadchip,
llumina HumanHT-12 V4.0 expression beadchip,
Agilent-014850 Whole Human Genome Microarray
4x44K G4112F (Feature Number version). This,
in conjunction with other within study similarities
(such as differences in normalization techniques be-
tween studies) introduced considerable batch effect
with the merged data. This is demonstrated using
a PCA in Figure 2. Note that data sets GSE42834
and GSE83456 both were analyzed using llumina
HumanHT-12 V4.0 expression beadchip, and hence
are clustered together. Data was adjusted using CO-
CONUT, the results of which are shown in Figure 2.
Note that while more of our data overlaps, we can still
see distinct projections from each unique platform.

The top 25 genes returned from the initial ran-
dom forest model, ordered by ranked importance,
are: FCGR1A, GBP6, ANKRD22, VAMP5, C1QB,
GBP2, FOXO1, ANKRD46, MEF2D, FCR1B,
WDFY1, ETV7, PSME2, TXNDC12, BATF2, GBP5,
TAP1, BLK, ZNF395, SOCS1, ICOS, PSMB9, SER-
TAD2, CTRL, and AIM2.

The Out-Of-Bag (OOB) error from the model fit
with the 25 selected genes is ∼12%, with a total mis-
classification rate of ∼8%. The model has specificity
of ∼94%. However, sensitivity was low, at a ∼69%.



Figure 3: ROC curves from random forest model classify-
ing active TB vs. the rest.

The positive predictive value (PPV) and negative pre-
dictive value (NPV) are ∼80% and ∼90% respec-
tively. The AUC for the training set is ∼0.89 (95%
CI:0.87-0.92), and ∼0.86 (0.81-0.90) for the test set.

The ROC curves from this model are shown in
Figure 3. For reference to a null model, the ROC
curves from randomly assigning our cases and con-
trols as well as from fitting a random forest model on
a randomly selected set of 25 genes are also shown.
The AUCs from these null models are ∼ 0.52 (0.49-
0.57) and ∼ 0.77 (0.74-0.81) respectively.

Figure 4 shows a heat map with hierarchical clus-
tering using the selected features. Clustering still pre-
dominantly occurs based on study, but given the re-
sults of Figure 2 this is unsurprising. However, within
studies, active TB consistently clusters away from
healthy controls, with some mixing between active
TB and latent TB, as well as active TB and other dis-
eases.

The data was projected into a 3-D space using a t-
SNE embedding, the results of which are visualized in
Figure 5. Similar to Figure 4, Figure 5 shows cluster-
ing of active TB with separate clusters of TB related
to original study. As well, Figure 5 demonstrates mix-
ing between active TB cases and other diseases, high-
lighting that distinguishing these two classes remains
a complicated problem to be tackled in future work.

4 DISCUSSION

Our results demonstrate that data integration across
heterogenous studies is possible, and may lead to
identification of important biomarkers which are con-
sistent in patients with active TB. Unsurprisingly,

classifying TB from other diseases and LTB is more
difficult. The Khatri lab has shown that including ad-
ditional data sets improves the classification accuracy
of their models (Sweeney et al., 2016b). Similarly,
further inclusion of more studies, particularly those
with additional LTB and other disease samples, may
improve classification accuracy of machine learning
models built on integrated data. Future model itera-
tions will consider weighting a classification penalty
higher for misclassifications between TB and LTB,
or TB and other diseases. Balancing between cases
and controls may also improve classification accu-
racy, as cross validation techniques and more sophis-
ticated feature selection.

The results from our unsupervised heat map and
t-SNE suggest that despite using COCONUT, the in-
tegrated data clusters by study to some degree. Future
work will investigate other methods for accounting
for study-specific batch effect. As well, integrating
raw data where applicable may negate the effect of
some study-specific similarities.

The current analysis presented here has some lim-
itations. In order to use COCONUT, healthy controls
need to be included in the dataset. This limitation
prevented the inclusion of TB datasets collected on
youths and infants, as well as those which include
HIV+ co-infection. There is some suggestion that
instead of viewing datasets as distinct batches, each
distinct platform could be considered a batch. This
would allow the inclusion of datasets without healthy
controls, as long as another dataset with healthy
controls has been processed on the same platform
(Sweeney et al., 2016c).

The Khatri meta-analysis framework uses a Der-
Simonian Laird random effects model in order to

Figure 4: Heat map using selected genes.



Figure 5: a t-SNE of the selected gene features.

compare gene expression from multiple studies which
extracted total RNA from whole blood (Sweeney
et al., 2016b; Sweeney et al., 2016a). Genes are iden-
tified in a discovery set, and later tested against inde-
pendent validation sets. In order to reduce the number
of features, genes are first filtered based on presence
in all studies in the discovery set, FDR adjusted p-
value, and effect size. They then reduce this set fur-
ther by using a greedy forward search to maximize
AUC, and built a gene score based on a geometric
mean (Sweeney et al., 2016b; Sweeney et al., 2016a).

While this method has shown promising results,
we hypothesized that model performance can be im-
proved by employing other data analysis machin-
ery. The pre-filtering step of the Khatri meta-analysis
framework may exclude genes with small but impor-
tant differences for discrimination between active TB
and other classes. Moreover, the Khatri meta-analysis
framework emphasizes selecting a small number of
genes which limits the ability to explore biological
mechanisms through pathway analysis.

Random forest models have a variety of strengths
which lend them well to biomarker discovery from
microarray data. For instance, random forest algo-
rithms are robust to feature sets where there are many
more potential predictor variables than there are out-
comes (ie, p� n). As well, random forest incorpo-
rates interactions between predictor variables, which
can often be a concern with microarray data. Perhaps
most importantly, random forest models generate a
ranked list of important features which can illumi-

nate biological significance of features, but can also
be leveraged for feature selection (Diaz-Uriarte and
de Andres, 2006).

The reported mean AUC across all datasets in
Khatri’s model was 0.9 as compared to our mean AUC
of 0.89 in our training data, and 0.86 in our test data
(Sweeney et al., 2016a). Both models had lower accu-
racy when classifying active TB cases from other dis-
eases, suggesting more data may be needed to identify
TB specific gene responses.

In comparison to the results Khatri’s work pre-
sented in (Sweeney et al., 2016a), both models se-
lected GBP5. Two datasets assessed here overlap with
those in Khatri’s discovery set (used for feature se-
lection). However, the Khatri’s analysis included pa-
tients who were HIV+ as well as very young children
(Sweeney et al., 2016a). One dataset he used did not
include healthy controls, and hence was not eligible
for this analysis. This may, in part, explain why out
selected features excluded his findings of DUSP3 and
KLF2 (Sweeney et al., 2016a). Future work will aim
to include infants, youths, and HIV+ cases as part of
the analysis. As well, future models will be tested
against independent validation sets in order to demon-
strate generalizability of the transcription signature.

Notably, of the 25 selected genes, 18 have been
previously linked to TB in other studies. FCGR1A
was associated with TB in (Prada-Medina et al., 2017;
Jenum et al., 2016), GBP6 in (Kim et al., 2011),
ANKRD22 in (Matsumiya et al., 2014), VAMP5 in
(Sambarey et al., 2013), C1QB in (Cai et al., 2014;
Sambarey et al., 2017), GBP2 in (Sambarey et al.,
2017), FOXO1 in (Liu et al., 2013; Lu and Huang,
2011), FCGR1B (Prada-Medina et al., 2017), ETV7
in (Matsumiya et al., 2014), PSME2 in (Maji et al.,
2015), BATF2 in (Prada-Medina et al., 2017), GBP5
in (Matsumiya et al., 2014; Sweeney et al., 2016a),
TAP1 in (Fang et al., 2017), ZNF395 in (Matsumiya
et al., 2014), SOCS1 in (Masood et al., 2012), ICOS
in (Moguche et al., 2015), PSMB9 in (Sambarey
et al., 2017), and AIM2 in (Prada-Medina et al.,
2017). The remaining genes will be investigated as
potential new findings for future TB research.

Importantly, all these studies are distinct from the
data used to obtain our results. In a single integrated
model, we have managed to reproduce at least par-
tial results from 14 discrete studies. Not only does
this address the issue of reproducibility in expression
array studies of TB, but it is our belief that these re-
sults will add to the validity of current TB knowledge.
Many of theses genes presented here have been pre-
viously implicated in adaptive immunity, and further
pathway analysis may illuminate the biological mech-
anisms present in TB infection.



5 CONCLUSIONS

The initial analysis of integrated data shown here
provides evidence that feature selection and model
training based on heterogeneous integrated datasets
is a potential tool to address the reproducibility cri-
sis of array expression experiments. We intend to
thoroughly investigate a variety of classification tech-
niques to explore the possibility of using data inte-
gration to develop robust disease biomarkers. Com-
bining datasets in this way should ameliorate much
of the reproducibility problem in diagnostic research,
and lead to a greater correlation between academic
research and clinical success. It is our hope that this
direction in research will not only lead to future diag-
nostic development, but to advancements in drug and
vaccine development as well.
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