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Abstract: The need for the sharing of genetic data, for instance, in genome-wide association studies is incessantly gro-
wing. In parallel, serious privacy concerns rise from a multi-party access to genetic information. Several
techniques, such as encryption, have been proposed as solutions for the privacy-preserving sharing of genomes.
However, existing programming means do not support guarantees for privacy properties and the performance
optimization of genetic applications involving shared data. We propose two contributions in this context.
First, we present new cloud-based architectures for cloud-based genetic applications that are motivated by the
needs of geneticians. Second, we propose a model and implementation for the composition of watermarking
with encryption, fragmentation, and client-side computations for the secure and privacy-preserving sharing of
genetic data in the cloud.

1 INTRODUCTION

Information about the human genome has become
highly valuable for development of new treatments
of genetic-based diseases. Advanced sequencing
technologies (NGS) (Behjati S, 2013) have made it
much easier to obtain complete genetic data of human
beings. However, in general genetic samples are not
sufficiently available to genetic research. Indeed, ge-
netic research has often be conducted collaboratively
between several (groups of) geneticians. Doing so,
more meaningful sizes of genetic cohorts can be es-
tablished and allow for accurate results. For instance,
Genome Wide Association Studies (GWAS) use two,
if possible, large sets of genetic data (e.g., in the form
of positions from genomes (Cousin et al., 2006)), case
data which belongs to subjects of the studied dise-
ase and control data that is obtained from healthy do-
nors. Control data is particularly difficult to obtain
because it has to be provided on a voluntary basis by
healthy individuals. This is one case in which resear-
chers want to share and work on the already available
corresponding data.

Though sharing in this fashion seems to be straig-
htforward, the very private aspect of genetic informa-
tion (Erlich and Narayanan, 2014) pushes genetici-
ans to protect their collected data and hence, ham-
per the practical and flexible sharing of genetic data.
Instead of sharing raw data, genetic research often re-
lied on public aggregated data, e.g., allele frequency,

in a false belief that this procedure was privacy-
preserving. However, since the attack by Homer and
et al. (Homer et al., 2008), the aggregated informa-
tion has been retired from public access1. In fact,
the attack shows how to infer a specific individual
presence in a study based on those aggregated data
only. This clearly threatens the privacy of patients.
As a consequence, sharing of genetic data, notably via
cloud-based services is very limited currently and per-
formed using very restrictive queries on genetic data-
bases.

Secure and privacy-preserving sharing of high vo-
lumes of genetic data constitute a very active rese-
arch field nowadays. Data is shared using a client/-
server architecture where the server is often a cloud
provider storing and processing, e.g., homomorphi-
cally encrypted data (Lu et al., 2015; Zhang et al.,
2015), which enables computations to be directly per-
formed on encrypted data; another architecture con-
sists in the collaboration between different biomedical
sites which make use of multi-party computation pro-
tocols. However, the corresponding approaches, e.g.,
(Liina Kamm et al., 2013; Tang et al., 2016), only
handle a limited number of sites in the scenario and
are yet to be extended so to handle realistic scenarios
for a wider sharing of genetic data.

Some approaches have proposed the combi-
nation of different privacy-enhancing techniques,
e.g., homomorphic encryption, multi-party compu-

1http://help.gwascentral.org/data/download/
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tation protocols to provide secure sharing of gene-
tic data (McLaren et al., 2016). The combination
of data fragmentation and client-side computations
has been proposed in the context of an outsourcing
schema (Wang et al., 2009). It locally stores identi-
fying genome components, i.e., SNPs, while compu-
tations on the common and publicly known parts of
the human genome are outsourced. Combining dif-
ferent techniques for security purposes has also been
explored for other related purposes. For instance, in
(Ciriani et al., 2010), a combination of encryption and
fragmentation is used to protect outsourced databases.
For multimedia data, (Bouslimi et al., 2016) suggest a
combination of encryption and watermarking to trans-
mit images through an untrusted network securely.

A crucial result of the current situation is that the
secure and privacy-related handling of shared data re-
quires different technologies to be composed in or-
der to handle realistic collaboration scenarios. Howe-
ver, no such general compositional approach for the
sharing of genetic data exists. In particular, while the
existing approaches focus on confidentiality proper-
ties, ownership and integrity properties have received
few attention.

We build on ideas from the PRIVGEN project2, in
which researchers in genetics and computer science
study new approaches for distributed analyses over
shared genetic data. In this paper, we provide a com-
positional approach supporting ownership and inte-
grity properties by extending the approach by (Cher-
rueau et al., 2015) to genetic data scenarios. Cherru-
eau et al. allow the composition of encryption, data
fragmentation and localized computations to establish
confidentiality of sensitive data. Concretely, we pre-
sent two main contributions:

• We present and discuss several new architectures
and scenarios for the cloud-based sharing of ge-
netic data.

• We add watermarking techniques to the approach
by (Cherrueau et al., 2015) in order to support ow-
nership and integrity properties of shared genetic
data. Concretely, we present a language-based ap-
proach for building applications and servers for
the composition of privacy-preserving applicati-
ons manipulating shared genetic data.3 We also
present an algebraic theory that allows for the op-
timization of such applications and servers.
The paper is structured as follows. Sec. 2 presents

basic information about the sharing of genetic data
2Privacy-preserving sharing and processing of genetic

data, http://www.privgen.cominlabs.u-bretagneloire.fr
3The Idris implementation of our approach is

available at: https://github.com/BoujdadFz/PrivGen-
Rep/blob/master/ coshed.idr.
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Figure 1: Genetic data sharing via a trusted party.

and introduces new corresponding software architec-
tures for this purpose. In Sec. 3 we present our ap-
proach COSHED for the compositional construction
of systems for the sharing of genetic data. We close
with a conclusion.

2 GENETIC DATA SHARING

Together with our partners of the PRIVGEN project,
we are studying more flexible architectures that sup-
port wider sharing of genetic cohorts in the Cloud
while preserving data privacy properties. Existing ge-
netic data and computation servers are limited essen-
tially to simple client-server systems that allow gene-
ticians to perform highly restricted stateless queries.
In contrast, the partners of PRIVGEN are working on
more powerful collaborative data-sharing architectu-
res. Concretely, the geneticians in the PRIVGEN pro-
ject are interested in a scalable architecture that al-
lows for sharing between multiple owners of genetic
data (research or private institutions) and researchers
in genetics.

2.1 Architectures

Based on the requirements of geneticians we are pro-
posing new architectures that allow for genetic data
sets provided by different organizations to be shared.
Sharing is performed using trusted parties mediating
data that is stored and (partially) manipulated in fede-
rated clouds. In the following, we propose two new
such architectures. These architectures differ, in par-
ticular, in the policies for genetic data sharing (GDS)
they allow for. Additionally, we motivate that water-
marking techniques are a crucial means to satisfy ow-
nership and integrity properties in this context.
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Figure 2: Genetic data sharing via local servers and cloud.

2.1.1 Trusted Party Architecture

The first architecture we propose, shown in Fig. 1,
enables data to be shared among different geneticians
(G in the figure) and to be transferred to a cloud infra-
structure. Communications are mediated by a trusted
party (TP) that can enforce privacy and security pro-
perties of the data and computations shared among
the other participants. Because of the strong control
provided by the mediating trusted party, this architec-
ture is particularly suitable to cooperation scenarios
between partners having different GDS policies.

Since this kind of architecture includes data to
be transferred from the geneticians (or corresponding
owner institutions) to both the Cloud and the TP, ow-
nership and integrity properties of shared genetic data
are crucial in addition to more frequently-used confi-
dentiality properties.

Trusted parties can be integrated into genetic ap-
plications in different ways: Kantarcioglu et al. (Kan-
tarcioglu et al., 2008) employ a trusted entity for sto-
ring encrypted genetic data and processing (anony-
mous) computations on it; Xie et al. (Xie et al., 2014)
uses a trusted component for key distribution and ma-
nagement. We rather allow for direct access to gene-
tic data by the trusted party in our architecture, which
is in fact conform to real-world applications (Gulcher
et al., 2000).

This architecture can be generalized to allow for
sharing as part of federated Clouds. In Sec. 3.1.1 we
harness such an architecture in the context of a con-
crete sharing scenario.

2.1.2 Local Computations Architecture

Fig. 2 shows a model for computations performed
by geneticians that all have their own infrastructure

able to handle computations on genetic datasets of
bearable sizes. In this case, sharing of data is done
through the Cloud. A typical workflow may define a
dataset, encrypt it for transfer in the Cloud where it
may undergo some privacy-neutral processing, before
finally being transmitted to its final recipient. This
workflow requires fragmentation techniques, crypto-
graphic techniques and client-side computations. In
this architecture as well ownership properties have to
be satisfied which can be assured by watermarking.

This architecture and corresponding workflows re-
quire closer integration between the collaborators, no-
tably their GDS policies.

3 PRIVACY FOR SHARED
GENETIC DATA

The architectures manipulating shared genetic data
introduced in the previous section may easily lead to
violations, for instance, of privacy properties. Such
violations may stem from simple programming errors
or more difficult errors in the applications’ logic. Our
approach is based on the C2QL approach by (Cherru-
eau et al., 2015) who provide composition and query
languages for the secure and privacy-preserving pro-
gramming of distributed applications. In the follo-
wing, we first review the basic mechanisms of their
approach before detailing ours.

C2QL enables the development of privacy-aware
applications by the implementation of distributed al-
gorithms composing computations involving encryp-
ted and fragmented data, as well as client-side compu-
tations. SQL-like queries are supported on top of pos-
sibly encrypted and fragmented data. The approach
essentially consists of two parts: language support for
the development of secure and privacy-preserving ap-
plications and an algebraic theory supporting corre-
sponding optimizations and correctness proofs.

Language Support. The C2QL language provides
de/constructors for the encryption and the fragmen-
tation of data, respectively denoted Decrypt, Crypt,
Defrag and Frag. Client-side computations are ini-
tiated automatically depending on the fragmentation
and encryption status of data. The constructors are
used as part of a domain specific language that is em-
bedded in the Idris (www.idris-lang.org) program-
ming language. Idris programs are used to compose
secure and privacy-aware applications as well as the
queries over genomic data. Idris’ dependent type sy-
stem enables the verification of basic secure proper-
ties at compile time, e.g., that a given encrypted data
fragment can only be used after decryption.
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1 -- Basic value types
2 data Ty = BOOL | NAT | TEXT
3 | CRYPT CryptTy Ty
4
5 -- Attribute: (column name , value type)
6
7 Attribute : Type
8 Attribute = (String , Ty)
9

10 -- Table schema: list of attributes
11
12 Schema : Type
13 Schema = List Attribute
14
15 -- DB environment: vector of table schemas
16
17 Env : Nat → Type
18 Env n = Vect (S n) Schema

Figure 3: Basic data types.

Figure 3 shows the basic types implementing data
bases. Figure 4 shows the abstract definitions of

1 -- ADT (algebraic data type) for privacy operators
2 data Privy : (env0 : Env n) → (env1 : Env m) →
3 (∆ : Schema) → Type where
4
5 -- encrypts an attribute in an environment
6 Crypt : (a : Attribute) → (c : CryptTy) →
7 {auto p : EnvElem a env} →
8 Privy env (cryptEnv c a env) []
9

10 -- fragments an envir. at the ’most right ’ schema
11 -- @ p proof that ‘δ‘ ⊆ ‘(last env)‘
12 Frag : (δ: Schema) → {auto p: Inc δ (last env)} →
13 Privy env (fragEnv δ env) []
14
15 -- ADT for data recovery operators
16 data Query : (∆ : Schema) → Type where
17
18 -- decrypts values of ‘a‘ using information ‘d‘
19 -- @ p1 proof that values of ‘a‘ are encrypted
20 -- with schema ‘c‘.
21 Decrypt :
22 (a : Attribute) → (d : Decrypt c) →
23 {default Refl p1 : (CRYPT c t) = (snd a)} →
24 {auto p2 : Elem a ∆} →
25 Query ∆ → Query (replaceOn a (fst a, t) ∆)
26
27 -- defragments values of ‘q1‘ and ‘q2‘
28 Defrag : (q1 : Query δ) → (q2 : Query δ’) →
29 Query (delete Id (nub (δ ++ δ’)))

Figure 4: Privacy-enforcing operators and queries.

privacy-enforcing operators (type Privy) and the en-
cryption/fragmentation constructors as well as queries
(Query) that are constructed by, if necessary, decryp-
ting and defragmenting shared data.

Algebraic Theory. The compositions of privacy-
enforcing operators and query operations are linked
by numerous algebraic laws that express, for instance,
the commutativity of certain compositions of operati-
ons. Based on these laws, applications over shared
data can be transformed. Such transformations are
useful, for instance, in order to distribute data by
fragmentation (and thus helping privacy through de-
identification of data) or optimize application per-
formance (in particular, by harnessing the cloud to
handle most of the benign computations).

Henceforth, we denote a set of attributes (co-
lumns) in a given relational database as a and use ◦
as the symbol for composition. SQL-like projection
is denoted by πa while selection is σp where p is the
selection predicate. The algebraic operators used are:

• crypt(s,a), decrypt(s,a): encryption and decryption
operators parameterized by a schema s (e.g., AES)
and the target attribute a to be encrypted in the
relational database.

• fragπa , defragπa : column-oriented fragmentation
and defragmentation operators

Figure 5 shows some examples of the algebraic laws
that are used later.

πaā ◦defragπa ≡ defragπa ◦ (πa,πā) (1)

σpa∧pā ◦defragπa ≡ defragπa ◦ (σpa,σpā) (2)

πa ◦decrypt(s,a) ≡ decrypt(s,a) ◦πa (3)

if dom(p) /∈℘(a)

σp ◦decrypt(s,a) ≡ decrypt(s,a) ◦σp (4)

Figure 5: Commutation laws.

3.1 The COSHED Approach

Our approach for a COnstructive SHaring of gEnetic
Data (COSHED) extends the C2QL approach with
watermarking functions. In fact, genetic data water-
marking is a promising technique for integrity, tra-
ceability or ownership protection. Concretely, we
have added the watermarking scheme in (Iftikhar
et al., 2015) that supports ownership and integrity pro-
tection properties for digital genetic data. In the follo-
wing, we present operators for watermarking and the
detection of watermarks that can be composed with
the ones for encryption and fragmentation. We also
introduce the corresponding algebraic laws that go-
vern the relationship between the different privacy-
enforcing techniques.

Language Support. Watermarks are represented as
a type WATERMARK whose first argument represents the
watermarking scheme (for now we have implemented
only one scheme GIG (Iftikhar et al., 2015)). We have
implemented operators wata and detectw(a,secrets),
see Fig. 6, respectively for watermark application (as
part of the privacy-enhancing technologies of ADT
Privy) and watermark detection as used in queries
(ADT Query). The wata operator has as parame-
ters the attribute that indicates which columns have
to be watermarked in addition to two implicit argu-
ments for compile-time verification. More precisely,
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1 -- @GIG stands for GenInfoGuard watermarking scheme
2 data WmTy = GIG
3 data Ty = ... | WATERMARK WmTy Ty
4
5 -- a function that watermarks an attribute
6 -- @ p is a proof that @ a is in ’env’
7 watEnv : (a: Attribute) → (wms: WmTy) → (env: Env n)
8 → {auto p : So (isInEnv a env)} → Env n
9 watEnv a wms env =

10 map (\s => if (elem a s) then replaceOn a
11 (fst a,WATERMARK wms (snd a)) s
12 else s) env
13
14 -- ADT with information for watermark detection
15 data ReadM : WmTy → Type where
16 RGIG : (k:Key) → ReadM GIG
17
18 -- watermark application operator
19 data Privy :
20 ...
21 Wat : (a: Attribute) →
22 {auto p1 : So (isRawType (snd a))} →
23 {auto p2 : So (isInEnv a env)} →
24 Privy env (watEnv a GIG env) []
25
26 -- watermark detection operator
27 data Query :
28 ...
29 detectw :
30 (a : Attribute) → (info : ReadM GIG) →
31 {default Refl p1: (snd a) = (WATERMARK GIG t)}
32 → Query ∆ → {auto p2 : Elem a ∆} →
33 Query ((replaceOn a (fst a, t) ∆)++[MyTattoo])

Figure 6: Watermarking operators.

p1 serves as a (pre-defined) proof that the passed attri-
bute is not watermarked nor encrypted; p2 ensures its
membership in the targeted environment. Similarly,
in the query operator detectw(a,secrets), p1 is a proof
that the parameter attribute was previously watermar-
ked with the right schema, i.e., GIG, so that water-
mark detection makes sense.

Laws. The watermarking schema GIG is reversible,
we can hence define the identity law

id ≡ detectwa ◦wata (5)

Unlike for the encryption/decryption operators,
the watermarking schema is not a parameter because
the entire schema has already been defined (Iftikhar
et al., 2015). Actually, most watermarking laws will
be specific to the watermarking schema, contrary to
encryption which essentially is a more general opera-
tion.

The second law stipulates that watermark de-
tection can be delayed to after decryption provided
that the watermark application took place before en-
cryption.

decrypt(s,a) ◦ crypt(s,a) ◦detectwa ◦wata ≡
detectwa ◦decrypt(s,a) ◦ crypt(s,a) ◦wata

(6)

Furthermore, watermark detection commutes with
projection:

πa ◦detectwa ≡ detectwa ◦πa (7)

Provided that selection is not performed on wa-
termarked attributes, watermark detection commutes
with selection: if dom(p)∩a = Ø

detectwa ◦σp = σp ◦detectwa (8)

3.1.1 Cloud-based Association Studies

We are now ready to present our definition of the ad-
vanced architectures for sharing of genetic data. Con-
sidering a scenario for large genomic-wide associa-
tion studies (GWAS), a federated cloud architecture
as proposed in Sec. 2.1 is considered that satisfies the
characteristics required by geneticians from the PRI-
VGEN project:

• The public cloud provider should not be able to
get direct access to identifying data

• Geneticians/researchers should not be able to get
direct access to external identifying data, e.g., ge-
nomes.

• Ownership and integrity properties of the data
have to be satisfied.

Explanation of how these requirements are satis-
fied in our architecture is given later in this section.
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Figure 7: Genetic data sharing scenario via a trusted party.

Scenario Architecture. We illustrate an implemen-
tation of a variant of the sharing through the trusted-
party architecture presented in Sec. 2.1, variant shown
in Fig. 7. This architecture variant is used as part of
a scenario for sharing genetic cohorts in GWAS. In
this scenario, genetic data is of two sorts: case data
represents the set of vcf files containing variants be-
longing to patients holding the studied disease, while
control data concerns healthy participants. As is often
the case in genetics, control data are not in sufficient
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supply in research centers: data sharing with exter-
nal researchers that possess interesting control data is
therefore of high interest.

We present participants with their zip code, day of
birth (DoB), gender, information of whether the sub-
ject is contributing case or control data and their
corresponding vcf file. Had the database been local,
the representation would be in two tables as follows:
Subject (SubjectId,ZIP,DoB,Gender,CaseCtrl)

SubjectVcf (recordId,Variant,TypeVariant,
position,SubjectId)

For privacy-preserving outsourcing in the cloud
that fits the aforementioned requirements defined by
geneticians, four security techniques are applied in
the scenario:

• Fragmentation for confidentiality: the triplet
(zip code,gender,DoB) forms a quasi-identifier
(Sweenay, 2000): fragmentation is therefore used
to forbid any re-identification attempts. There-
fore, we store the pair (zip code, gender) and
DoB in different fragments in different non-
communicating Clouds (denoted as LeftCloud
and RightCloud in Fig. 7);

• Encryption for confidentiality: used for any data
that can not be fragmented nor it can be kept plain
at cloud level; in our scenario case, the vcf file
is symmetrically encrypted (field-wise) except for
the position field;

• Watermarking for ownership and integrity pro-
tection of genomes. In fact, genomes will be
accessed in clear format by the trusted party and
any unintended disclosure of data can also threa-
ten the ownership of data and its integrity.

• Client-side computations are used for TP com-
putations. This means that the geneticians need
to share (only) their decryption keys with the TP
which satisfies the first requirement of genetici-
ans as any access to identifying data is performed
through the trusted party.

Querying a database is more efficient when data is
plain. Therefore, increasing performance can be
achieved by decreasing the application of costly se-
curity techniques. One essential idea behind the com-
position of security and privacy-enhancing techniques
is foremost using any security method that will keep
data in plain format and does not threaten privacy. A
typical corresponding application case consists in in-
formation whose sensitivity results from it being asso-
ciated to other data. The triplet (zip code,gender,DoB)
is an example.

As part of the scenario, G1, G2 are genetic rese-
arch sites that initially each possess case data files;

G3 holds control data. We first assume that every re-
searcher and genetic center already outsourced their
data to a cloud provider as introduced above. In the
scenario, G1 wishes to process an association study
over a disease X. For this purpose, G3’s control sets
are needed. The scenario then proceeds as follows:
1. G1 starts by requesting TP to perform an associa-

tion study over indicated variants (Q1,Q2,Q3).
2. TP asks G3 for authorization (A1) to use its cont-

rol data in the cloud for G1’s research.
3. Assuming G3 provided its authorization, TP can

apply distributed queries to the corresponding
cloud databases and thus get the necessary data
(demographic data and parts of vcf files).

4. After computations are done, TP communicates
the inferred results to G1 (in a secure manner e.g.,
an SSL connection).
The architecture can also accommodate special

cases of sharing. For instance, it may happen that
G1’s datasets are not sufficient for some study: TP
then can search complementary data from other ge-
neticians which obviously requires their authorization
(A2).

To prepare for the implementation of the scena-
rio, we need to write correct queries, a process which
is performed using the laws about privacy-enhancing
compositions. We consider two queries, one for re-
trieving demographic data and another query to recu-
perate genetic data. The new tables of the new dis-
tributed database after applying the aforementioned
techniques become (cf. Fig. 7):
leftCloudTab (SubjectId,ZIP,Gender)

rightCloudTab1 (recordId,VariantWE,
TypeVarE,position,
SubjectId,)

rightCloudTab2 (SubjectId,DoB,CaseCtrl)

As the genetic application represented in the sce-
nario is an (abstract) genetic association computation
performed by the trusted party, both demographic and
genetic data should be provided by the cloud provi-
ders. The first query over the distributed Subject ta-
ble is meant to return the zip code and the DoB of
male subjects holding the disease. In order to retrieve
this data from the distributed environment the query
should be split. Fig. 8a shows a suitable local version
of the query. In a distributed setting, we use com-
mutation laws to obtain a distributed query (Fig. 8b)
from a local one. As for the genetic data recovery
query, the goal is to retrieve some specific positions in
the genomes of the previously selected males demo-
graphic data (which are the results of the first query,
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π(zip,dob) ◦σ(gender=male∧caseCtrl=true)

(a) local query .

π(zip,dob) ◦σ(gender=male∧caseCtrl=true)◦
defragzip,gender ◦ fragzip,gender

laws 1,2 ↓

defragzip,gender◦
(πzip ◦σ(gender=male),πdob ◦σ(caseCtrl=true))◦

fragzip,gender

(b) distributed query .

Figure 8: Query for demographic case data recovery.

referred to as mdd in the figure). Therefore, the right
Variant and TypeVariant elements are returned. Simi-
larly, this second query is transformed from a local
formula (Fig. 9a) to a distributed one (Fig. 9b) using
the identity and commutation laws of encryption and
watermarking described earlier in Secs. 3 and 3.1, re-
spectively. The last distributed query obtained shows,
after law-driven transformations, that to have access
to both columns, a decryption step and a watermark
detection operation should be executed over the data,
a step that ’deconstructs’ the previous encryption and
watermarking introduction that were necessary for a
secure and privacy-preserving outsourcing process.

π(variant,typeVar)◦
σ((sub jectId∈mdd)∧(position=i,position= j,..))

(a) local query .

π(variant,typeVar)◦
σ((sub jectId∈mdd)∧(position=i,position= j,..))◦
decryptvariant,typeVar ◦ cryptvariant,typeVar◦

detectwvariant ◦watvariant

laws 3,4,6,7,8 ↓

detectwvariant ◦decryptvariant,typeVar◦
π(variant,typeVar)◦

σ((sub jectId∈mdd)∧(position=i,position= j,..))◦
cryptvariant,typeVar ◦watvariant

(b) distributed query .

Figure 9: Query for genetic case data recovery .

1 scenario : GeneticQuery [SubjectId ,ZIP,Gender ,DoB,
2 Variant ,TypeVar ,MyTattoo]
3 scenario = do
4
5 G1 ‘SendRequest ‘ (TP,[Q1])
6 G1 ‘SendRequest ‘ (TP,[Q2,Q2 ’])
7 G1 ‘SendRequest ‘ (TP,[Q3,Q3 ’])
8
9 TP ‘SendRequest ‘ (LeftCloud ,[Q1])

10 TP ‘SendRequest ‘ (RightCloud ,[Q2,Q2 ’])
11 TP ‘SendRequest ‘ (RightCloud ,[Q3,Q3 ’])
12
13 let q1 = LeftCloud ‘executeRequest ‘ [Q1];
14 let q2 = RightCloud ‘executeRequest ‘ [Q2,Q2’];
15 let q3 = RightCloud ‘executeRequest ‘ [Q3,Q3’];
16
17 demDatal ← LeftCloud ‘SendData ‘ (TP,q1)
18 demDatar ← RightCloud ‘SendData ‘ (TP,q2)
19 vcfFiles ← RightCloud ‘SendData ‘ (TP,q3)
20
21 let r1 = decrypt VariantWE (AESD "key2") vcfFiles;
22 let r2 = decrypt TypeVarE (AESD "key1") r1;
23 let vcfFiles = detectw VariantW (RGIG "wkey1") r2;
24 let Data = defrag (defrag demDatal demDatar) vcfFiles
25
26 TP ‘ReturnResults ‘ (G1, TP ‘Compute ‘ Data)

Figure 10: Scenario implementation .

Scenario Implementation. The scenario imple-
mentation is given in Fig. 10: it initially sends query
requests from the genetician G1 to the trusted party TP
that forwards them to the two clouds where they are
executed. The resulting data is sent back to TP where
the genetic computation is performed. The correspon-
ding results are then communicated to G1.

1 -- Entities
2 data Entity = Genetician | TrustedP | Cloud
3
4 G1, TP, LeftCloud , RightCloud : Entity
5 G1 = Genetician; TP = TrustedP
6 LeftCloud = Cloud; RightCloud = Cloud
7
8 leftCloudTab ,rightCloudTab1 ,rightCloudTab2 : Schema
9 leftCloudTab = index 1 SafeTPEnv ...

10
11 -- Queries
12 Q1 : Query [SubjectId ,ZIP,Gender]
13 Q1 = π [SubjectId ,ZIP,Gender]
14 $ σ (Gender == "male") (toQuery leftCloudTab);
15
16 -- ADT which parameter indicates the expected results
17 -- of an exchange or computation involving genetic data
18
19 data GeneticQuery : Schema → Type where
20
21 SendRequest :
22 Entity → (Entity ,List (Query ∆)) → GeneticQuery ∆

23 SendData : ...
24 Compute : ...

Figure 11: Entities, queries and ADT for scenario building.

Fig. 11 shows the entity definitions for genetici-
ans, trusted parties and clouds, a query and the main
part of the ADT for genetic queries.

1 ... let r1 =
2 detectw VariantWE (AESD "key2") vcfFiles -- error
3 let r2 = decrypt TypeVarE (AESD "key1") r1; ...

Figure 12: Ill typed query.
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Ensuring Privacy Properties. Our approach, being
based on Idris, allows for proofs of certain safety pro-
perties (that entail security and privacy properties) to
be passed as arguments to operators that are part of
correctly built queries. For instance, if we try to wa-
termark a genetic data that is already encrypted, type
checking will not pass because of the proof p1 of the
wat operator that verifies data has not been transfor-
med yet. Similarly, trying to detect a watermark from
data that has not been decrypted yet will give rise to a
type checking error, see Fig. 12.

4 CONCLUSION

In this paper we have pointed to the lack of program-
ming support for privacy-preserving applications that
manipulate shared genetic data. We have presented
two contributions: (i) new cloud-based architectu-
res for such applications that are motivated by con-
crete requirements from researchers in genetics and
(ii) a model and corresponding security- and privacy-
enhancing techniques for the development of such ap-
plications, notably using watermarking for the preser-
vation of ownership and integrity properties.

As future work, we are striving for the integra-
tion of other privacy-enhancing techniques, an effi-
cient implementation of a general Java library for bi-
omedical analyses using shared genetic data, and its
application to real-world genetic analyses.
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