
A MDE Approach for Heterogeneous Models Consistency

Mahmoud El Hamlaoui1, Saloua Bennani1,2, Mahmoud Nassar1, Sophie Ebersold2

and Bernard Coulette2

1IMS Team, ADMIR Laboratory, ENSIAS, Rabat IT Center, Mohammed V University in Rabat, Morocco
2SMART Team, IRIT Laboratory, University of Toulouse-Jean Jaurès, France

Keywords: Process, Metamodel, Heterogeneous Models, Matching, Consistency, Correspondences, Impacts.

Abstract: To design a complex system, we often proceed via separation of viewpoints. Each viewpoint is described by
a model that represents a domain expertise. Those partial models are generally heterogeneous (i.e conform to
different metamodels) and thus performed by different designers. We proposed a matching process that links
partial models through a virtual global model in order to create a complete view of the system. As models
evolve, we should consider the impact of changing an element involved in a correspondence on other models
to keep the coherence of the global view. So, we have defined a process that automatically identify changes,
classify them and treat their potential repercussions on elements of other partial models in order to maintain
the global model consistency.

1 INTRODUCTION

Complex systems design involve a varied set of mo-
deling experts from different business areas. These
designers can be located in distant geographical areas,
as it is the case in distributed collaborative deve-
lopment in big software companies. Several ap-
proaches have been developed to face complex sy-
stems’ modeling. The most used one is the multi-
modeling approach (Boronat et al., 2008). It consists
in elaborating separate partial models that correspond
to different business views on the system (Hilliard,
2001)(Boulanger et al., 2009). This approach helps
designers focus in isolation on different parts (partial
models) of the system. However, at some point, it is
mandatory to construct a global model to understand
and effectively exploit the whole system. Our appro-
ach sets a matching process as presented in (El Ham-
laoui et al., ). It allows the creation of a global view
of the system through a composition based on alig-
ning partial models. Our matching process first iden-
tifies correspondences between elements of metamo-
dels (meta-elements). We call those corresponden-
ces HLC - High Level Correspondences- then, the
process generates semi-automatically corresponden-
ces between models’ elements (LLC - Low Level Cor-
respondences). HLCs and LLCs are stored respecti-
vely in M2C (Model of correspondences between me-
tamodels) and M1C (Model of correspondences bet-
ween models). Thus, the global model is the network
of partial models elements, linked thanks to the esta-
blished model of correspondences.

Partial models may evolve during the system life
cycle. As their design was made separately by dif-
ferent designers, their evolution within a system may
occur in an uncoordinated manner. Changing one or
several elements, involved in a correspondence, may
cause the inconsistency of the global model. Our cur-
rent objective is to ensure the consistency of M1C by
re-evaluating LLCs after the evolution of each partial
model. One possible approach would be to relaunch
the matching process after each evolution. This solu-
tion is not optimal as it reproduces the model of cor-
respondence ”from scratch” ignoring the previously
created matches. Furthermore, no trace of the chan-
ges will be kept.

Our proposition takes part in the GEMOC ini-
tiative (GEMOC, 2017). In this paper, we present
an overview of the matching approach (detailed in
(El Hamlaoui et al., )) and present thereafter the con-
sistency management which is the added value and
the core of this current work. Its role is to automati-
cally detect changes from many heterogeneous mo-
dels and treat their impacts automatically (in some
cases semi-automatically) in order to ensure the co-
herence of the system. The process of maintaining
consistency is automatically activated when the mat-
ching process produces M1C. It takes as input all the
partial models of the application domain and the mo-
del of correspondence M1C as presented in Figure 1.
Our approach does not concern intramodel changes
(elements changes that impacts other elements of the
same partial model); it is up to the designers of partial

180
El Hamlaoui, M., Bennani, S., Nassar, M., Ebersold, S. and Coulette, B.
A MDE Approach for Heterogeneous Models Consistency.
DOI: 10.5220/0006774101800191
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 180-191
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



models to manage the internal repercussions of chan-
ges made on their models and to ensure their validity.
Thus, apart from the added elements, only changes
(modification and deletion) that have an effect on the
elements of the M1C are treated.

The rest of this paper is organized as follows:
Section 2 introduces the Conference Management Sy-
stem that was chosen to apply our approach. Section
3 presents a general view of the matching approach
whereas section 4 describes in detail the consistency
management approach. Section 5 presents the related
work. We conclude this paper by some perspectives
and a conclusion in section 6.

Figure 1: Overall process of our approach.

2 RUNNING EXAMPLE: CMS
(CONFERENCE
MANAGEMENT SYSTEM)

Production and reviewing of documents are widely
used in various contexts such as project management,
software development, conference management, etc.
A Conference Management System (CMS) is a sy-
stem designed to automate the main functions nee-
ded for the management of a scientific conference,
namely: call for papers, papers submission, papers
assignment for evaluation, notification of the final de-
cision, registration, etc. Although, this system is not
very complex, we had chosen it for two reasons; fir-
stly, it is well known by almost every researcher; se-
condly and most importantly, it involves different de-
signers, working with different points of view.

We represent this system by three models: a soft-
ware design model, a business process model and a
persistence model. Due to space limit, we refer to
(Author, 2017) where we provide and present in de-
tail the three models and their respective metamodels.

3 MATCHING APPROACH

Our matching approach consists in analyzing input
models (and their respective metamodels) in order to
identify correspondences that exist among them. Cor-
respondences are stored into a model of correspon-
dences (M1C) conforming to a metamodel of corre-
spondences (MMC). As mentioned earlier, we only

consider intermodels correspondences. So, corre-
spondences between elements of the same partial mo-
del are out of the scope of our research study. We
present below the elaboration of M1C as well as the
proposed iterative matching process.

3.1 Metamodel of Correspondences

MMC represented in Figure 2 identifies the diffe-
rent concepts through which M1C is created. Corre-
spondenceModel contains correspondences establis-
hed between at least two (meta)-elements (RefEle-
ment) from different (meta)models through their re-
ferences. We store references as String value to en-
capsulate information about both their source model
and source metamodel. The Correspondence meta-
class has two attributes that works for the consistency
management process : the mandatory attribute spe-
cifies whether a correspondence is obligatory to the
studied system or not. The weight attribute repre-
sents the weighting coefficient associated to each cor-
respondence. These two attributes will be explained
in section 4.

The correspondence meta-class is composed of
at least two referenced elements and the Relations-
hip that connects them. The bidirectional attribute
specifies whether the relationship is bidirectional or
not. If the relationship is bidirectional, the concerned
(meta-)elements are all source ones and there is no
(meta-)element of type target, as specified by the OCL
rule :self.bidirectional implies self.target → isEmpty
(). The priority attribute, which is also used in the
consistency management process, granted a priority
value to each type of relationship.

Relationship is an abstract generalization of DIR
(Domain Independent Relationship) and DSR (Dom-
ain Specific Relationship) meta-classes. The speci-
alization of the first one allows representing generic
relationships that are generic and independent from
the domain of application. However, these relations-
hips may be insufficient for a given domain. In this
case, it is possible to add specific relationships by a
specialization of the DSR meta-class. For the CMS,
we had to add the following three DSRs to describe
the whole system: Play, Requirement and Contribu-
tion. The first one highlights the role played by the
participants of a conference in the business process.
The second allows us to know the required input for
a task. The third identifies the operations that contri-
bute to the success of a task.

The abstract meta-class Level is associated to a re-
lationship to describe whether it represents a High Le-
vel Relationship (HLR) or a Low Level Relationship
(LLR) or both. HLR allows representing relationships

A MDE Approach for Heterogeneous Models Consistency

181



Figure 2: MMC with semantic expressions.

Figure 3: Matching sub-process.

that are used in correspondences at metamodel level,
whereas LLR represents relationships that are used
in correspondences at model level. The OCL rule:
self.refined→ forAll (r — r.adaptedTo→ forAll (lv —
lv.oclIsTypeOf (LLR) implies self.abstract.adaptedTo
→ forAll (lv — lv.oclIsTypeOf (HLR))) specifies that
any type of relationship usable at the HLR level is
also usable at the LLR level. The opposite is not
true. Other annotations are associated to relations-
hips. They are created during the mathing process
and they contain their semantics expressions which
will be used during the selection operation (section

3.4). For example for the Similarity relationship, the
semantic explains that this relationship is used in a
correspondence involving two elements (recovered by
the importSourceElts() operation) with indifferent ty-
pes (Any, Any). It is described by an expression in
Java. The condition explicitly states, using the sa-
meAs function, that the related elements are similar.

3.2 Matching Process

The model of correspondences cannot be constructed
in a monolithic manner. It follows a process that we
call matching process. Figure 3 shows one iteration
of the proposed process. The process involves two
stakeholders, namely, an integrator expert who is the
supervisor of the application domain, and a tool that
assists the supervisor and enacts the automatic parts
of the process.

Firstly, the process takes as input the various meta-
models and the kernel of the metamodel of correspon-
dences. Subsequently, the supervisor verifies if the
MMC contains all needed relationships to set up cor-
respondences between partial (meta)models. If he/she
assumes that the proposed relationships are not suffi-
cient to describe the given domain of application, the
DSR meta-class of MMC is specialized. In the case of
CMS, we added three types of relationships: Play, Re-
quirement and Contribution. The third activity of this
process enriches the MMC with a Semantic Expres-
sion (SE) for each relationship. For this purpose, we
proposed a Semantic Expression DSL (El Hamlaoui
et al., 2015) that is woven with the MMC as annota-
tions. The advantage of using this DSL is primarily
to have a structured common definition of each rela-
tionship. Secondly, it helps build M2C in an assisted

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

182



way using information on the connected elements ty-
pes. Thirdly, it helps filter out the correspondences in
the selection step in order to keep only corresponden-
ces that match the semantics of their relationship.

Once the MMC is specialized, the matching ope-
ration begins, the supervisor identifies corresponden-
ces between meta-elements in order to produce the
model of correspondences called M2C. M2C (Model
of correspondences between metamodels) stores High
Level Correspondences that contain meta-elements
linked by High Level Relationships. Figure 4 sum-
marizes the thirteen HLCs defined for CMS. We cite
two examples: A Contribution correspondence links
the meta-element Task from the Business Process me-
tamodel to the meta-element Operation from the Soft-
ware Design metamodel, since an operation can po-
tentially contribute to the achievement of a task. A
Similarity correspondence is established between the
meta-elements Table and Entity in one side and bet-
ween the meta-elements Property and Column on the
other side.

HLCs are then refined in order to produce
LLCs. Our developed tool produces them semi-
automatically by performing a reproduction operation
on the M2C followed by an operation of selection.

3.3 Reproduction

This operation is a homomorphism (structural preser-
vation from one algebraic structure to another one)
between correspondences in M2C and M1C. It dupli-
cates all correspondences defined at the metamodel
level into the model level. So, there will be as many
potential LLCs for a given HLC as Cartesian product
of instances of meta-elements involved in the HLC.
This operation limits the generation of corresponden-
ces to elements whose type participates in a HLC.

Even if the contextual information helps avoiding
the creation of correspondences between elements of
types that do not match (e.g., an Operation and a
Field) it does not guarantee that all generated corre-
spondences are semantically correct.

3.4 Selection

This operation consists in filtering out corresponden-
ces produced by the reproduction operation in order
to keep only those who are valid, with respect to the
semantic expression associated to their relationship,
and filter out the incorrect ones. For relationships
with informal expression (in natural language), the
supervisor decides whether or not to keep the corre-
spondences depending on the expression associated
to their relationships. Considering the relationships

with a formal expression, their expressions (represen-
ted as a note in Figure 2) have to be executed. Exe-
cution of body’s expressions requires an interpreter
of the language in which the expression is written (a
Java Virtual Machine in our case). Figure 5, illustra-
tes the M1C model of CMS obtained when the expert
manually does the selection phase. In parallel, the
expert has performed the matching process through
the tool and compared the M1C that he has produ-
ced manually to the one generated by the tool. This
comparison concerns only three relationships (i.e. si-
milarity, aggregation and contribution) as they are
the only ones implemented on the tool. For exam-
ple, executing the following sameAs method: ”Aut-
hor”.sameAs(”AuthorTable”) returns true. Thus, the
tool keeps the correspondence involving the two ele-
ments. Similarly, the execution of these two code
snippets: ”firstName”.isPartOf(”fullName”) and ”las-
tName”.isPartOf(”fullName”) return true. This leads
to keeping the correspondence with the aggregation
relationship between the two source elements (first-
Name, lastName) and the target element (fullName).
One the tool generates the M1C, the expert evalua-
tes the accuracy of produced LLCs. Figure 6 shows
the results of comparison between the M1C obtai-
ned manually and the one generated through the tool.
On the line axis, we present for each type of relati-
onships, LLCs considered valid according to the tool
(true) and those considered false. Then each bar is
split to distinguish LLCs truly validated by the expert
(true expert) from invalid ones (false expert). Con-
sidering precision and recall about these results, we
have obtained a precision of 86% for the similarity
relationship, 50% for the aggregation and 70% for the
contribution. While the value of recall is respectively
75%, 75% and 100% for the similarity, aggregation
and contribution relationships. The following section
will discuss the consistency management based on the
manually produced model of correspondences presen-
ted in Figure 5. The seventeen LLCs produced were
numerated to facilitate their exploitation on the next
section.

4 CONSISTENCY
MANAGEMENT APPROACH

Since models evolution is generally not coordinated
between partial models designers, each model may
evolve independently. So, it is very tedious to rerun
the matching process after each change due to the hu-
man effort required in the matching activity and the
lack of changes tracking.

Our approach provides a consistency management

A MDE Approach for Heterogeneous Models Consistency

183



Figure 4: Example of M2C Model for the CMS system.

Figure 5: M1C Model for the CMS system.

Figure 6: Comparison between the M1C produced manu-
ally and the one generated via the tool.

process. This process is automatically activated using
the Observer pattern (Vlissides et al., 1995) at the end
of the matching process. It takes as input the system’s
partial models and the model of correspondences be-

tween them (M1C) and it follows six steps as shown
in Figure 7 (change detection, change analysis, cy-
cle management, change scheduling strategy, change
prioritization and change processing). The first step
requires continuous monitoring while the others are
triggered successively on the expert’s demand. This
process is carried out by a developed tool and im-
ply the supervisor’s intervention in phases that require
a human expertise or configuration. Throughout this
section, we are going to detail these six steps.

4.1 Changes Detection

Changes are detected when they occur through
the Observer pattern model instead of differencing

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

184



Figure 7: Consistency management sub-process.

techniques as done in EMFCompare (Brun and Pie-
rantonio, 2008) that provides a generic algorithm for
calculating differences between two versions of a mo-
del. The problem with these techniques is threefold.
Firstly, the whole model must be parsed in order to
check if an element has changed between two versi-
ons of a model, based on distance computing techni-
ques. Secondly, there is a restriction on the number
of models because comparison can be done with only
two models of a given business domain. Thirdly, there
is a waste of memory since they require keeping in
memory the previous version of the input model as
well as the current one.

Changes detected by the implementation Obser-
ver pattern are subsequently added to M1C using the
MMC meta-classes History, DiffElt, AddedElt, Dele-
tedElt, ModifiedElt (part 1 of Figure 8). History is
used to keep track of applied changes. DiffElt allows
to record the trace of evolved elements. It has two
attributes. The first attribute contains the change clas-
sification type. The second attribute contains the re-
ference of the element constructed from the element’s
name, its meta-element and the model’s name. Dele-
tedElt represents an element that no longer exists in
the original model but that is maintained for tracing
purpose. AddedElt and ModifiedElt respectively re-
present newly added element and model element that
has undergone a modification. The extended MMC
defines moreover a concept that represents the core of
the observer pattern (part 2 of Figure 8). The Obser-
ver meta-class specifies the model’s element to be ob-
served. It is a generalization of the subject meta-class
which has three methods. Two of them (attach and
detach) allow to fix or detach an observer object from
a model element. The third method (notify) makes
it possible to notify the M1C of the changes that have

taken place. The update method of the meta-class Ob-
server is used during the phase of changes processing
in order to maintain the consistency of domain’s mo-
dels. The third part of Figure 8 (i.e. the impact meta-
class) defines the impact kind of each change and the
solution for each change. A change on an element
may affect directly or indirectly elements that are lin-
ked to this element by a correspondence as we will
see in section 4.2.

The column change detection of Table 1 sum-
marizes the evolutions perfomed on the CMS mo-
dels. These changes are automatically detected via the
tool (with a continuous monitoring) and added to the
M1C. For the CMS, we consider that the process ar-
chitect has added the two roles ”chairman” and ”aut-
hor” to the business process model and that the soft-
ware architect and the process architect have remo-
ved the following elements: Property:phoneNumber,
Entity:Comment and Task:outsource paper. We
also consider that the software architect has rena-
med the operation createCom() and replaced the En-
tity:Review element with Entity:Note element.

4.2 Changes Analysis

This analysis includes defining the type of change
and the M1C elements that may be affected by this
change. This is possible thanks to the extension of
the MMC, which makes it possible to find for a mo-
dified element the correspondence(s) to which it be-
longs and thus to find the element(s) that may be af-
fected. Directly impacted elements are elements di-
rectly related to a modified element, whereas indi-
rectly impacted elements are elements that may be af-
fected via a cascading effect.

Suppose we have two correspondences (Figure 9),
the first linking an element A to an element B by the
relationship Rx and the second one relating the ele-
ment B to an element C by the relationship Ry. If
element A is modified, element B can be influenced
directly by this change, whereas element C may be
affected indirectly via the cascading effect.

In this phase, we also classify changes in two ca-
tegories: the automatic mode for added and deleted
elements and the monitored mode for the modified
elements. In this latter when an element has chan-
ged, the correspondence must be assessed in terms of
the semantics of its type of relationship. According to
(Cicchetti and Ciccozzi, 2013), when the relationship
type semantics comes into play, version management
problems become more complex and can not be pro-
cessed automatically. In other words, the automation
support is reduced and the changes likely involve hu-
man assistance to decide the impact of the change.

A MDE Approach for Heterogeneous Models Consistency

185



Figure 8: Extension of the Correspondence Metamodel MMC to handle consistency management.

Table 1: Steps of the Consistency Management Process on the CMS system.

Model’s Element Change
De-
tection

Change Analysis Change Priorization Change Processing

Type Classification Influenced Elts. Weight Order

Pool:Chairman Add Automatic - 0 4 Matching process
Pool:Author Add Automatic - 0 3 Matching process

Task:Outsource
paper Del Automatic Operation:

reviewPaper()(DirectImpact) 8 1 Restoring the deleted
element

Task:Edit review(IndirectImpact)
Property:
phoneNumber Del Automatic - - - -

Entity:Comment Del Automatic DataObject:
Comment(DirectImpact) 1 2 Deleting the

correspondence

Old Operation:
createCom() Mod Monitored Task: Enter

comment(DirectImpact) 4 6 Maintaining the
correspondence

New Operation:
createComments()

Old Entity:Review Mod Monitored

DataObject:
Review(DirectImpact),
DataObject:
Review(IndirectImpact)

6 5
Modifying the
correspondence’s end
element (C9)

New Entity:Note Column: reviews(DirectImpact),
Property: details(IndirectImpact)

deleting the
correspondence (C16)

Figure 9: Example of cascading effect.

Column change analysis of Table 1 shows the in-
formation that are automatically added to the M1C
during this phase. The added elements are classified
in the automatic mode since adding them does not af-
fect the consistency of the M1C. Deleted items are
also classified in the automatic mode.

Deleting the Property:phoneNumber element has
no effect on M1C since it does not participate in any
correspondence. Deleting the Entity:Comment ele-
ment has a direct impact on the DataObject:comment
(linked via correspondence C14 as shown in Figure
5) while deleting the Task:Outsource paper element
has a direct influence on the Operation:reviewPaper()
element (correspondence C12) and an indirect in-
fluence on the Task:Edit review element (correspon-
dence C11).

Modified elements are classified in guided mode.
The modification of Operation:CreateCom() element
has a direct influence on the Task:Enter comment ele-
ment (via correspondence C13), whereas the change

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

186



on the Entity:Review has a direct influence on the
DataObject:review (correspondence C9) and Co-
lumn:reviews (correspondence C16) and an indirect
influence on the DataObject:review (correspondence
C17) and Property:details (correspondence C7).

4.3 Cycle Management

Once changes and their direct or indirect impacts are
detected, the tool catches automatically the cycles of
cascading effects. Then the expert chooses to delete
one of the correspondences in order to break the cy-
cle. Let’s take the example presented in Figure 10, we
have three correspondences. The first one relates an
element A to an element B, the second one connects
element B to an element C and the third one relates
C to A. If the element A is modified, the element B
can be directly influenced by this change, which in-
directly influences the element C. In the case where
the element C is the one that causes the modification
of the Element A, we will have a cascading cyclical
effect. The various cascading cyclical effects are re-
ported to the experts to decide to delete one of these
correspondences in order to break the cycle.

Figure 10: An example of the cascading cyclical effect.

4.4 Change Scheduling Strategy

This step aims at producing an ordered list of chan-
ges. We propose two strategies for changes orde-
ring: classification-based strategy and impact-based
strategy.

The classification-based strategy consists of cre-
ating a list of changes that contains, in order, chan-
ges that are classified in automatic mode followed by
those in monitored mode. For example, by choo-
sing this strategy, the list of changes produced in
the CMS is as follows: Pool:Chairman, Pool:Author,
Task:Outsource paper, Property:phoneNumber, En-
tity:Comment; Operation:createComments() and En-
tity:Note. The second strategy that we propose cre-
ates an ordered list depending on the type of impact
of each change. For example, the expert may start
by processing the changes that have both direct and
indirect impacts on other elements and leave chan-
ges that have only direct impacts on other elements to
the end. For example, by choosing this strategy, the
list of produced changes is as follows: Entity:Note,
Task:Outsource paper, Pool:Chairman, Pool:Author,

Property:phoneNumber, Entity:Comment, Opera-
tion:createComments().

These two scheduling strategies work for changes
that have different modes of change or different types
of impact. In the next section, we will see how to
classify changes that have the same type of impact or
the same mode of classification.

4.5 Change Prioritization

Changes processing order has an impact on the sy-
stem and its consistency. That’s why we attribute a
weighting coefficient to each correspondence so we
can determinate a prioritized processing order. Taking
the example of Figure 10, assuming that elements A
and C have been modified, the question to be raised
is which change to treat first, knowing that both have
an influence on the same element B? and will the two
changes be treated?. Prioritization allows to answer
these two questions. We first deal with the change
that has the highest weighting coefficient, next change
must then take into account the impact of the previous
changes. In other words, if the change of the element
A requires the modification of the element B, the ele-
ment C can modify the element B only if the corre-
spondence linking the element A and B has not been
changed semantically. The order of processing is de-
fined by calculating the weighting coefficient of the
correspondence. This coefficient is calculated by the
following formula:

weight =
n

∑
k=0

(DirectlyA f f ectedElementk ∗ priority)

+
n

∑
k=0

(IndirectlyA f f ectedElementk ∗ priority)

Where the term priority is the level of priority given
to each type of relationship. We consider that the su-
pervisor gives level 1 to the relationship Similarity,
level 2 to the Aggregation, level 3 to the Play relati-
onship, level 4 to the Contribution and level 5 to the
relationship of requirement.

Sub column order of column change prioritiza-
tion of Table 1 illustrates the result of the change pri-
oritization phase according to the strategy chosen in
the previous step (in our case, automatic mode first)
and to the calculated coefficients.

When several changes have the same weighting
coefficient, it is up to the expert to decide on the pro-
cessing order, except for the addition type changes for
which there is no order preference given that all added
elements are processed at the end of the change pro-
cessing by using the matching process. Let’s detail
the weighing coefficient calculation for the highest

A MDE Approach for Heterogeneous Models Consistency

187



change (deletion of Task: OutsourcePaper) : This ele-
ment is directly linked to Operation: ReviewPaper()
via a Contribution link (priority 4) and indirectly lin-
ked to Task:Edit Review via a Contribution link also.
The weighting coefficient is thus 4*1+4*1=8.

4.6 Change Processing

In this step, M1C and the partial models may be mo-
dified to take account of the changes that have been
detected. Figure 11 presents the change processing
process. Changes categorized in automatic mode are
processed automatically.

In case where an element has been added, the ma-
tching process is restarted at the end of the change
process to handle the added elements all at once. In
case an element has been deleted, all corresponden-
ces involving this element become orphaned. An or-
phaned correspondence is a correspondence for which
one of its ends - a model element - is missing. When a
correspondence becomes orphaned, the expert checks
if it is mandatory for the system concerned (true in
the mandatory attribute). In positive case, the dele-
ted item is restored, otherwise the correspondence is
deleted from the model of correspondences.

Concerning the second type of changes, namely
changes occurring in a monitored mode, they are
managed semi-automatically. The correspondence is
maintained if, after the change of one of its ends, it re-
mains correct regarding the semantic associated to its
type of relationship. Otherwise, when an element is
modified, it is necessary to modify each of the ele-
ments tied to it since this modification is possible.
When it is impossible to modify an element, the cor-
respondence is deleted if it is not mandatory (man-
datory = false). Otherwise, a group decision making,
involving the expert with partial model designers, ta-
kes place to decide whether to modify the concerned
element or the element at the other end of the corre-
spondence.

For the CMS example, we proceed following the
column order of Table 1, the first removed element is
restored because it is used in the correspondence C12
(see Figure 5) and it is a compulsory correspondence
(mandatory = true). Correspondence C14 involving
the second element is deleted, since it is an orphan
correspondence and it is not mandatory to the system
consistency. The matching is invoked at the end of
the process to search for possible correspondences for
the third and the fourth element. Two corresponden-
ces using the play relationship are thus created (C17
and C18). The fifth element is involved in two corre-
spondences C9 and C16. The first one links it to the
DataObject:review element and the second to the Co-

lumn:reviews element. The element of the opposite
end of the first correspondence is modified since the
correspondence is no longer correct. Concerning the
second correspondence, since the opposite element
cannot be modified (because of the choice to prohi-
bit the modification or the deletion of any element of
the persistence model) and the correspondence is not
obligatory, it is then deleted.

Table 2 summarizes the change processing on the
CMS. Lines in bold indicate changes that have been
made to M1C of Figure 5. The underline lines (cor-
respondences: C17 and C18) are the added elements,
those in dotted lines (correspondences: C12 and C13)
are the changed elements. Deleted elements are bar-
red (C14 and C16).

5 RELATED WORK

A number of approaches described in the litera-
ture deal with view-based complex systems’ design
through models matching. As this paper mainly ad-
dresses the consistency management due to an evo-
lution, in this section, we put the focus on the sub-
set of these approaches that support one or several
aspects of model evolution issue. To do that, we
have studied a set of representative approaches, na-
mely Edapt(Williams et al., 2012), previously called
COPE(Herrmannsdoerfer et al., 2008), EMFMigrate
(Di Ruscio et al., 2011), Model federation (Guychard
et al., 2013) and the one developed by Cicchetti and
al. (Cicchetti et al., 2008). To lead this study we have
defined and used the following criteria that we con-
sider relevant in a multi-modeling environment: he-
terogeneity, number of input artifacts and their types,
mechanism of change detection, adopted support of
changes’ classification, and migration rules. These
criteria are defined as follows:

• Heterogeneity: expresses if the considered ap-
proach takes into account heterogeneous artifacts.
We consider that two artifacts are heterogeneous
if their modeling languages are themselves diffe-
rent,

• Number of input Artifacts: indicates the maxi-
mum number of input artifacts allowed by the ap-
proach,

• Types of Artifacts: identifies the shape of repre-
senting artifacts. The latters are not necessarily
models, they might be rules of transformation or
other types of artifacts,

• Change Detection: assesses how an approach pro-
ceeds to detect the elements of artifacts that have
undergone an alteration,

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

188



Figure 11: Change processing steps.

Table 2: CMS system’s M1C model after models evolution and Consistency Management Process conduct.

Correspondence Relationship’s Type Partial Models’ Elements

Name Man-
datory Name Prio-

rity Software Design Model Business Process Model Persistence Model

C1 False Similarity 1 StereotypedEntity:Author Table:AuthorTable
C2 False Similarity 1 Entity:Paper Table:ArticleTable
C3 True Similarity 1 Property:organization Column:organization
C4 True Similarity 1 Property:address Column:address
C5 False Similarity 1 Entity:Reviewer Table:ReviewerTable
C6 False Aggregation 2 Property:firstName Column:FullName

Property:lastName
C7 False Aggregation 2 Property:details Column:reviews

Column:decision
C8 True Similarity 1 Property:submissionDate Column:admissionDate
C9 False Similarity 1 Entity:Note DataObject:notice
C10 True Requirement 5 Task:logIn Columns:password, e-mail
C11 True Contribution 4 Operation:reviewPaper() Task:Edit review
C12 True Contribution 4 Operation:reviewPaper() Task:Outsource paper
C13 True Contribution 4 Operation:createComments() Task:Enter comment
C14 False Similarity 1 Entity:Comment DataObject:comment

C15 False Play 3 StereotypedEntity:Reviewer Pool:Reviewer
C16 False Similarity 1 DataObject:review Column:reviews

C17 False Play 3 StereotypedEntity:Author Pool:Author
C18 False Play 3 StereotypedEntity:Chairman Pool:Chairman

A MDE Approach for Heterogeneous Models Consistency

189



• Classification Support: indicates whether the ap-
proach supports a classification of changes in or-
der to assign to each kind of change a particular
action. It is interesting to take this criterion into
account, because the classification of changes al-
lows the automation of the whole evolution mana-
gement process or at least a part of it,

• Migration Rules: describes the language in which
the migration rules are implemented. It is with
this language that the treatment of evolution is re-
alized.

Table 3 presents a synopsis of the studied approa-
ches, based on the established criteria. By analyzing
it, we can deduce that the consistency management
process has not reached a sufficient maturity yet. Fir-
stly, the studied approaches do not define any classifi-
cation support, a factor that we consider mandatory
to automatically manage changes and their impacts
on models, through predefined actions. Secondly, for
a complex change which affects several elements at
the same time, multiple rules are likely to be produ-
ced. Choosing the appropriate adjustment to run re-
quires rules’ customization and also some technical
background knowledge. Thirdly, most of the appro-
aches discussed above, except Model Federation and
Cicchetti and al., focus on model evolution as a re-
sult of adaptation of their corresponding metamodels
(co-evolution) to preserve the conformity relations-
hip. That is to say that these approaches emphasize
the vertical level (co-evolution) without considering
horizontal evolution (between models). It is within
the scope of this latter that models synchronization is
based. Fourthly, EMFMigrate and Cicchetti and al.
require a specific difference metamodel and it is up
to the stakeholder to detect the changes and represent
them in a difference model. Fifthly, the model fede-
ration approach responds to our problem by exploi-
ting correspondences established for the consistency
management. However, it does not propose a mecha-
nism for managing traceability of changes. Moreo-
ver, the approach is based essentially on the modifi-
cation change of type. Therefore, it does not manage
impacts due to the addition or deletion of model ele-
ments. For the modification, the synchronization can-
not be applied without defining a master and a slave
model.

To sum up, the approaches presented above do not
consider or respect all of the criteria described above
and thus do not fully address some important aspects
of model evolution. This is because they do not ex-
ploit previously established correspondences to pro-
vide a mechanism that ensures the consistency of the
overall model.

6 CONCLUSION AND
PERSPECTIVES

Our general research work addresses view-based
complex information systems design. During the mo-
deling cycle, the description of models evolves fre-
quently due to the emergence of new requirements
and constraints. In a multi-modeling environment, se-
veral changes can occur on different models of the
system. To manage the consistency between these
models, we propose to exploit the correspondences
model to treat the changes that are identified auto-
matically on partial models in order to maintain the
consistency of the interconnected models. Once the
changes are identified, the consistency management
process proceeds to their classification and the po-
tential impacts are identified automatically as well as
the possible presence of cycles. These latters are ma-
naged by the expert. Change prioritization is impor-
tant because without coordination the evolutions tre-
atment could become unmanageable. For this, accor-
ding to the chosen strategy, a list of changes is gene-
rated according to the calculation of weighting coef-
ficients. Finally changes proceed automatically based
on a change processing sub-process.

As a proof of concept of our approach we are de-
veloping a support tool called HMCS (Heterogeneous
Matching and Consistency management Suite). Its
role is to provide assistance to expert in the creation
of the model of correspondences and the management
of the consistency between heterogeneous partial mo-
dels when they evolve. HMCS is operational but only
supports the matching sub-process. This tool, once
completed, will allow us to validate our approach and
to conduct experiments to verify thereafter its scala-
bility.

We propose two perspectives to our work. The
first one concerns the consistency management pro-
cess. In this process we considered the directly af-
fected elements at the same level as the indirectly af-
fected ones for calculating the weighting coefficients.
To strengthen the algorithm, we intend to implement
the random walk theory (Fouss et al., 2007) in order
to evaluate the probability that an element in the cor-
respondences model (M1C) is impacted by a change
either it is directly related or not. So far, our propo-
sal is based on a relatively centralized process, giving
a large responsibility to the expert. Big industrial in-
formation systems involve several designers working
collaboratively. So, the second perspective consists
in defining a collaborative process to support the ma-
tching and consistency management activities. In-
deed, in real complex systems, designers should clo-
sely work together to efficiently produce the corre-

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

190



Table 3: Comparison of model evolution approaches.

Approaches/Criteria H NA TA CD CS MR
Edapt (Cope ) No 2 M1 SA3 No Java (Groovy)
EMFMigrate No 2 M/T 2 Manual No Specific DSL

Cichetti and al. No 2 M Manual No ATL5

Model federation Yes 2..n M Not defined No ATL5

Our approach Yes 2..n M Automatic Yes M1C+Process
1 Model 2 Transformation rules 3 Semi-automatic 4 Adaptation 5 ATLAS Transformation Language

spondence model and they also should be collabora-
tively involved in the management of models’ change
impacts. We have initiated this work by presenting in
(El Hamlaoui et al., ) the design of a complex system
via a collaborative process by modeling the Emer-
gency Department (ED) of a hospital.

REFERENCES

Author, A. (2017). Conference management system exam-
ple.

Boronat, A., Knapp, A., Meseguer, J., and Wirsing, M.
(2008). What is a multi-modeling language? In Inter-
national Workshop on Algebraic Development Techni-
ques, pages 71–87. Springer.

Boulanger, F., Jacquet, C., Hardebolle, C., and Rouis, E.
(2009). Modeling heterogeneous points of view with
modhelx. In International Conference on Model Dri-
ven Engineering Languages and Systems, pages 310–
324. Springer.

Brun, C. and Pierantonio, A. (2008). Model differences
in the eclipse modeling framework. UPGRADE, The
European Journal for the Informatics Professional,
9(2):29–34.

Cicchetti, A. and Ciccozzi, F. (2013). Towards a novel
model versioning approach based on the separation
between linguistic and ontological aspects. In ME
2013–Models and Evolution Workshop Proceedings,
page 60. CEUR-WS.

Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio,
A. (2008). Automating co-evolution in model-driven
engineering. In Enterprise Distributed Object Compu-
ting Conference, 2008. EDOC’08. 12th International
IEEE, pages 222–231. IEEE.

Di Ruscio, D., Iovino, L., and Pierantonio, A. (2011). What
is needed for managing co-evolution in mde? In Pro-
ceedings of the 2nd International Workshop on Model
Comparison in Practice, pages 30–38. ACM.

El Hamlaoui, M., Coulette, B., Ebersold, S., Bennani, S.,
Nassar, M., Anwar, A., Beugnard, A., Bach, J., Ja-
moussi, Y., and Tran, H. Alignment of viewpoint he-
terogeneous design models: Emergency department
case study. In International Workshop On the Globa-
lization of Modeling Languages (GEMOC) co-located
with MODELS 2016. CEUR Workshop Proceedings.

El Hamlaoui, M., Ebersold, S., Coulette, B., Anwar, A.,
and Nassar, M. (2015). Maintien de la cohérence

de modèles de conception hétérogènes. Technique et
Science Informatiques, 34(6):667–702.

Fouss, F., Pirotte, A., Renders, J., and Saerens, M. (2007).
Random-walk computation of similarities between
nodes of a graph with application to collaborative re-
commendation. IEEE Transactions on knowledge and
data engineering, 19(3).

GEMOC (2017). Initiative on the globalization of modeling
languages.

Guychard, C., Guerin, S., Koudri, A., Beugnard, A.,
and Dagnat, F. (2013). Conceptual interoperability
through models federation. In Semantic Information
Federation Community Workshop.

Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2008).
Cope: A language for the coupled evolution of me-
tamodels and models. In International Workshop on
Model Co-Evolution and Consistency Management.

Hilliard, R. (2001). Viewpoint modeling. In Proceedings of
1st ICSE Workshop on Describing Software Architec-
ture with UML, volume 7.

Larman, C. (2002). Applying UML and patterns: an intro-
duction to object-oriented analysis and design and the
unified process. Prentice Hall.

Vlissides, J., Helm, R., Johnson, R., and Gamma, E. (1995).
Design patterns: Elements of reusable object-oriented
software. Reading: Addison-Wesley.

Williams, J., Paige, R., and Polack, F. (2012). Searching
for model migration strategies. In Proceedings of the
6th International Workshop on Models and Evolution,
pages 39–44. ACM.

A MDE Approach for Heterogeneous Models Consistency

191


