
Comparison and Runtime Adaptation of Cloud Application Topologies
based on OCCI

Johannes Erbel, Fabian Korte and Jens Grabowski
University of Goettingen, Institute of Computer Science, Germany

Keywords: Open Cloud Computing Interface, OCCI, Runtime Adaptation, Models at Runtime, Model Comparison.

Abstract: To tackle the cloud provider lock-in, multiple standards have emerged to enable the uniform management
of cloud resources across different providers. One of them is the Open Cloud Computing Interface (OCCI)
which defines, in addition to a REST API, a metamodel that enables the modelling of cloud resources on
different service layers. Even though the standard defines how to manage single cloud resources, no process
exists that allows for the automated provisioning of full application topologies and their adaptation at runtime.
Therefore, we propose a model-based approach to adapt running cloud application infrastructures, allowing
a management on a high abstraction level. Hereby, we check the differences between the runtime and target
state of the topology using a model comparison, matching their resources. Based on this match, we mark each
resource indicating required management calls that are systematically executed by an adaptation engine. To
show the feasibility of our approach, we evaluate the comparison, as well as the adaptation process on a set of
example infrastructures.

1 INTRODUCTION

High demand for computing as a utility led to mul-
tiple companies providing cloud computing services.
However, each provider defines its own framework
and tools to access its services. This resulted in the
provider lock-in problem, i.e., binding a customer to
a provider once a cloud application has been build.
To tackle this issue multiple standards have been de-
veloped to grant a uniform way to manage cloud re-
sources. One of these standards is the Open Cloud
Computing Interface (OCCI) (OGF, 2016a), devel-
oped by the Open Grid Forum (OGF), which speci-
fies a Representational State Transfer (REST) Appli-
cation Programming Interface (API) to manage cloud
resources. For this purpose, OCCI defines an exten-
sible metamodel allowing to model cloud resources
on the different service layers. Even though OCCI
specifies how to manage single cloud resources, no
framework exists that allows to adapt running cloud
application topologies using OCCI models. To fill this
gap, we propose an adaptation process which takes an
OCCI model as input, analyzes required adaptation
steps, and transforms the running cloud application
topology into the desired state. Thus, we provide an
engine allowing to adapt running topologies on a high
abstraction level that does not require deep knowl-

edge about different cloud provider infrastructures.
To achieve this goal, we identified three fundamen-
tal steps that need to be executed: (1) The extraction
of a runtime model from the current cloud application
topology, (2) its comparison to the desired state, and
(3) its actual adaptation via systematic management
calls. In this paper, we present a process that imple-
ments these three fundamental steps and evaluate its
feasibility on different cloud application topologies.

The remainder of this paper is structured as fol-
lows. Section 2 gives a brief overview of the OCCI
standard. After that, Section 3 discusses the problems
that need to be addressed by the adaptation process.
We define the adaptation process in Section 4 and
demonstrate its feasibility in Section 5. Finally, we
discuss related work in Section 6, followed by a con-
clusion and an outlook on future work in Section 7.

2 OPEN CLOUD COMPUTING
INTERFACE

OCCI is a cloud standard, developed by the OGF,
that specifies a REST API (Fielding, 2000) and a
metamodel for a universal management of cloud re-
sources (OGF, 2016a). The OCCI Core model serves

Erbel, J., Korte, F. and Grabowski, J.
Comparison and Runtime Adaptation of Cloud Application Topologies based on OCCI.
DOI: 10.5220/0006774405170525
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 517-525
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

517



as an extensible metamodel that allows to model all
kinds of cloud resources. Hereby, each element in an
OCCI model represents a single cloud. Figure 1 pro-
vides an overview of the OCCI Core model (OGF,
2016a) and the OCCI infrastructure extension (OGF,
2016c).

Infrastructure extension

Core model

StorageLink

NetworkInterface
Storage

Compute

Network

LinkResource

Entity

MixinActionKind

AttributeCategory

depends
*

*

parent
*

source
1 *

mixins

*

*
kind

1

*

attributes
1 *

0..1

A

B

Figure 1: OCCI Core model (adapted from (OGF, 2016a)).

The Core model is composed of two parts: the
classification and identification mechanisms (A), and
the core base types (B). Core base types define
Resources and Links, which both inherit from the
abstract Entity element. These describe cloud re-
sources and their connections, e.g., a Virtual Machine
(VM) and its connection to a network. Each Entity
is bound to one Kind and can be linked to multiple
Mixins. Kind and Mixin, inherit from the abstract
Category element and are part of the classification
and identification mechanisms. A Kind defines the
specific type of an Entity, whereas Mixins add ad-
ditional capabilities to it at runtime for which depen-
dencies can be modeled. Each Category instance can
define any amount of Attributes representing client
readable attributes to be filled by a corresponding
Entity instance, e.g., a Kind defines an Attribute
describing the size of a storage which is filled with
a value in the Resource instantiation. Furthermore,
Category instances may define Actions that can be
performed on related Entities. Typical examples
are Actions to start or stop VMs. Each Kind can in-
herit from another Kind, whereby it has to be related
to one of the three core Kinds. These core Kinds en-
sure basic functionalities and are equally named to the
core base types Entity, Resource, and Link.

To enhance the Core model’s capabilities, OCCI

specifies multiple extensions, e.g., the OCCI infras-
tructure extension (OGF, 2016c) or the OCCI plat-
form extension (OGF, 2016d). These extensions add
Entity types to the metamodel specializing either the
Resource or the Link element. As an example, Fig-
ure 1 includes the infrastructure extension. Compute
represents an abstraction of a generic processing
resource, for example, a VM or container (OGF,
2016c), Network describes networking entities, and
Storage data storage devices. Connections between
VMs and networks or storages are modelled via
NetworkInterface links or StorageLinks.

For the scope of this paper, we refer to the meta-
model elements of OCCI (depicted as classes in Fig-
ure 1) as if they were instances and stick to the intro-
duced font-style to highlight the model representation
of the cloud resources. Hereby, we address Entity to
consider Resources as well as Links.

3 PROBLEM STATEMENT

Setting up a cloud application is still a complex task,
especially due to the heterogeneity of cloud services
offered by different cloud providers. To assist dur-
ing this process, a universal way to manage and adapt
cloud application topologies on a high abstraction
level would be beneficial. To reach this goal, we iden-
tify the following required processes and formulate
corresponding questions that need to be addressed.

The derivation of adaptive steps requires the sys-
tem’s runtime information. Therefore, an extraction
process is needed to access the current state of the
topology. This information can be encoded in an
OCCI model which can be subsequently compared to
the OCCI model of the desired state. Furthermore,
a comparison between the current and target state of
the topology is required. To calculate the differences,
a procedure is needed that matches the resources from
the runtime model to the target model. Executing
the identified management calls requires a systematic
process resolving the dependencies of the requests.
Summed up, we define the following questions:

• Q1: How to extract information from the running
system into an OCCI model?

• Q2: How to recognize whether two elements from
different cloud application topologies match?

• Q3: What is a suitable order for management calls
to adapt a running cloud application topology?

In the following section, our approach to address
these questions is introduced.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

518



4 APPROACH

To adapt a running cloud application topology, we
propose a models at runtime approach as depicted in
Figure 2. The runtime model represents the extracted
cloud application topology, whereas the target model
encodes the state to be reached. Based on the results
of the comparison, we indicate what kind of adapta-
tion steps are required followed by an execution of
corresponding REST requests. In the following, we
describe briefly these different steps, whereas in de-
tail information can be found in (Erbel, 2017a).

Target
Model

OCCI
Metamodel

Instance
of

Runtime
Model

Instance
of

Comparison

results

Adaptation
Steps

REST calls

Cloud

Update

Provision(POST)

(PUT)

Deprovision(DELETE)

Extraction
(GET)

Figure 2: Overview depicting the adaptation process.

4.1 Extraction

An extraction process is required to build a model rep-
resentation of the current state of the running cloud
application. In general, GET requests are send to the
OCCI API to gather all provisioned Category and
Entity instances currently running. Based on that,
the elements are divided into the different Entity and
Category sub-types: Resource, Link, Mixin, Kind,
and Action. This allows us to rebuild and serialize
the cloud application topology into a model conform-
ing to the OCCI metamodel.

4.2 Comparison

During the comparison of two OCCI models, we
check whether two Entities from the source and tar-
get model match. As Resources aggregate Links,
we define a common structure for the compari-
son process which mainly relies on a matching of
Resources. The structure is depicted and exemplified
in Figure 3. After the calculation of a resource match,
the Links from the matched Resources are com-
pared to investigate whether their connections have
changed. Hereby, we match Links of the same Kind,

their source, and their target. In a final step, we mark
each Entity assigning the required adaptation step.
Hereby, we categorize them from the target model’s
point of view, marking them as old , new, missing, or
updated element. Non matched Entities are marked
as new or missing, depending on whether they are
from the source or target model. Matched Entities
are compared based on their Attributes to catego-
rize them as updated, when they differ, or old element,
if they are equivalent. These marked elements then
serve as input for the adaptation steps. In the fol-
lowing, we examine multiple techniques to calculate
a suitable resource match.

Match
Resources

Match
Links

Mark
Entities

VM0 ---

NW0

Source Target

NW0

VM1---

VM0 ---

NW0

VM1->NW0---

NW0

VM1---

NW0

Updated
Elements

---

Old
Elements

VM0

Missing
Elements

New
Elements

VM1,
VM1->NW0

Example

Figure 3: Comparison procedure for OCCI models.

4.2.1 Resource Matching

Model elements can be matched considering two
types of information: their attributes and their struc-
tural position. Thus, we investigate matching strate-
gies based on these distinct levels and a combination
of both. For the attribute match, we only consider
unchangeable ones, as changeable attributes do not
grant enough information for a suitable match based
on attribute similarities, e.g., multiple VMs with the
same (virtual) hardware configuration may exist at
one point in time. In case of OCCI, unchangeable
attributes are the Kind and id of each element. Such
an attribute matching can be seen as a static identity-
based matching (Kolovos et al., 2009), as only dis-
crete element identifiers are considered. However, the
id of each element is not always available, as they may
be assigned by the cloud itself. Even though the id as-
signed by the cloud can be stored and mapped to the
model id, changes made outside of the framework can
not be considered by this matching.

Thus, we utilized the Similarity Flooding Al-
gorithm, a structure based graph matching algo-
rithm (Melnik et al., 2002). This similarity-based al-
gorithm iteratively calculates how well two nodes out
of two different graphs match, using structural infor-
mation. Therefore, we first transformed our runtime
and target OCCI model into a Pairwise connectivity
graph (PCG) (Melnik et al., 2002) indicating possible
map pairs. These map pairs contain two Resources,
one from each model, whereby both posses at least

Comparison and Runtime Adaptation of Cloud Application Topologies based on OCCI

519



one Link of the same Kind. Also, a map pair is cre-
ated containing the target Resources of these Links,
due to the evidence of a similar connection. This
PCG is then transformed into an Induced propagation
graph (IPG) (Melnik et al., 2002) that adds edges with
weights to the graph, which are used to iteratively cal-
culate a map pair’s fixpoint value, indicating how well
the two Resources of it match.

To utilize the information about already known
ids, we propose an mixed matching approach depicted
in Figure 4. Here, the deterministic results of a static
identity-based matching is used to adjust the possible
map pairs taken into consideration by the similarity-
based approach. Thus, not only correctly identified
matches are addressed, but also wrong candidates are
excluded increasing the accuracy and performance of
the overall comparison procedure. As the Similar-
ity Flooding Algorithm calculates possible matchings
based on their structure, we added a filter that com-
pares Resources based on their attributes when they
consider the same element as match and have equiva-
lent structural values. Currently, this filter chooses the
Resource with the most attribute values in common.
This filter will be enhanced by weighting attributes in
future work. Furthermore, we add a post-processing
that matches Resources without any Links based
on their attributes, due to missing structural informa-
tion. In the following, the adaptation steps utilizing
the comparison results are discussed.

Static
Identity-Based

Adjust Possible
Matches

Similarity
-Based

Match

Post
Process

Match
Attribute Filter

Figure 4: Mixed matching approach.

4.3 Adaptation Steps

Being RESTful, the OCCI API offers four requests to
manage resources: GET, POST, PUT and DELETE.
We map these operations onto the different adaptation
steps required to transfer a cloud application topology
from one state to another. After the extraction (GET),
every Entity marked as missing is deleted (DELETE)
reducing the amount of parallel running resources to a
minimum to avoid quota conflicts. Subsequently, ev-
ery Entity marked as updated gets adjusted (PUT),
which brings the Entities in the required state for
the rest of the cloud application topology to be provi-
sioned. This is required, as for example, an inactive
VM needs to be started in order to allow for addi-
tional operations to be performed on it. Finally, the
Entities marked as new are provisioned (POST) to

finalize the adaptation process. Hereby, a provision-
ing order must be identified that considers the already
running resources and resolves the dependencies of
the single resources to be created. In the following
these adaptation steps are examined in more detail.

4.3.1 Deprovisioning

The deprovisioning process systematically deletes re-
sources no longer needed in the running topology.
Hereby, we separate the missing elements into Links
and Resources. First the Links are deleted, followed
by the deprovisioning of the Resources. Thus, we
decouple a cloud resource before it is deleted increas-
ing the robustness of the process.

4.3.2 Updating

To update an Entity, OCCI suggests using either
a POST request for a partial update or a PUT re-
quest for an entire update (OGF, 2016b). Addi-
tionally, POST(Action) requests can be used to up-
date an Entity, as they change the state of specific
Attributes. To evaluate what kind of request has to
be used to adapt a single Entity, we investigate the
differences between the Entity and its match. To al-
low for such a separation, we check how the change
of specific Attributes can be achieved. To check
whether the execution of Actions is suitable, it must
be known which Action affects which Attribute
and how. Therefore, we define a list of OCCI spec-
ified Actions and their behavior. As OCCI does not
exactly define the differences between the partial up-
dates of POST requests and the full updates over PUT
requests, the request to use depends on the OCCI im-
plementation.

4.3.3 Provisioning

The provisioning of new Entities is the most cru-
cial part of the adaptation process, as dependencies
between the Entities must be resolved and the al-
ready deployed Entities have to be considered. To
resolve these dependencies, we utilized the approach
described in (Breitenbücher et al., 2014) in which pro-
visioning plans are generated out of Topology and
Orchestration Specification for Cloud Applications
(TOSCA) (OASIS, 2013) models. We adapted this
process to not only perform on OCCI models, but also
provide a suitable provisioning plan interpreter which
executes the required REST requests in the described
order.

In (Erbel, 2017b), we already discussed this pro-
cess considering initial deployments ignoring run-
time information. In short, we performed a model-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

520



to-model transformation (M2M) on the OCCI model
generating a Provisioning Order Graph (POG),
which is a directed acyclic graph describing the de-
pendencies of the cloud resources. Based on this
graph, a provisioning plan is generated, which is
represented by a workflow model. This plan does
not only indicate the order in which the different
Entities have to be provisioned, but also which of
these requests can be send in parallel. To utilize the
gathered runtime information, we adjusted the gener-
ation of the provisioning plan by removing updated
and old elements from the generated POG with all
edges connected to it. Thus, all dependencies requir-
ing these resources to be running are resolved and no
creation task for these elements is created within the
provisioning plan.

5 EVALUATION

To show the feasibility of our approach, we evaluate
the comparison process by investigating the accuracy
of the different resource matching strategies in Sec-
tion 5.1, followed by examining the complete adapta-
tion process using a sample topology in Section 5.2.

As visualizations of complete OCCI application
topologies are too large for a depiction of our example
scenarios, we compress the OCCI models in a graph
based manner. Hereby, circles represent Resources
and edges represent Links. The different images of
these resources represent the Kind of the Resource,
i.e. Compute, Network, and Storage nodes. The sub-
scripts on the bottom right of each node represents
the id for the corresponding Resource, which makes
them uniquely identifiable throughout the Resources
of their Kind. As the standard provides only one Link
type to connect two different Resources, the annota-
tion of their corresponding Kind is omitted. To high-
light specific Attributes, we add additional infor-
mation about the Resource on the bottom of the node.

For the evaluation we used an OpenStack12 cloud
with the OpenStack OCCI Interface (OOI)3 installed,
which implements the OCCI API for OpenStack
addressing the infrastructure extension. For mod-
elling the OCCI models, we use the Ecore meta-
model described in (Merle et al., 2015). To ex-
tract the running cloud application topologies, we uti-
lized the jOCCI-API (Kimle et al., 2015), which is a
java library for performing OCCI-conformant REST-
queries. Hereby, all OCCI related tools conform

1All URLs have been last retrieved on 01/22/2018.
2https://releases.openstack.org/newton/
3http://ooi.readthedocs.io/en/1.2.0/

to OCCI-version 1.2. To implement typical model-
driven techniques such as model transformations we
use Eclipse Epsilon (Paige et al., 2009).

5.1 Comparison

To evaluate the comparison process we evaluate adap-
tation scenarios created from common cloud applica-
tion topologies, depicted in Table 1. These are used
in order to check which resource matching strategy is
suitable for basic adaptation tasks, e.g., the creation
or deletion of cloud resources. Due to space con-
straints only this subset of basic adaptation scenar-
ios is provided, whereas scenarios representing cor-
ner cases of the matching strategies are presented
in (Erbel, 2017a). The topologies, depicted in Ta-
ble 1, describe a suite of Database Server (DBS)
and Webserver (WS) related cloud application topolo-
gies in form of OCCI models. For example, the DB
Server topology is represented by a Compute node,
representing a VM which is connected to a Network
node, as well as a Storage node. From here on, we
expanded this example topology, considering an at-
tached WS, a connection to an external network, and a
WS with an attached storage device. For each of these
topologies, we calculated a resource match using the
following strategies: a static identity-based matching,
a matching based on the Similarity Flooding Algo-
rithm, and a mixed approach. Herewith, we evaluate
whether the comparison strategies are able to handle
multiple additions and removals of different cloud re-
sources from several DBS andWS based topologies.

Table 1: Adaptation scenarios.

DB Server DB-, Web Server

DB-, Web Server
(attached Storage)

DB-, Web Server
(attached Ext. Network)

DB-, Web Server
(attached Storage, Ext. Network)

000 000

1

000

1 1

000

1 11

000

11

A B C

ED

The mixed matching approach utilizes both ben-
efits of the static identity-based and similarity-based
matching approaches. In our case, Resources are
first compared based on their id, followed by a com-
parison of Resources not already matched based on
their position in the topology’s structure. Hereby,
Resources of equivalent structure are compared on

Comparison and Runtime Adaptation of Cloud Application Topologies based on OCCI

521



their attribute level. Due to the usage of the static
identity-based matching as first comparison strategy,
the mixed approach is able to correctly match every
adaptation scenario. To provide a sufficient evaluation
of the similarity-based part of the mixed matching ap-
proach, we evaluated each case with every Resource
having different ids in the source and target model.
The results are depicted in Table 2.

Table 2: Adaptation scenario results with different ids.

Source
Target A

B

C

D E

A

B C

D

E

DB Server

DB-,
Web Server

(attached Ext. Network)

(attached Storage)

(attached Storage,
Ext. Network)

DB-,
Web Server

DB-,
Web Server

DB-,
Web Server

Similarity
Flooding

Attribute
Filter

One VM
Matched

Using the Similarity Flooding Algorithm the
adaptation scenarios can only be partially solved: As
soon as the second storage is within the source or
target model, the structural matching approach is not
able to correctly match the Resources, as symmetric
structures result in non-deterministic solutions. For
example, when comparing case A to D, it can not
clearly be identified whether the topology of A rep-
resents the DBS or the WS within the topology of D.
These cases, can be correctly matched using the at-
tribute filter that compares two Resources of identi-
cal structural values on the attribute level.

However, the filter is not enough to correctly
match the cases addressing topology E. Here, the
structural values between the VM of the DBS and WS
differ too much to trigger the attribute filter. This
problem can be bypassed when at least one of the
VMs is matched during the static identity-based phase
of the mixed matching approach. It should be noted,
that also a proper parameter study to adjust the at-
tribute filter may help to overcome this issue. An-
other approach to solve this issue may be an itera-
tive comparison utilizing multiple steps of similarity-
based algorithms only choosing the best candidates,
which is part of future work. When case E is com-
pared to itself, the Similarity Flooding Algorithm im-
plemented as part of the mixed matching approach is
able to solely calculate a correct match, as the infor-
mation about the additional connection to the exter-
nal network is enough to identify the WS within the
topology.

5.2 Example Adaptation

To discuss the complete adaptation process, we ex-
amine the procedure of the different adaptation steps
based on a minimal example, depicted in Figure 5.
The target model is composed of a Compute node,
VM1, representing a VM. This VM is connected to
a network NW0 and a storage Stor0. To cover all
subprocesses of the adaptation procedure in one min-
imal example, we created an artificial runtime state
resulting in a cloud application topology that is com-
posed of one active and one inactive VM, which are
both connected to a network. We omit a detailed de-
scription of the extraction process, as it utilizes an
already existing interface to generate the OCCI run-
time model. Furthermore, the comparison step is not
discussed in detail, as it is already evaluated within
the previous section. Thus, we assume each id to
be known in this example resulting in the marking of
the Entities depicted in Figure 5. These, indicate a
deletion of VM0 and its connection to VM0, the update
of VM1, and the addition of Stor0 and its attachment
to VM0.

After the comparison, the deprovisioning of the
missing elements takes place. At first, the Links are
separated from the Resources followed by their de-
provisioning. Thus, first the Link, VM0 → NW0 is
deleted, detaching VM0 from the network, followed by
a deprovisioning of VM0 itself. It should be noted that,
when a Resource is marked as missing, each Link
contained within it is also marked as missing, i.e.,
each Resource is always completely detached before
it is deleted. As Entities to be deleted are miss-
ing in the target model, the information about these
elements is extracted from the runtime model. There-
after, the updated elements are handled, changing the
state of VM1 to active. In the proposed example, we
intentionally chose an element adaptation that can be
performed by Actions, as OOI does not provide any
implementation for PUT or POST update requests. To
bring the Attribute “state” from inactive to active,
the start Action is executed on VM1.

During the provisioning process, the POG is cre-
ated according to the target model from which we re-
move the old and updated elements, as shown in Fig-
ure 6. Additionally, this figure depicts the provision-
ing plan for the original POG to highlight the differ-
ences. As this process is already discussed in (Er-
bel, 2017b), a shortened version is given in the fol-
lowing. As each provisioning of an infrastructure
Resource is independent from each other, they rep-
resent vertexes without incoming edges. Therefore, a
workflow is created which starts with a parallel pro-
visioning of each Resource followed by the provi-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

522



NW0 VM1VM0

inac�ve

NW0 VM1

ac�ve

Stor0

Missing Elements

VM0, VM0->NW0

VM0 ---

NW0

Stor0

VM1

VM1->Stor0---

Source Target

NW0

VM1

---

VM0->NW0 ---

VM1->NW0 VM1->NW0

Run�me Model Target Model

ProvisionDeprovision UpdateExtrac�on Comparison

New Elements

Stor0, VM1->Stor0

Old Elements

NW0, VM1->NW0

Updated Elements

VM1

Figure 5: Minimal adaptation example.

sioning of Links connecting them. As we adapt the
POG by deleting the old and updated elements, we
remove VM0, VM0 → NW0, and NW0. Thus, the POG
is transformed into a workflow that provisions Stor0
followed by the creation of the Link VM0 → Stor0.
After the creation of these Resources the runtime
topology is adapted to the topology depicted in the
target model, finishing the adaptation process.

VM0
VM0->
NW0

NW0

VM0->
Stor0

Stor0

VM0
VM0->
NW0

NW0

VM0->
Stor0

Stor0

POG

Original

Adapted

Provision
VM0

Provision
NW0

Provision 
Stor0

Provision
VM0->NW0

Provision
VM0->Stor0

Workflow

Provision
Stor0

Provision
VM0->Stor0

Original

Adapted

Figure 6: Workflow adaptation.

5.3 Discussion

In the former evaluation, we showed that the pro-
posed process is capable of detecting the differences
between two states of a cloud application topology
and of performing corresponding steps to adapt it to
the desired state. In this section, the results of this
evaluation are used in order to answer the questions
posed in Section 3.
• Q1: How to extract information from the running

system into an OCCI model?
To extract the runtime information into an OCCI
model, GET requests are send to the OCCI API gath-
ering information about all running cloud resources.
As we currently only consider application topologies,
information about the running infrastructure is suf-
ficient. The extraction of software states into OCCI
models is part of future work.
• Q2: How to recognize whether two elements from

different cloud application topologies match?

To answer this question, we stated several techniques
to compare two topologies and match their elements.
Hereby, we showed that a reasonable matching can be
calculated based on the information contained within
the elements attributes and structure. During the eval-
uation of the comparison process, we showed that
the combination of a static identity and similarity-
based matching improves the accuracy of the results
in case not all elements can be clearly identified.
As a similarity-based matching strategy, we utilized
the Similarity Flooding Algorithm which calculates
matching resources based on their structure within the
topology. However, as symmetric structures repre-
sent the major drawback of such matching strategies,
we added an attribute filter supporting the decision-
making for multiple match candidates.

Furthermore, we proposed a modular process that
can utilize any resource matching strategy in order to
derive further information about equivalent resource
connections, and corresponding adaptation steps to be
performed. As shown in the evaluation of the compar-
ison process, cases exists that are indistinguishable
for the information provided requiring for a manual
inspection.

• Q3: What is a suitable order for management calls
to adapt a running cloud application topology?

As cloud tenants may be limited by an amount of
cloud resources that can be acquired simultaneously,
we start with the deprovisioning of cloud resources
not needed anymore. Thereafter, we adapt each ele-
ment requiring for an update to bring it into the de-
sired state. This is needed for the provisioning pro-
cess, as the target model depicts a working state of the
cloud application and thus inconsistencies in the run-
time have to be avoided. For the provisioning process
itself, we enhanced the approach presented in (Erbel,
2017b) by utilizing the gathered runtime information.

Comparison and Runtime Adaptation of Cloud Application Topologies based on OCCI

523



Nevertheless, when further OCCI extensions are uti-
lized, this overall design may result in problems, es-
pecially as the application layer adds a multitude of
dependencies between the different resources requir-
ing a more fine-grained resolution.

5.4 Threads to Validity

Even though we presented a feasible approach, cir-
cumstances exist that threaten its validity. One of
the biggest impacts is the utilization of additional
OCCI extensions, which may result in different re-
quirements and more dependencies that need to be
considered. However, these could not be considered
due to the lack of compatible OCCI implementations.
Additionally, major changes in OCCI’s structure may
influence parts of our processes.

Moreover, we did not test how the comparison
as well as the adaptation process perform for larger
topologies. Nevertheless, the provided cases were
sufficient to investigate the advantages and drawbacks
of the different comparison strategies and show the
feasibility of our approach. Furthermore, an evalu-
ation of the proposed adaptation process on multi-
cloud environments is missing which may result in
requirements not discovered yet.

6 RELATED WORK

The authors in (Breitenbücher et al., 2014) describe
the generation of provisioning plans from TOSCA
models. Nevertheless, this approach does not con-
sider already provisioned resources. Similar to our
work, the approaches proposed in (Holmes, 2015)
and (Ferry et al., 2014) extract and compare models to
adapt cloud application topologies. However, in these
approaches metamodels were used that are not stan-
dard conform. Unfortunately, also no evaluation of
their comparison processes are given, making a com-
parison to our results impossible.

To create an autonomic model for the management
of cloud services, the authors in (Lejeune et al., 2017)
utilize a directed acyclic graph as a metamodel. While
their metamodel directly describe dependencies, we
generate them allowing to utilize a more mature meta-
model and standardized API. Additionally, we per-
formed an evaluation of the identified steps in a real
test environment instead of a simulation.

In (Kolovos et al., 2009) multiple types of model
comparison approaches are presented. One of them
is EMF Compare (Eclipse, 2011), which adds the
capability to compare models to the Eclipse Model-
ing Framework (EMF) framework. Even though it

is highly customizable, its build-in matching strategy
mainly operates on the attribute level, evaluating the
similarity of elements based on their features. In con-
trast, our approach also considers the structural infor-
mation of the topology.

OCCIware (Parpaillon et al., 2015; Zalila et al.,
2017) is a framework capable of modeling, and man-
aging any kind of resources using OCCI. Thereby, it
does not allow the comparison and adaptation of an
already running cloud application topology to a target
model and our approach is hence complementary.

7 CONCLUSION

We presented a model-based approach to adapt cloud
application topologies at runtime, using the OCCI
standard. To perform this adaptation, we identified
three fundamental steps to be performed: the extrac-
tion of a runtime model, the comparison to the tar-
get model, and the execution of identified adaptation
steps. For the comparison process we presented a
generic process calculating required adaptation steps
that mainly relies on the identification of matching
resources. Therefore, we combined static identity-
based with similarity-based matching techniques to
utilize already known information in order to increase
the accuracy of the overall comparison process. For
the adaptation process, we identified and evaluated
the sequence of deprovisioining, updating, and pro-
visioning requests. For each of these tasks, we in-
vestigated different requirements. To deprovision a
resource, we decoupled it from the rest of the topol-
ogy. To update a resource, we checked whether it can
be handled with help of OCCI actions. For the pro-
visioning process, we identified dependencies of the
single resources from which we generated a provi-
sioning plan. Overall, we presented an approach ca-
pable of adapting a cloud application topology only
requiring the desired state of the cloud application
topology as input. Thus, we reduce the need for any
human intervention and tackle the provider lock-in by
extracting standard-conform REST calls directly from
the model.

7.1 Future Work

In future work, we will extend the proposed pro-
cess to support the platform extension (OGF, 2016d)
defining elements to model complete cloud appli-
cations. We assume, that this additional informa-
tion especially supports the comparison process, as
the cloud application’s structure gets more distin-
guishable. Moreover, we will test further candi-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

524



dates for pre-comparison steps such as iteratively us-
ing similarity-based strategies in which only the most
suitable matches are considered. Also, the attribute
filter can be enhanced by evaluating which attribute
changes fit to the structure of a resource. Finally, the
adaptation process can be enhanced by state machines
describing how attributes are affected by different
management actions to reduce the need for manual
configurations.

ACKNOWLEDGEMENTS

We thank the Simulationswissenschaftliches Zentrum
Clausthal-Goettingen (SWZ) for financial support.

REFERENCES

Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann,
F., and Wettinger, J. (2014). Combining Declarative
and Imperative Cloud Application Provisioning based
on TOSCA. In Cloud Engineering (IC2E), 2014 IEEE
International Conference on, pages 87–96. IEEE.

Eclipse (2011). EMF Compare. Available online: http:
//www.eclipse.org/emf/compare/, last retrieved:
01/22/2018.

Erbel, J. (2017a). Comparison And Adaptation Of Cloud
Application Topologies Using Models At Runtime.
Master’s thesis, Institute of Computer Science, Uni-
versity of Goettingen, Germany.

Erbel, J. (2017b). Declarative Cloud Resource Provision-
ing Using OCCI Models. In Informatik 2017, 47.
Jahrestagung der Gesellschaft für Informatik.

Ferry, N., Brataas, G., Rossini, A., Chauvel, F., and Solberg,
A. (2014). Towards bridging the gap between scala-
bility and elasticity. In Proceedings of the 4th Interna-
tional Conference on Cloud Computing and Services
Science - Volume 1: (CLOSER 2014), pages 746–751.
INSTICC, SciTePress.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California, Irvine.

Holmes, T. (2015). Facilitating Migration of Cloud In-
frastructure Services: A Model-Based Approach. In
CloudMDE@MoDELS, pages 7–12.

Kimle, M., Parák, B., and Šustr, Z. (2015). jOCCI–General-
Purpose OCCI Client Library in Java. In International
Symposium on Grids and Clouds (ISGC), volume 15.

Kolovos, D. S., Di Ruscio, D., Pierantonio, A., and Paige,
R. F. (2009). Different Models for Model Matching:
An analysis of approaches to support model differenc-
ing. In Comparison and Versioning of Software Mod-
els, 2009. CVSM’09. ICSE Workshop on, pages 1–6.
IEEE.

Lejeune, J., Alvares, F., and Ledoux, T. (2017). Towards a
generic autonomic model to manage cloud services.

In Proceedings of the 7th International Conference
on Cloud Computing and Services Science (CLOSER
2017), pages 147–158. INSTICC, SciTePress.

Melnik, S., Garcia-Molina, H., and Rahm, E. (2002). Sim-
ilarity Flooding: A Versatile Graph Matching Algo-
rithm and its Application to Schema Matching. In
Data Engineering, 2002. Proceedings. 18th Interna-
tional Conference on, pages 117–128. IEEE.

Merle, P., Barais, O., Parpaillon, J., Plouzeau, N., and Tata,
S. (2015). A Precise Metamodel for Open Cloud
Computing Interface. In Cloud Computing (CLOUD),
2015 IEEE 8th International Conference on, pages
852–859. IEEE.

OASIS (2013). Topology and Orchestration Specifi-
cation for Cloud Applications. Available online:
https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=tosca, last retrieved:
01/22/2018.

OGF (2016a). Open Cloud Computing Inter-
face - Core. Available online: https:
//www.ogf.org/documents/GFD.221.pdf, last
retrieved: 01/22/2018.

OGF (2016b). Open Cloud Computing Interface -
HTTP Protocol. Available online: https://www.
ogf.org/documents/GFD.223.pdf, last retrieved:
01/22/2018.

OGF (2016c). Open Cloud Computing Interface -
Infrastructure. Available online: https://www.
ogf.org/documents/GFD.224.pdf, last retrieved:
01/22/2018.

OGF (2016d). Open Cloud Computing Interface
- Platform. Available online: https://www.
ogf.org/documents/GFD.227.pdf, last retrieved:
01/22/2018.

Paige, R. F., Kolovos, D. S., Rose, L. M., Drivalos, N., and
Polack, F. A. (2009). The Design of a Conceptual
Framework and Technical Infrastructure for Model
Management Language Engineering. In Engineering
of Complex Computer Systems, 2009 14th IEEE Inter-
national Conference on, pages 162–171. IEEE.

Parpaillon, J., Merle, P., Barais, O., Dutoo, M., and Paraiso,
F. (2015). OCCIware-A Formal and Tooled Frame-
work for Managing Everything as a Service. In
Projects Showcase@ STAF’15, volume 1400, pages
18–25.

Zalila, F., Challita, S., and Merle, P. (2017). A model-driven
tool chain for OCCI. In On the Move to Meaning-
ful Internet Systems. OTM 2017 Conferences - Con-
federated International Conferences: CoopIS, C&TC,
and ODBASE 2017, Rhodes, Greece, October 23-27,
2017, Proceedings, Part I, pages 389–409.

Comparison and Runtime Adaptation of Cloud Application Topologies based on OCCI

525


