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Abstract: Due to the increasing number of functions fulfilled by ECUs in a vehicle, there is a need for new networking
technologies offering more bandwidth than e.g. Controller Area Network. Automotive Ethernet is one of the
most promising candidates and already used in modern cars. However, currently there is the open issue of
detecting and preventing cyber attacks via this well known networking technology. In this paper we present
the extension of our hybrid anomaly detection system for ECUs to improve the security and safety of vehicles
using Automotive Ethernet. The system combines specification- and machine learning-based anomaly detec-
tion methods. The features, necessary for the machine learning part, are selected to enable the detection of
anomalies in real-time and with respect to the automotive specific communication scheme. Finally, the detec-
tion performance and the applicability of different machine learning algorithms is evaluated in a simulation
environment based on synthetic and well defined anomalies.

1 INTRODUCTION

The evolution of vehicles is clearly drawn. Elec-
tronic control units (ECUs) have to realize an in-
creasing number of functions. Currently, the more
than 2000 functions of a modern car are realized with
10.000.000 lines of code running on more than 70
ECUs (Broy, 2006). Driving will be automated by
the use of diverse technologies such as laser scanners,
radar, cameras and ultrasonic sensors. The growth of
functions and sensors lead to a massive increase of
produced data that has to be transmitted between the
different ECUs. Currently, Controller Area Network
(CAN) is the predominant communication system for
in-vehicle networks. Because CAN only provides a
data rate of up to 1 Mbit/s other technologies have
to be used in future. Ethernet, which is well-known
from information technology, offers high bandwidth
at low costs and great flexibility. For the in-vehicle
use case a special physical layer, called 100BASE-
T1 (IEEE Std 802.3bw-2015), was specified offering
100 Mbit/s full-duplex communication over a single
unshielded twisted pair cable. The specification for
the next generation, which offers 1 Gbit/s, is already
ready (IEEE Std 802.3bp-2016) and there are first

projects based on this technology. In future, a fur-
ther increase of the provided bandwidth is expected,
as the next standardizations are in the focus of inter-
est already (IEEE-P802.3ch). Besides the increase of
communication between ECUs, future vehicles will
communicate with their environment through differ-
ent wireless interfaces like WiFi or Bluetooth. Hence,
vehicles are no longer a closed system but are ex-
posed to (remote) cyber attacks. As ECUs are able
to control the whole behavior of a vehicle, including
steering, braking and acceleration, such attacks on the
electrical and electronic system of a vehicle can have
fatal effects. One possibility to improve the security
of ECUs is the use of intrusion detection (IDS) or in-
trusion prevention systems (IPS) (Hoppe et al., 2009;
Kleberger et al., 2011; Larson et al., 2008).

On this account, we presented a hybrid IDS com-
bining specification-based detection mechanisms and
machine learning algorithms to recognize irregulari-
ties in automotive CAN communication (Weber et al.,
2018). Checking for irregularities instead of pre-
defined attack patterns enables the detection of attacks
unknown during IDS development time. However, as
CAN is not the only in-vehicle networking technol-
ogy, the introduced hybrid anomaly detection system
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has to be extended to support other communication
channels as well. Considering the increasing impor-
tance of Automotive Ethernet, we decided to include
this in-vehicle networking technology in our research
as a next step.

An irregularity in automotive communication sys-
tems can occur in different ways. One possibility is
an irregular payload of messages, e.g. a signal value
which is outside its specified minimum and maxi-
mum. Other potential irregularities concern the over-
all communication behavior of ECUs. Independent
of the contained application data, a message can be
irregular if, for example, the sending ECU is not al-
lowed to transmit data to a given receiver. A second
example for a behavior-related irregularity is a mes-
sage that contains data of unknown protocols. The ex-
isting hybrid IDS for CAN is capable to recognize ir-
regularities in communication signals. These mecha-
nisms can be applied on Automotive Ethernet as well.
For that reason, this paper focuses on the detection of
behavior-related irregularities in Automotive Ethernet
communication. The transported application data of
exchanged messages can be analyzed further with the
existing solution, independent of the used communi-
cation system.

The remaining paper is structured as follows: Sec-
tion 2 introduces the term anomaly and its different
types, followed by the discussion of related work in
section 3. Afterwards, the extended hybrid anomaly
detection system is presented in section 4 outlining
its basic building blocks. Since machine learning is
applied, section 5 gives an overview about the se-
lected algorithms which are used to detect anomalies
in Ethernet-based communication. Their implemen-
tation is discussed in section 6 together with the other
extensions realized in context of the anomaly detec-
tion system. Section 7 presents first evaluation results
based on a simulation before section 8 concludes the
paper with a summary and a proposal for future re-
search.

2 IRREGULARITIES AND
ANOMALIES

Irregular behavior is an undesirable deviation of the
expected characteristics. In literature, this is referred
to as anomaly or outlier in addition to other denota-
tions. One definition that is frequently cited is given
by D.M. Hawkins (Hawkins, 1980):

”An outlier is an observation that deviates so
much from other observations as to arouse
suspicion that it was generated by a different
mechanism.”

Chandola et al. (2009) subdivided anomalies into
three groups, which is helpful to develop a method for
recognition of irregular behavior. The simplest form
of an anomaly is the point anomaly, defined by Chan-
dola et al. as follows (Chandola et al., 2009):

”If an individual data instance can be consid-
ered as anomalous with respect to the rest of
data, then the instance is termed as a point
anomaly.”

If e.g. an Ethernet network traffic log - also called
trace - is the complete data set, a single recorded Eth-
ernet message is one data instance. If that single mes-
sage can be classified as anomaly without considering
other data instances, e.g. because it contains the in-
formation that the destination address is unknown, it
is a point anomaly. In contrast to the point anomaly,
a contextual anomaly can only be classified as such,
if additional contextual information is taken into ac-
count (Chandola et al., 2009). A destination address
of a known ECU sent from an also known source ad-
dress is not a point anomaly since it is realistic in the
first place. However, if the message has to be sent
only as an answer to a preceding request message and
this request is absent, it can be declared as a contex-
tual anomaly. The last type is the collective anomaly,
referring to a sequence of data instances, which to-
gether form an anomaly (Chandola et al., 2009). This
would be the case if two or more consecutive Ether-
net messages indicate anomalous communication be-
havior, such as an increasing frequency of a specific
message.

3 RELATED WORK

Most of the research concerning irregular in-vehicle
communication was carried out on the detection of
anomalies in CAN messages. For example, Marchetti
et al. (2016) presented a method based on the Shan-
non entropy of the payload data. If the entropy of the
payload data is outside of some pre-defined bound-
aries, a CAN message is considered anomalous. Tay-
lor et al. (2015) compared different methods to detect
inserted packets on the CAN bus, based on the occur-
rence frequency of different messages. A One-Class
Support Vector Machine (OCSVM) and a statistical
test were used for that purpose. In contrast, there are
no known publications concerning anomaly detection
in Automotive Ethernet communication.

Outside the automotive domain numerous meth-
ods have been published to address network IDS for
communication based on the Internet Protocol (IP),
which is mostly used on top of Ethernet networks.
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Figure 1: Block diagram of the extended hybrid anomaly detection system for CAN and Ethernet.

Chandola et al. (2009), Ahmed et al. (2016) and Ag-
garwal (2017) provide a detailed overview of the state
of the art detection techniques, which include ma-
chine learning algorithms as well as statistical meth-
ods besides others. However, because of the different
nature of the examined data the selection of applicable
methods has to be conducted with care. In addition,
one focus of an anomaly detection system for ECUs
has to be the capability to perform online analysis,
whereas most of the work concerning network IDS is
based on offline analysis.

4 EXTENDED HYBRID
ANOMALY DETECTION
SYSTEM

In the following section an overview about the ex-
tended hybrid anomaly detection system for CAN and
Ethernet is given. The main contribution of this work
is the development of the parts necessary to extend
our existing system to realize anomaly detection for
Ethernet. These are the specific blocks static checks,
feature base and feature extraction as well as the
learning checks which are suited for the evaluation of
Ethernet-based communication. The aforementioned
terms are introduced below to give an outline of the
overall function. Details on the developed blocks are
presented further in sections 5 and 6.

The basic idea of the proposed system is to use
specification-based anomaly detection and machine
learning algorithms sequentially within the embedded
software of an ECU. Figure 1 depicts the principle

building blocks of the two-stage system. As this is an
extension to the existing system described in previous
research (Weber et al., 2018), Figure 1 is also based
on the existing graphics.

Due to resource constraints on ECUs, machine
learning should only be used if necessary. There-
fore, specification-based techniques are used in the
first stage as much as possible, re-using the knowl-
edge provided by vehicle manufactures in terms of the
communication matrix. This stage is further referred
to as static checks. Static checks are very well suited
to detect point anomalies. In addition, simple collec-
tive anomalies can be detected efficiently using static
checks, as long as they can be derived from the com-
munication matrix. When a message, either via CAN
or Ethernet, is sent or received by an ECU, the corre-
sponding static checks evaluate the protocol headers
and the signals, contained in the payload section.

In the second stage of the system, learning checks
extend the detection possibilities, especially for ad-
vanced contextual and collective anomalies by using
machine learning. To apply the corresponding algo-
rithms, at first relevant information has to be extracted
from messages. The static checks forward selected
information like protocol header fields to the learn-
ing checks, depicted in Figure 1 as feature base. The
feature extraction block, pre-processes the informa-
tion and generates features, which represent the input
data for the following algorithms. Pre-processing can
contain multiple aspects, like building time series and
normalization.

Since the investigated input data differs between
network technologies and anomalous behavior can be
reflected in various specific properties, miscellaneous
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machine learning algorithms are applicable. There-
fore, the proposed system allows using a variety of
algorithms, working on the same features. Figure
1 shows two examples: Replicator Neural Networks
(RNN) (Hawkins et al., 2002) and One-Class Sup-
port Vector Machines (OCSVM) (Schölkopf et al.,
2001). Each algorithm produces as output either
a binary value (’normal’/’anomaly’) or a so-called
anomaly score, which represents the probability of
an anomaly. These produced outputs are evaluated
within the anomaly analyzer block, which e.g. checks
an anomaly score for a defined threshold value be-
fore it securely stores the anomaly in a log. The de-
sign of the learning checks also allows for ensemble-
based methods, as proposed in recent research e.g. by
Andreas Theissler (Theissler, 2017). In an ensemble,
multiple algorithms run in parallel, checking for the
same anomalies and each of them producing its own
output. In such a setup, the anomaly analyzer per-
forms a voting between the different outputs and fi-
nally decides whether an anomaly is logged or not.
This kind of post-processing is not necessary for static
checks, since they do not work with probabilities.
Therefore, they directly log the detected anomalies
together with the corresponding boundary conditions
(e.g. which Ethernet message caused the anomaly) to
enable an improved post-evaluation.

5 INVESTIGATED MACHINE
LEARNING ALGORITHMS

Ethernet is the networking technology which will
dominate the development of in-vehicle communica-
tion systems in future. Since e.g. autonomous driv-
ing is requiring higher data rates for the communi-
cation between ECUs, also safety-relevant data will
be transmitted via Ethernet and not only via CAN or
FlexRay. For that reason, Ethernet messages have to
be analysed with respect to the allowed behavior. As
outlined above, for example the destination address
of a message can create a point anomaly. However,
all possible and allowed destination addresses for a
given sending ECU can be specified in the commu-
nication matrix. Hence, some of the possible anoma-
lies concerning Automotive Ethernet communication
can be detected with static checks. The development
of these static checks is discussed in detail in section
6.1. On the other hand, only parts of the communi-
cation behavior is specified, since it is not possible
or it would be too much effort to determine dynamic
properties of the communication such as the order of
messages beforehand. Though, anomalous communi-
cation behavior can also affect characteristics that are

not specified. Resulting mostly in collective or con-
textual anomalies, this misbehavior can be detected
with learning checks.

In a first step, algorithms have to be selected,
which are suited to be applied in the proposed sys-
tem as learning checks for anomaly detection in Eth-
ernet communication. For this use case, potentially a
lot of different methods can be used. Classification-
based techniques use supervised learning and require
the availability of so-called labeled data. In this case,
training data instances are marked to belong to one
defined class. Considering anomaly detection, there
are the two classes normal and anomaly. With this
pre-knowledge a classifier is learned, which is able to
distinguish normal from anomalous data instances.

In contrast, clustering-based techniques use un-
supervised learning and do not require labeled data.
They group data instances and thereby try to find the
classes normal and anomaly automatically. However,
most of these algorithms require many data instances
to be available during runtime in order to perform the
grouping task.

Since the proposed anomaly detection system
shall be implemented on an embedded ECU, consid-
ering the required resources is important. Computing
power on an embedded device is limited, compared
to office computers or server systems. Following this
constraint, the computational complexity of an algo-
rithm must be low when executed on the ECU to de-
tect anomalies. On the other hand, the training of the
algorithm may be computational complex as long as
it can be performed offline, like on a back-end infras-
tructure. Afterwards, the trained algorithm has to be
transferred to the ECU, e.g. in terms of updating a pa-
rameter set. Not only the computing power is limited
on an ECU but also the available memory. This means
that applied machine learning algorithms must not re-
quire much read-only memory (ROM) and, even more
important, not much random access memory (RAM).
Due to these constraints, clustering-based techniques
are excluded from the decision process of finding an
appropriate algorithm. There are unsupervised algo-
rithms like Lightweight On-line Detector of Anoma-
lies which also have a comparable low computational
complexity and reduced memory consumption. The
investigation whether one of these algorithms is also
suited for detecting anomalies in Ethernet-based com-
munication on ECUs has to be investigated in future
research.

Another point concerning the selection of proper
machine learning algorithms is the false alarm rate.
Any identified anomaly has to be reported and should
be further analyzed e.g. by a human in a Security
Information and Event-Management (SIEM) center
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which causes a lot of additional effort. In future,
if countermeasures may be applied within the ve-
hicle itself, false alarms could cause serious effects
like unintended and unnecessary emergency braking.
Thus, false alarms have to be avoided as far as any-
how possible. As mentioned above, the remaining
classification-based techniques require labeled data.
However, to obtain labeled data for anomalies in Au-
tomotive Ethernet communication in a large scale is
difficult or even impossible because of the data col-
lection and labeling effort. Also, training with anoma-
lous data would result in a classifier, which is proba-
bly only able to detect known anomalies. This contra-
dicts the idea of anomaly detection, which tries to find
any kind of deviation from normal behavior. There-
fore, algorithms are used, which only require the pres-
ence of normal data instances during the training to
perform a so-called one-class classification.

From the plenty of possible methods to use as
learning check for Ethernet-based communication,
which are described in literature (Chandola et al.,
2009; Ahmed et al., 2016; Aggarwal, 2017), three are
selected for further evaluation. These are the Maha-
lanobis Distance, the Principal Component Analysis
and the One-Class Support Vector Machine. For each
selected algorithm details on its working principle are
given below.

5.1 Mahalanobis Distance

The basic assumption of the Mahalanobis Distance
(Mahalanobis, 1936) is that the data originates from
a multivariate gaussian distribution. Thereby the nor-
mal class, represented through the training data, is
modeled by the use of one gaussian function. The
learning process refers to the estimation of the under-
lying distribution, including the calculation of mean~µ
and covariance matrix C of the training data. To de-
fine an anomaly score, the Mahalanobis Distance of a
new data instance~x to the mean of the training data is
calculated, which is given by equation 1.

Mahal(~x,~µ,CXX) =
√(

(~x−~µ)TC−1
XX(~x−~µ)

)
(1)

Data instances with a larger distance to the mean
are more likely to be generated by another distribu-
tion than the training data and hence, can be classified
as anomalies. To use the Mahalanobis Distance as
anomaly detection method, a threshold ~ΘMahal has to
be defined so that data instances with a larger or equal
distance than the threshold are considered anomalous.

One big advantage of this method is the ease of
use. Except for the specified threshold, there are no
parameters which have to be defined.

5.2 Principal Component Analysis

With a Principal Component Analysis (PCA) it is pos-
sible to determine dependencies and correlations be-
tween dimensions of a feature space represented as
the random variables X1 to Xd . PCA describes the
feature space using the principal components as new
dimensions, which are a linear combination of the
d original dimensions. It is used often to reduce
the dimensionality of a given data set. Through an
eigenvalue analysis of the covariance or the correla-
tion matrix, the principal components are calculated
as the eigenvectors e1 to ed . They are uncorrelated
and ordered by their variance. The total variance in
the new principal component space is the same as in
the original space, where the variance of the new di-
mensions is given by the eigenvalues λ1 to λd with
λ1 ≥ λ2 ≥ ·· · ≥ λd .

Shyu et al. (2003) describe how PCA can be used
to detect outliers and anomalies in an efficient way.
The basic idea is that anomalous data is represented
worse than normal data instances through the princi-
pal components. A higher deviation from the model
of the training data, represented by the principal com-
ponents and the corresponding eigenvalues, thus in-
dicates anomalous data. They select the p principal
components e1 to ep with the highest variances and
q with the lowest variances, given by ed−q+1 to ed ,
to get two sub-spaces of lower dimensionality. For
any new data instance~x the distance to the mean~µ of
the training data is calculated in these two sub-spaces
and weighted by the associated eigenvalues to obtain
an anomaly score. For the p selected principal com-
ponents, this is formally depicted by equation 2.

dp
PCA(~x) =

p

∑
i=1

(
~eT

i ·~z
)2

λi
(2)

The vector ~z = (z1,z2, . . . ,zd) is given by scal-
ing of the new data instance according to equation 3,
where µk and σk are the sample mean, respectively the
sample variance of the variable Xk.

zk =
xk−µk

σk
(3)

Considering the q principal components with low-
est variance, the distance is calculated accordingly.

Hence, the training process estimates the covari-
ance or correlation matrix C, sample mean and vari-
ance of the training data, followed by the solution
of the eigenvalue problem (C− λI) ·~e = 0 to obtain
the d principal components and eigenvalues. As sug-
gested by Shyu et al. the correlation matrix is used
instead of the covariance matrix for the calculation of
the principal components since this has the advantage
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of weighting all features equally. That is especially
important if the features are measured on very differ-
ent scales, which cannot be excluded.

5.3 One-Class Support Vector Machine

The One-Class Support Vector Machine (OCSVM)
was introduced by Schölkopf et al. (2001). It is a
modification of the well-known Support Vector Ma-
chine (SVM) described by Vapnik (1995). A SVM
mathematically separates a set of training data xi, i =
1 . . .N containing data instances of two classes y ∈
{−1,1} by a linear hyperplane. This classifier is cal-
culated so that the smallest distance of a data instance
to the hyperplane is maximized. This smallest dis-
tance ρ is denoted as margin. The learning process
results in the support vectors (SVs), which are a par-
ticular subset of the training data depicting the hy-
perplane. Depending on the position of a new data
instance xt in the feature space with respect to the
hyperplane it can be classified resulting in the class
yt ∈ {−1,1}. Because a linear hyperplane is not suf-
ficient to split non-linear distributed classes, usually a
kernel function φ(~x) is used. The function performs
an implicit mapping to the feature space of the ker-
nel function (kernel-space). Thus, the data instances
are separated in a feature space of higher dimension,
where a linear hyperplane is sufficient to separate the
two classes.

Instead of being trained with data instances of two
classes, an OCSVM is trained with data instances of
one class only. Therefore, the algorithm is trained as
SVM that separates the training data from the origin
in the kernel-space to obtain a decision boundary. In
the original feature space, this boundary encloses the
training data and classifies between the areas of high
and low data instance density, representing normal
and anomalous data. To attain an anomaly score for
a new data instance xt , its position with respect to the
decision boundary is determined. A data instance in-
side the boundary, which is hence normal, has a neg-
ative distance, whereas a data instance outside has a
positive distance to the boundary. The learning pro-
cess refers to the convex quadratic optimization prob-
lem, shown in equation 4, with the hyperplane ~w and
margin ρ using N training data instances.

min
w∈F,~ε∈ℜN ,ρ∈ℜ

1
2
‖~w‖2−ρ+

1
νN

N

∑
i=1

εi (4)

The variable~ε depicts some small violations of the
decision boundary to obtain a smoother classification,
so that equation 5 holds true for the hyperplane.

~w ·~xi ≥ ρ− εi, ∀ixi, i = 1 . . .N (5)

The parameter ν is affecting the number of train-
ing data instances becoming support vectors. As the
support vectors form the classifier, ν has to be cho-
sen carefully to obtain a decision boundary that pro-
vides a sufficient generalization ability. To solve the
constrained problem given by equations 4 and 5, La-
grange multipliers αi are introduced resulting in the
dual problem of equation 6 for which the constraints
in equation 7 hold true.

min
~α

1
2

N

∑
i, j=1

αiα j~xi ·~x j (6)

0≤ αi ≤
1

νN
and

N

∑
i=1

αi = 1 (7)

Inserting the kernel function φ(~x) for ~x, specified
by its cross-product K(~xi,~x j)= φ(~xi)φ(~x j), this results
in equation 8.

min
~α

1
2

N

∑
i, j=1

αiα jK(~xi,~x j) (8)

Kernel functions are for example polynomial or
sigmoid functions, though the gaussian kernel or ra-
dial basis function (RBF-kernel) is the most popular
given by equation 9.

K(~xi,~x j) = exp
(
−
‖~xi−~x j‖2

2 ·σ2

)
(9)

For the following evaluations, the RBF-kernel is
used. Therefore, a suitable value for σ has to be
found. Conducting the learning process by minimiz-
ing equation 8 the margin ρ and the N αis are ob-
tained. All~xi for which αi is not equal to zero become
support vectors. The anomaly score can be calculated
according to equation 10. In contrast to the original
formulation of Schölkopf et al. (2001) the minus sign
is introduced to ensure that a higher anomaly score is
indicating a more anomalous data instance~xt .

f (~xt) =−

(
N

∑
i=1

αi ·K(~xi,~xt)−ρ

)
(10)

An important point when using an OCSVM for
anomaly detection is the selection of proper values
for the parameters ν and σ. In literature, there exist
different ideas how to choose these parameters. They
focus mostly on high detection rates, ignoring possi-
ble higher false alarm rates. But as outlined above,
low false alarm rates are indispensable in automotive
context and thus another method for the parameter se-
lection is used. By a grid search with k-fold cross-
validation and a stepwise refinement of the parameter
range an appropriate value for σ is found, whereas ν is
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set beforehand. As optimization criterion for the grid
search the minimum mean validation error across all
folds is used in order to receive a good generalization
ability at low false alarm rates.

6 ANOMALY DETECTION
SYSTEM FOR
ETHERNET-BASED
COMMUNICATION

This section provides a detailed view on the design
of the basic anomaly detection system elements con-
cerning Ethernet-based communication. At first, the
static checks are outlined in subsection 6.1. In accor-
dance with the processing sequence of messages, sub-
section 6.2 introduces the extracted features used by
the following learning checks. Finally, subsection 6.3
discusses the configuration of the presented machine
learning algorithms with respect to the developed sys-
tem.

6.1 Static Checks

For the implementation of static checks a slim model
of the underlying system specification (communica-
tion matrix) is beneficial. Normally, vehicle manu-
facturers specify the desired communication on their
in-vehicle Ethernet networks in a standardized man-
ner. One example for such a semi-formal specifica-
tion is the AUTomotive Open System ARchitecture
(AUTOSAR) System Description, which is a Exten-
sible Markup Language (XML)-based format. It is
difficult to use such files directly to check messages
against violations of the specification since these files
are usually very large and of complex structure. Thus,
another model was developed being able to represent
the normal Ethernet communication in a slim form
based on a Unified Modeling Language (UML) class
diagram. The basic idea of the model is to concentrate
all parameters given by specification and which can
represent a restriction of allowed Ethernet messages
within a network. To allow for efficient anomaly
detection it is used as a whitelist model containing
only the allowed message parameter values. Because
of the whitelist approach implicitly every parameter
value that is not included in the model is prohibited.
For example, it could be specified that an ECU is al-
lowed to send data with one specific source IP ad-
dress. In that case, the allowed parameter value is
only this single address, whereas every other address
is forbidden to use.

As anomaly detection is conducted on a spe-
cific ECU, the system is configured especially for it.
Therefore, the model describes the communication of
the selected ECU with its partners. Since the root el-
ement holds the parameters relating to the Ethernet
protocol, one instance of the model represents one
communication path in the network. In other words,
the allowed communication between the selected and
one other ECU is modeled. Hence, if there exists
communication with e.g. six other ECUs, six differ-
ent instances of the model are necessary to include all
information for the static checks. During normal op-
eration of the anomaly detection system any received
and sent Ethernet message is compared to all model
instances. If any model is matching to the message re-
garding all defined parameters such as addresses and
packet length, the message is considered normal. Oth-
erwise, if no model instance matches, the message is
an anomaly.

6.2 Feature Selection

One very important but mostly ignored challenge is
the selection of proper features for the following ma-
chine learning algorithms. Suitable features contain
all information necessary to distinguish between nor-
mal and anomalous data instances. Considering only
the payload data of messages in automotive com-
munication, the initial feature selection corresponds
to the extraction of single signals from the payload,
which can be done based on the communication ma-
trix. Physical signals like the speed of the vehicle can
be interpreted as elements of a time series. Hence, the
time series itself and further derived features form the
dimensions of the input data. On the other hand, the
definition of features, which model the overall behav-
ior of a communication, is more challenging and has
to be conducted with care. Evaluations of network
IDS are frequently based on the KDD Cup Dataset
(Stolfo, 1999), which contains data instances as 35-
dimensional feature vectors. Unfortunately, the fea-
tures are designated to be evaluated offline and are
specific for Internet applications as http or email.

Therefore, they are not applicable for real-time
anomaly detection in automotive networks and it is
necessary to define specific adequate features for in-
vehicle Ethernet.

As the anomaly detection system is executed on
one specific ECU, the features must be defined ac-
cordingly. For that purpose the concept of global and
local features is introduced. A categorization into
these domains allows for a better analysis of anoma-
lous communication behavior. On the one hand, an
anomaly can influence a specific connection between
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Table 1: Selected features to describe Automotive Ethernet communication.

Layer Scope
Global Local

MAC num. of communicating MAC addresses mean packet length in bytes
mean packet length in bytes mean time interval between packets
data rate in bytes per second received bytes per second
mean time interval between packets sent bytes per second
entropy of local MAC addresses packet length of each packet
entropy of remote MAC addresses time interval since last packet

IP entropy of local IP addresses mean packet length in bytes
entropy of remote IP addresses mean time interval between packets
num. of communicating IP addresses received bytes per second
entropy of the VLAN-ID sent bytes per second
num. of VLANs on which is communicated packet length of each packet

time interval since last packet
UDP/TCP entropy of local ports mean packet length in bytes

entropy of remote ports mean time interval between packets
num. of used local ports received bytes per second
num. of used remote ports sent bytes per second

packet length of each packet
time interval since last packet
additionally for TCP communication:
% URG, PUSH, RST, SYN, FIN packets
TCP window size

two ECUs, for example a higher frequency of mes-
sages, which is therefore a local anomaly on this sin-
gle connection. On the other hand, anomalous be-
havior can influence all connections of an ECU, for
example if this ECU is sending no messages at all.
Thus, this anomaly has a global effect. Considering
these two different domains, local and global features
can be defined accordingly, describing either one or
all connections of an ECU. Another possible catego-
rization is based on the used communication proto-
cols on top of Ethernet like IP, UDP (User Datagram
Protocol) and TCP (Transmission Control Protocol).
Features can be defined describing the behavior with
respect to one specific communication protocol.

Having a look at the KDD Cup features and other
recent research (Lakhina et al., 2005; Lazarevic et al.,
2003; Mantere et al., 2012) there are some basic com-
munication properties represented in all used feature
sets. These are the temporal behavior such as latency
and connection duration, packet sizes, flow direction
and the number of communication partners. On the
basis of the discussed feature categorization and the
main properties which are frequently used in other re-
search, the features in table 1 are defined and used
within the anomaly detection system. As depicted in
Table 1, the entropy of different variables is used as
feature.

Ĥ =−
M

∑
i=1

pi log(pi) (11)

The entropy is calculated according to equation
11, where pi = P(X = xi) denotes the probability of
variable X having the value xi ∈ {x1, . . . ,xM}. It is a
measure of distribution, because higher entropy val-
ues indicate a variable that is more likely to be uni-
form distributed. Since e.g. the probability of an ad-
dress occurring at a certain frequency is not given be-
forehand, it has to be estimated online. For that rea-
son, a sequence of occurred variable values has to be
recorded. Using a recording window of length M the
probability of every recorded value can be calculated.
Alongside, the mean calculation is also based on the
last M variable values. For this work, M is set to 15.

6.3 Learning Checks

After the definition of proper features to describe in-
vehicle Ethernet communication, learning checks can
be applied on them. Following the feature catego-
rization, it is necessary to use more than one learn-
ing check to analyze the communication. Not all fea-
tures are valid for every message. For example, the
local features describing one specific communication
path on MAC layer are not valid for messages of other
paths. Thus, a particular learning check is necessary
for every communication path on every layer. In addi-
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tion, the global features can be analyzed with respect
to one layer only, or across layers. Therefore, one
learning check is applied on the global features of one
layer and one on the MAC-IP, MAC-IP-UDP/TCP
and IP-UDP/TCP global features, respectively.

One important aspect concerning the use of the
PCA-based method for anomaly detection is the se-
lection of the parameters p and q. Following Shyu et
al., the principal components that account for more
than 50 percent of the total variance are used as
the p components, and the ones with eigenvalues
smaller than 0.2 as the q components. Regarding the
OCSVM, the parameters ν and σ are chosen before
the training process as outlined above. Based on our
research results ν was set to 0.01. This value yields
the lowest false positive rates during the examina-
tion of the evaluation data set used below in section
7. Other possibilities to optimize ν and σ, such as
choosing both values based on the grid search with
k-fold cross validation process or the DFN method
suggested by Xiao et al. (2014), caused more false
alarms. Thus, they were not investigated further.

The training process is carried out by a special
program using recorded Ethernet messages. These
messages are passed as input to the anomaly detec-
tion system. Using the static checks, the base features
of every message are extracted and forwarded to the
feature extraction block. Inside of this block, further
calculations are conducted to generate the feature val-
ues for training, such as the calculation of entropies.
The learning checks used in this work buffer all input
feature values as they are batch learning algorithms.
After the processing of all messages by the anomaly
detection system, the actual training process can be
executed. For all learning checks the maximum value
of the anomaly score, generated during validation, is
used as threshold for the detection of anomalies dur-
ing runtime.

7 EVALUATION

The evaluation of the proposed system is performed
using a simulated environment. Ethernet communi-
cation is generated with the tool CANoe from Vector
Informatik. Several simulated ECUs exchange mes-
sages providing a behavior close to a real in-vehicle
Ethernet network. For simplicity reasons, the static
checks are not generated directly from the communi-
cation matrix but built on basis of the observed mes-
sages during the training process. Hence, every mes-
sage which would arouse an anomaly within the static
checks is used to extend the whitelist model so that all
training messages are considered normal by means of

the static checks.
For the training process, 50.000 Ethernet mes-

sages were collected, which are intended for the se-
lected ECU. Thus, the messages are either sent or re-
ceived from it. The evaluation data set consists of
100.000 messages and is modified in several ways to
generate synthetic anomalous behavior.

• Replaying previously sent normal packets: Some
packets are randomly selected and replayed once,
five or 20 times. The replayed packets are in-
serted starting 0.1 ms after the original one and
with a period of 1 ms, if applicable. This attack
can be used to gain information about the behav-
ior of ECUs as the answers can be recorded.

• Modification of the message timestamps: The
original timestamp of randomly selected mes-
sages is modified by adding a gaussian noise with
a mean of zero and a variance of 1 ms or 10 ms.
This shall simulate messages sent too early or too
late, which could be caused by either a malfunc-
tion or an ECU that was taken over by an intruder.

Additionally, a trace of 220 s duration containing a
third type of anomalous behavior is evaluated, using
the modification of message cycle intervals: A part of
the simulated Ethernet traffic is sent in a cyclic man-
ner with defined intervals. The modification of the
cycle intervals can be used to create anomalous be-
havior as the corresponding messages are sent more
often or rarely if the cycle time is modified with re-
spect to the training data. Six different modifications
were taken into account.

The following evaluation of the selected algo-
rithms is based on their true positive (TP) and false
positive (FP) rate. A normal message that is classi-
fied as anomaly is a false positive, whereas an anoma-
lous message which is classified as anomaly indicates
a true positive detection. In other words, anomalies
represent the positive, normal data the negative class.
As the anomaly detection system works in an online
manner, every processed message will be classified as
normal or anomaly. Since the features used to observe
Ethernet communication include calculations based
on a certain time interval, one anomalous message
can influence the classification result for a complete
interval. Hence, not only the anomalous message it-
self will be classified as anomaly but possibly also
the following ones. On this account, it is allowed to
detect an anomaly within a time interval of two sec-
onds after its occurrence. Within this interval, mul-
tiple messages classified as anomalies will result in
only one true positive. Outside the detection interval,
every message classified as anomalous is a false pos-
itive.

VEHITS 2018 - 4th International Conference on Vehicle Technology and Intelligent Transport Systems

470



Results of Static Check. First of all, it has to be
noted that the static checks do not have to be eval-
uated with synthetic anomalies. As a concept that
is not based on machine learning it is predetermined
how the static checks will react on every message.
Thus, it is not necessary to examine which messages
are detected as anomalies. Because the static checks
for Ethernet are performed on basis of a whitelist, ev-
ery message that is not covered by the model will be
classified as an anomaly. The comparison of a new
message against the model can be implemented effi-
ciently in terms of memory consumption and comput-
ing power by using a series of classical if...then state-
ments. In summary it is an effective and efficient way
to check Ethernet communication against the specifi-
cation.

Results of Learning Checks. Since the perfor-
mance of machine learning-based methods is not
known in advance, the detection of anomalies by
learning checks has to be analyzed in detail. The re-
sults of the evaluation with different synthetic anoma-
lies are depicted in Tables 2, 3 and 4. Examining the
replay scenario shows that it is easier for all investi-
gated methods to detect five or 20 inserted messages
than just one additional message. All investigated al-
gorithms detect a noticeable higher amount of anoma-
lies with an increasing n, where n is the number of
replayed messages, see the true positive rates in Ta-
ble 2. However, the OCSVM is capable of detecting
more anomalies than the other methods independent
of the number of replayed messages, whereas the Ma-
halanobis Distance recognizes least.

As depicted in Table 3, it seems to be a more diffi-
cult task to detect messages with an anomalous times-
tamp. The detection rates are below the results in
the replay scenario, see Table 2. Another interesting
fact is that a higher variance σ2 of the added gaus-
sian noise is not necessarily leading to higher detec-
tion rates. For the Mahalanobis Distance, the number
of detected anomalies is even lower with σ2 = 10ms.
The PCA-based method is the best option for this type
of anomaly in terms of true positives, but at the cost of
a slightly higher false positive rate than the OCSVM.
Concerning the last type of synthetic anomalies the

results are depicted in Table 4 and in figure 2. The
dashed lines in figure 2 indicate the actual class of the
analyzed messages, whereas the solid lines show the
classification results of the particular learning check.
The Mahalanobis Distance identifies only one out of
six inserted anomalies and thus provides the worst
detection performance. It is possible to detect three
anomalies by PCA, whereas the OCSVM detects only
two. Therefore, the PCA-based detection yields the

Table 2: Detection- and false alarm rates in the scenario of
replaying n normal messages.

Mahalanobis PCA OCSVM
n = 1

FP-Rate 0.0019 0.0026 0.0026
TP-Rate 0.2750 0.3250 0.7250

n = 5
FP-Rate 0.0015 0.0021 0.0019
TP-Rate 0.4872 0.7179 0.7692

n = 20
FP-Rate 0.0018 0.0024 0.0022
TP-Rate 0.9750 0.9750 1.0000

Table 3: Detection- and false alarm rates in the scenario of
adding gaussian noise with variance σ2 to message times-
tamps.

Mahalanobis PCA OCSVM
σ2 = 1ms

FP-Rate 0.0021 0.0028 0.0023
TP-Rate 0.1212 0.3030 0.2121

σ2 = 10ms
FP-Rate 0.0016 0.0022 0.0017
TP-Rate 0.0909 0.3030 0.2424

Table 4: Detected anomalies in the scenario of modified
message cycle intervals.

Anomalous
time interval Mahalanobis PCA OCSVM

30 s - 45 s 7 7 X
55 s - 70 s 7 (X) (X)
85 s - 100 s 7 X 7
120 s - 135 s X X X
155 s - 170 s 7 7 7
185 s - 200 s 7 X 7

best results in this scenario. PCA classifies some mes-
sages directly after the second detection interval as
anomaly, which can be interpreted as reaction to the
second anomaly. Besides, the OCSVM was able to
detect the second anomaly. But since the OCSVM is-
sues alarms in the time interval between first and sec-
ond anomaly, it is not possible to distinguish between
them. Thus, the detection of the second anomaly in
the time interval of 55 to 70 s is denoted in parenthe-
ses in Table 4 for both the PCA and the OCSVM. It
should be noted that the used features contain infor-
mation calculated by a sliding window approach, such
as the mean time interval between packets. Thereby,
after returning to normal message cycle times and
hence normal communication behavior, there is still
the possibility to detect anomalies. This can be one
explanation for the OCSVM characteristic of issuing
false positives between first and second as well as sec-
ond and third anomaly.
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Figure 2: Evaluation of modified message cycle intervals.

8 CONCLUSION AND FUTURE
WORK

This paper extended our existing hybrid anomaly de-
tection system for ECUs (Weber et al., 2018) by the
support for Ethernet-based communication. The sys-
tem is designed for in-vehicle ECUs but it can be
adapted to other application domains. Specification-
based detection is implemented by the so-called static
checks and used in the first stage of the system. In
contrast to IT systems, there is usually a semi-formal
network and data specification available for in-vehicle
networks, which is used to implement an effective and
efficient anomaly detection. A simplified model was
created enabling a slim definition of normal Ethernet
communication. It is applied within the static checks
as a communication whitelist similar to the specifica-
tion of a firewall. Every message which is not con-
form to the whitelist model is considered anomalous.

The overall behavior of the Ethernet-based com-
munication, like the number of messages in a cer-
tain time interval, is usually not specified and there-
fore not represented in the model. Thus, machine
learning methods are used in the second stage of the
hybrid anomaly detection system capable to extract
the normal behavior from training data. The paper
at hand evaluated the performance of the statistical
methods Mahalanobis Distance and Principal Compo-
nent Analysis as well as the classical machine learn-
ing method One-Class Support Vector Machine. Be-
fore applying these algorithms, an appropriate feature
set was defined focussing on a good description of in-
vehicle Ethernet communication and enabling online
detection of anomalies. First results based on the eval-

uation of different synthetic anomalies are promising.
Especially the PCA-based method showed good de-
tection rates at few false alarms combined with low
expenses related to memory consumption and com-
puting power. Therefore, this technique is an inter-
esting candidate for future research. Apart from that,
the Mahalanobis method did not detect a considerable
number of anomalies. The OCSVM should be con-
sidered in future as well, because it detected different
types of anomalies than the PCA. This indicates that
it might be beneficial to use a variety of different al-
gorithms to detect a large portion of possible anoma-
lies. For that reason, it could be interesting to evaluate
more methods in future such as neural network based
approaches. Another recent candidate for investiga-
tion in future, LODA, is strongly related to the PCA
and was introduced by Pevný (2016).

One major point for future research is the defined
set of features used to model the Ethernet-based com-
munication. As outlined above, with this feature set it
is possible to detect different types of anomalies with
various methods. However, the exact influence of the
individual features on the detection performance was
not investigated yet. An analysis on a reduced fea-
ture set to minimize the required resources or on an
extended feature set to improve the detection perfor-
mance could be conducted.

The evaluation was performed on the basis of syn-
thesized communication within a simulation environ-
ment on an office computer. Hence, further research
includes the test of the system with real communica-
tion data and the implementation of the system on a
real ECU with strict resource limitations and real-time
requirements.
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