
Organizational Patterns between Developers and Testers
Investigating Testers’ Autonomy and Role Identity

Michal Doležel1 and Michael Felderer2,3
1Department of Information Technologies, University of Economics, Prague, Czech Republic

2Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
3Department of Software Engineering, Blekinge Institute of Technology, Karlskrona, Sweden

Keywords: Software Testing, Agile Testing, Conflict, Profession, Role Identity, Social Identity Theory, Organizational
Structure, Combined Software Engineering, Software Engineering Management.

Abstract: This paper deals with organizational patterns (configurations, set-ups) between developers/programmers and
testers. We firstly discuss the key differences between these two Information Systems Development (ISD)
occupations. Highlighting the origin of inevitable disagreements between them, we reflect on the nature of
the software testing field that currently undergoes an essential change under the increasing influence of agile
ISD approaches and methods. We also deal with the ongoing professionalization of software testing. More
specifically, we propose that the concept of role identity anchored in (social) identity theory can be applied to
the profession of software testers, and their activities studied accordingly. Furthermore, we conceptualize
three organizational patterns (i.e. isolated testers, embedded testers, and eradicated testers) based on our
selective literature review of research and practice sources in Information Systems (IS) and Software
Engineering (SE) disciplines. After summarizing the key industrial challenges of these patterns, we conclude
the paper by calling for more research evidence that would demonstrate the viability of the recently introduced
novel organizational models. We also argue that especially the organizational model of “combined software
engineering”, where the roles of programmers and testers are reunited into a single role of “software
engineer”, deserves a closer attention of IS and SE researchers in the future.

1 INTRODUCTION

Information Systems Development (ISD) is a team
activity. Not even mentioning varying needs and
demanding expectations of future IS users, the nature
of the interplay among programmers, testers,
analysts, and other functional roles involved in the
execution of ISD activities influences outcomes of
ISD projects to a great extent (Walz et al., 1993).
Agile ISD is seen as an important step towards
improving this interplay by promoting values of
flexibility, cooperation, learning, and leanness
(Conboy, 2009). Compared to traditional (i.e.
sequential or phase-oriented) ISD methodologies, the
Agile ISD philosophy brings two principal changes
regarding the “human element” in ISD.

First, it assumes a less fragmented and little
formalized distribution of responsibilities across
different functional roles active in ISD, including
software testers (Cohn, 2010). Second, it puts forward
the view that software development is a complex

socio-technical process understandable through
studying people and their interactions (Balijepally et
al., 2006). These two changes motivate our paper.

Though systems/software testing is a vital part of
ISD activities, it has received scant attention in
previous Information Systems (IS) research (Hassan
and Mathiassen, 2018). Similarly, Software
Engineering (SE) research has focused on technical
challenges of software testing, and remains mostly
silent on the management ones (Garousi and Felderer,
2017). In particular, there is very little work available
that discusses the evolving role of testers in agile
teams from an organizational point of view based on
social science theories. This perspective is what we
aim for, but the present paper is just a first step in this
direction.

This paper concentrates on software testing
personnel (testers, test engineers, test analysts etc.)
and the changing nature of their role at present day.
Due to space constraints, however, we do not further
expand on how various sub-professions in software

336
Doležel, M. and Felderer, M.
Organizational Patterns between Developers and Testers.
DOI: 10.5220/0006783703360344
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 336-344
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

testing (e.g., test managers) are exactly impacted. We
take a simplistic view that software tester or test
engineer has been the one who carries out the
majority of testing work in ISD.

Our aim here is to review relevant Information
Systems (IS) and Software Engineering (SE)
literature, identify gaps in it, and prepare the grounds
for presentation and interpretation of our results based
on an ongoing research project. In so doing, this paper
investigates the interconnected problems of testers’
role identity and organizational independence in ISD
activities. To understand the problem comprehensi-
vely, we use also literature from Management and
Organization Studies (MOS).

This paper proceeds as follows. Section 2 lays
conceptual foundations. Section 3 presents an over-
view of the organizational patterns suggested by us as
distinct. Section 4 indicates the further direction of
our research. Finally, Section 5 concludes the paper.

2 CONCEPTUAL BACKGROUND

The points of departure of our paper are discussed in
this section. Section 2.1 briefly highlights certain core
features of Agile ISD approaches. Section 2.2
discusses differences between programmers and
testers. Section 2.3 conceptualizes the problem of
testers’ independence. Finally, Section 2.4 concludes
by presenting some thoughts on the profession of
software testers.

2.1 Agile ISD

The popularity of agile IS development methods
(Agile) has been steadily growing over the last decade
(Conboy, 2009). More specifically, aside from small
teams and start-up businesses, Agile gradually
penetrates also traditional enterprises. In some
organizations, the observed growth of Agile
development initiatives can be, at least partly,
attributed to the general popularity of the concept.
Managers and executives have been always paying
attention to emerging management trends, and Agile
ISD approaches may be seen as one among their
present day favourites (Cram and Newell, 2016).
Cautiously stated, true efforts to introduce a
revolutionary, people-centric management
philosophy into the world of corporate organizing
may drive the remaining efforts (Laloux, 2014).

Considering the nature of the shift from
traditional to Agile ISD methods, it is essential to
recognize that agile software development consists of
socio-technical activities. This understanding

contrasts with the predominantly technical,
mechanistic understanding of software processes at
earlier times (Balijepally et al., 2006), even though
the socio-technical nature of software processes
obviously did not emerge over-night (Fuggetta and
Nitto, 2014). Indeed, ISD personnel is in the centre of
research on ISD and software processes nowadays.

Another important change introduced by Agile
directly influences the terminology adopted in this
paper: Instead of the previously common term
“developer”, we use a less-frequent term
“programmer” to avoid confusion with the Agile
terminology. Specifically, the concept of cross-
functional development team promoted by Agile has
a significant organizational impact: “the
[development] team needs to include everyone [e.g.,
programmers, testers, analysts, and business
representatives] necessary to go from idea to
implementation” (Cohn, 2010, p. 152).

2.2 Two Different Software Species

The mind-set of programmers and testers is
considered as different (Pettichord, 2000). A tester is
the one who empirically proves the system under test
to investigate whether the system is able to stand its
future operational mission. Examining system’s
behaviour, he or she is driven by the ideal of
protecting future end users and mitigation as many
risks as possible. By breaking the system, the tester
pursues to improve it.

By contrast, programmers are the builders.
“[F]lexing their intellectual muscles” (Cohen et al.,
2004, p. 78), they may look for creative, technically-
sound solutions irrespectively of potential negative
implications for end-users. Differently put, while
many programmers quite narrowly focus on technical
aspects of ISD by prioritizing solution efficiency in
technical terms, testers look primarily for solution
effectiveness and fit-for-future-use. These
differences are summarized in Table 1. Naturally, this
table presents a sort of black/white, simplistic
perspective.

Table 1: Characteristic differences between programmers
and testers. Adapted from Zhang et al (2018).

Dimension Programmers Testers

Work mindset Build Break

Key value Technical
excellence

Customer
advocacy

Thinking focus Theory Practice

Project goal Efficiency Effectiveness

Job knowledge Depth Breadth

Organizational Patterns between Developers and Testers

337

It should come as no surprise that this dichotomy
frequently results in conflicts between the two groups.
Importantly, previous research indicates that this
conflict is inherent to software development activities
(Cohen et al., 2004). In principle, there are many
sources of the conflict. From their rich research data,
Zhang et al. (2014) identified five major categories,
focusing on three common elements: process, people,
and communication. Conflict management strategies
differ accordingly (Cohen et al., 2004).

However, our knowledge that the conflict is
inevitable little helps with avoiding organizational
misalignments between programmers and testers in
real organizations (Onita and Dhaliwal, 2011). This
also brings us to the point that the observed conflict
has not been comprehensively studied in traditional
ISD approaches with respect to the V-model. This
ISD concept (Boehm, 1984) portrays segmented test
levels (i.e., unit, integration, system, and user
acceptance), and assumes different expectations and
testing tasks distribution at each of the levels. But
most importantly, the V-model indicates that there
will be a specific dynamics between programmers
and testers at each of the levels.

Another walkable approach might be to radically
change the rules of the ISD game. Going this route,
Agile practitioners argue that Agile ISD methods help
to reduce the tensions between programmers and
testers by redefining the role of testers (Cohn, 2010).
Aside from other factors, this redefinition is
associated with the elimination of testers’
independence from programmers. Yet another group
of Agile practitioners calls for removing testers from
ISD processes entirely (Anderson, 2003). In general,
Agile ISD does not conceptualize software testing
using the V-model, because all necessary test
activities must be executed iteratively (Cohn, 2010).

We discuss the mentioned organizational
strategies in Section 3. Prior doing so, we explain the
historical role of testers’ independence in ISD, and
the ongoing professionalization of software testing.

2.3 The Cost of Testers’ Independence

In general, testers’ independence is codified by
various practitioner sources by postulating a
“common wisdom” that

A certain degree of independence (avoiding the
author bias) often makes the tester more effective
at finding defects and failures.

(ISTQB, 2011, p. 18)

The above thesis says that to prevent the
“contamination” of their perspective, testers need to

enjoy a certain level of organizational autonomy.
Two examples follow. A high level of independence
is when testers work in isolation and use formal ISD
documentation as the primary source of information
about tested applications. In theory, the testers should
be better prepared to discover programmers’ lapses.
In practice, they may find themselves isolated and
disconnected from project activities. In addition, such
organizational set-up may strengthen adversarial
relationships between programmers and testers
(Grechanik et al., 2010).

An extreme case of testers’ independence
typically occurs when contractual relationships are
involved. First and foremost, an external test factory
run by a third party may be contracted (Andrade et al.,
2017). Second, as a tool of vendor management, a
special client unit might be designated to perform
quality verification of vendor’s IS development and
testing activities. In such case, another psychological
factor may drive vendor personnel’s behaviour. That
is the angst of defects that escaped detection at vendor
premises (Shah and Harrold, 2013).

Despite the fact that some organizations decided
against the organizational set-up with a high level of
independence for testers, practitioner literature
frequently promotes it (McKay, 2007). In addition,
the existence of an independent testing unit in
organizations was previously institutionalized as an
important criteria of test maturity; for example, it is
suggested by a popular test management guideline
(TMMi Foundation, 2012).

2.4 The Profession of Software Tester

In a broad sense, professions are vocations that carry
out professional activities in a given area of practice
(Hughes, 1958). The execution of professional
activities might be conditioned by a previous formal
training, length of practice, or entirely open to a
loosely defined group of people who claim to belong
among the professionals. The former two criteria
apply, for example, to medical professions, whereas
the latter one to software programmers and testers.
Aside from formal regulations that might be in place,
many professions informally or semi-formally (e.g.,
through optional certifications) postulate certain
behavioural norms that are then expected to be
followed by the profession’s members.

Using the language of social sciences, this process
is related to the social construction of “self-identity”
of professions. Through the formation of shared
meanings, members of a profession gradually reach
consensus what the professional norms are. In the
following, we use the term “professional identity” to

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

338

label distinct “goals, values, beliefs, norms, [and]
interaction styles” (Ashfort, 2001, p. 6) settled in a
profession. In young fields like software
development, the above formative processes are
naturally different from the processes in well-
established, formally regulated professions like law
or medicine (Evetts, 2014).

For a number of years, testers were socialized in
ISD environments where they were to become quality
advocates (a rather soft version of the metaphor),
quality gatekeepers (a mild version of the metaphor),
or quality police/enforcers (an extreme version of the
metaphor) (Charrett, 2012). Not long ago, managers of
testing teams were instructed to build their unit as “The
Perfect Beast” (McKay, 2007 n.p.), by metaphorically
combining qualities of several animal predators to fight
with software bugs (and possibly also with
programmers). And Software Quality Assurance
departments seen as quality watchdogs were
encouraged to “bite if necessary” (Chemuturi, 2011, p.
65). Interestingly, people from industry routinely (but
incorrectly) mix the role of software quality assurance
and the one of software testing (Koch, 2000).

Often mentioned during trainings, conferences, or
in books, all these metaphors and labels may be seen
as part of testers’ professional identity built through
the past decades. The metaphors also somehow relate
to the level of testers’ independence and their main
mission as explicitly formulated or tacitly expected
by an organization. Sadly enough, little guidance
grounded in empirical research is available to the
practitioners who struggle with whether one of the
mentioned modes is fit-for-purpose in their company.
Differently put, the role models that describe
expected or ideal professional behaviour in software
testing are often anecdotal, based on the personal
experience of trainers, mentors, or various testing
school gurus. And as a profession, software testing
heavily relies on personal experience, which is not
always shared with a wider community (Beer and
Ramler, 2008).

3 TYPICAL ORGANIZATIONAL
CONFIGURATIONS

In this section, we review three typical organizational
patterns that can be encountered in software
companies and IT units/divisions nowadays.
Organizational configuration implemented in a
particular company results from perceptions held by
the company regarding the role of software testers in
the company’s ISD processes (Charrett, 2012). Note

that we do not discuss various sourcing options (e.g.,
offshore, onshore, nearshore), but we focus on
programmers and testers in the sense of their
standings and organizational relationships.

3.1 Traditional Testing: Testers as
Gatekeepers

3.1.1 Grounding

Originating in a late-1970s vision of Barry Boehm
(1979), software testing has been traditionally
perceived as a distinct, separate ISD phase. The
concept of separate test levels with dedicated testing
responsibilities codified by the V-model (i.e., unit,
integration, system and user acceptance test levels)
has been traditionally presented as a form of test
maturity ideal. According the V-model, somewhat
exaggeratedly put, the more test levels exist in the
organization and the higher number of diverse groups
involved in software testing, the more mature test
process the organization exercises.

3.1.2 Key Industrial Challenges

Though the dilemma “What level of independence
should testers enjoy?” is one among “test management
classics” for ISD managers, little research effort has
been devoted to explore it scholarly so far (Garousi and
Mäntylä, 2016; Sunyaev and Basten, 2015). Not
surprisingly, the extreme cases when testers and
programmers are geographically separated with no
mechanisms to facilitate effective communication
between them are typically found dysfunctional
(Grechanik et al., 2010). However, quite little is known
about the real effects of having testers reporting back
to a manager who supervises both programmers and
testers in a co-located environment. This single-point-
of-responsibility configuration is established in many
companies and supported by the way how a typical ISD
project is managed (Atkinson, 1999). Though the
problem of conflicting goals of the project manager or
development manager is quite evident, there is no
simple remedy.

This case is represented by the full independence
scenario (Figure 1, type A). Importantly, the character
of the metaphorical wall (“Who reports to whom?”)
and its “permeability” (“How testers interact with
programmers?”) should be of interest to further
research efforts exploring this area. Similarly, the
conflicting goals dilemma should be explored from
the viewpoint of software testers and their everyday
activities.

Organizational Patterns between Developers and Testers

339

Programmers Testers

Programmers Testers

Software
Engineers

Type A: Separate
functional teams

Type B: Single
development team with

embedded testers

Type C: Team with
eradicated functional

specializations

“ISOLATED TESTERS”

“EMBEDDED TESTERS”

“ERADICATED TESTERS”

Figure 1: Typical organizational patterns between programmers and testers.

3.2 Agile Testing: Removing the Wall

3.2.1 Grounding

To solve the challenge of conflicting ISD priorities,
Agile ISD approaches understand software testing as
part of whole-team responsibility (Cohn, 2010;
Crispin and Gregory, 2009). SCRUM, a well-known
agile framework, explicitly states that testers are
integral part of the development team. In other words,
testers are “embedded” into the development team,
and their responsibilities overlap with programmers
to some extent (Figure 1, type B). Blending the
responsibilities of programmers, testers, and analysts
by creating a “cross-functional team”, SCRUM aims
to remove unnecessary organizational boundaries.

Scrum recognizes no sub-teams in the
Development Team, regardless of particular
domains that need to be addressed like testing or
business analysis; there are no exceptions to this
rule; ...

(Scrum.org, n.d.)

In theory, the inherent conflict between
programmers and testers should be solved. In
practice, research shows that some testers still report
problematic relationships with programmers (see
below). This could be partly attributed to the fact that
there is no single way of “doing Agile ISD”; the same
label “Agile” may represent quite diverse ISD
strategies in reality. Aside from pure Agile ISD
approaches, many companies follow the way of
tailoring or even dabbling the original Agile ISD
philosophy (Cram and Newell, 2016). The latter two
approaches indicate that in present days some
companies tend to hybridize software processes rather
than fundamentally transform their nature
(Kuhrmann et al., 2017).

3.2.2 Key Industrial Challenges

Practitioner literature suggests that moving from
waterfall to agile environment may be a challenging
task for testers (Crispin and Gregory, 2009). The
main reason behind this challenge is the nature of
expected change in testers’ mind-set towards frequent
direct communication and participative behaviours
(Cohn, 2010).

The fact that transitioning to Agile does not assure
happiness of testers was explicated by Deak et al.
(2016). From their work, however, it is not entirely
clear why “more agile [than waterfall] testers were
unhappy about their relationship with the
developers”. Their research indicates that “removing
the wall” might be not enough if subsequent coaching
strategies for both programmers and testers are not
implemented in order to increase “group maturity” of
the ISD team (Gren et al., 2017).

Based on these challenges, the essence of future
research efforts could lay in (i) understanding
effective coaching mechanisms to help programmers
and testers transitioning from waterfall to agile, and
(ii) the creation of guidelines to help these groups
working in hybrid environments where not all agile
principles are applicable in a pure form.

3.3 Combined Software Engineering:
Eradication of Testers

3.3.1 Grounding

“Combined software engineering” is a term
popularized by Microsoft (Dobrigkeit et al., 2016).
The notion implies that there had been traditionally at
least two broad functional responsibilities and career
paths in ISD: programming and testing. (In this
discussion, for the sake of simplicity, we ignore
distinct career paths of software architects/analysts

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

340

and development managers.) They may had been
given titles such as “Software (Development)
Engineer” and “Software (Development) Engineer in
Test” (Page et al., 2009) . Note that Google, among
others, is known to differentiate between “Software
Engineers in Test” and “Test Engineers” more
precisely (see Whittaker et al., 2012).

The original organizational situation of having
some dedicated testing roles clearly differs from
having no testers at all historically. The latter may be
typical in smaller or “less mature” – according the
traditional worldview – companies (Prechelt, 2016).
Speaking about the former, some companies recently
introduced certain organizational changes in order to
stop differentiating between their programmers and
testers in terms of their professional status. Simply
put, these companies have combined the two
previously independent ISD functions (Figure 1, type
C). These organizational changes are implemented
consistently with the companies’ hiring, firing, and
compensation & benefits policies. Recently the expert
public paid quite a lot of attention to the case of
Microsoft in which testers played an important role
(Thonangi, 2014).

3.3.2 Key Industrial Challenges

The idea of “combined software engineering” is quite
new and unproven. Though there are some interesting
blog posts (e.g. Jensen, 2016), there is not a lot of
information in printed literature to date. We see two
important goals on which further research should
concentrate: (i) to understand organizational enablers
of combined software engineering models, and (ii) to
help organizations with solving possible side effects
and people problems in the area of motivation when
such a model is introduced to the organization. In our
opinion, the first area can be elegantly studied using
cultural lens in order to understand nuances of
organizational life culturally (Smircich, 1983). The
latter one calls for more research on the motivation of
programming and testing specialists under the
mentioned organizational conditions (Beecham et al.,
2008; Deak et al., 2016).

4 RESEARCH DIRECTION AND
DISCUSSION

In this section, we briefly explain our open-ended
research idea. Our overall goal is to understand which
of the configurations explained above real
organizations use, and what the reasons behind their
decisions are. By exploring this problem, we hope to

provide a conceptual guideline to organizations
transitioning from traditional ISD approaches to
Agile ISD. Specifically, we believe that this
endeavour might help practitioners with forming and
managing cross-functional agile teams in enterprise
environment. Similarly, the new theory we aim to
develop will hopefully contribute to a better
theoretical understanding of this area. Overall,
regarding the theorizing which follows, we are
roughly guided by data from our ongoing research
projects.

It is our argument that the body of knowledge on
role identity (RI) accumulated in MOS can help with
further directing our research. The RI work is
informed predominantly by concepts originating in
social psychology and microsociology (or
sociological social psychology), in particular by
Social Identity Theory (SIT, see Tajfel and Turner,
1986) and Identity Theory (IDT, see Stryker and
Burke, 2000) respectively.

Role identities [or role-based identities] are
socially constructed definitions of self-in-role
(this is who a role occupant is). Role identities
anchor or ground self-conceptions in social
domains. To switch roles is to switch social
identities.

(Ashfort, 2001, p. 27)

A specific type of role identity is professional role
identity (or simply professional identity), which is the
term we have introduced in Section 2.4 without
providing much theoretical background. Differently
from personal identity, social, role, and professional
identities are based on group membership. With
regards to the problem studied by the present paper, it
is important to understand the concept of group very
broadly. In our case, the first group (a macro group)
might be that of the professional community of
software testers (where exists and its influence is
salient). The second group (a micro group) is that of
a particular ISD team where the tester works. An
additional group membership (a meso group) may be
introduced when the company centralizes software
testing activities under one tent of enterprise test
organization or test centre. These centralized entities
can form an additional organizational layer across the
existing landscape of ISD teams that have been
previously constituted in the company (Doležel,
2017). And naturally, these two or three social group
memberships can collide.

We thus propose that one needs to understand not
only the micro organizational context, but also more
abstract, high-level layers that contribute to forming
of the professional identity (i.e. the meso and macro

Organizational Patterns between Developers and Testers

341

levels). In this sense, one needs to identify the
influence of “institutional forces” (a term borrowed
from sociology). This need stems from the fact that
“professionals act as bridges between the institutional
forces of their professions and their respective
organizations” (Daudigeos, 2013, p. 725).

Our key thesis is thus provocative. We argue that
the macro social forces that drive the ongoing
professionalization of software testers may
significantly conflict with the core Agile principles
implemented in a purist (i.e. crusader) way at the
micro level. Crusader organizations are “employing
a highly prescriptive adoption of agile techniques,
alongside an avoidance of traditional approaches
entirely” (Cram and Newell, 2016, p. 9). By contrast,
dedicated software testers typically work in
traditional, larger, and “more mature” organizations.

When such a traditional organization wants to
suddenly become a crusader, software testers as a
profession may feel jeopardized by the ideas
presented by the Agile community, and react
defensively. An excellent example supporting our
view is presented by Larman and Vodde (2010) in
their book. Book sections titled “Avoid… Test
department”, “Avoid… TMM, TPI, and other [test]
‘maturity’ models”, and “Avoid… ISTQB and other
tester certification” (!) speak for themselves. It seems
not exaggerated to expect that if their advices are
followed by ISD managers literally, the relevant
organizational changes must result in a professional
identity crisis of software testers working for those
managers. Everything the testers learned in the past
is gone, and the world is not the same as it was. A
piece of anecdotal evidence describing testers’
reactions during a training run by Larman and Vodde
is presented in the same source.

Inversely, people in crusader organizations
typically believe that Agile is “a better, more rational
approach compared to traditional methods” (Cram
and Newell, 2016, p. 6). In other words, relevant
socio-psychological forces are aligned with the
organizational culture of such companies and people
happily work there while adoring the mentioned
principles of agility. As indicated above, this
balanced, positive state may significantly differ from
a situation, when an organization had institutionalized
different working patterns and interaction styles in the
past years, and suddenly decided to change them
overnight. In such cases, the psychological safety of
members of certain professional groups may be
significantly harmed. The previous work patterns and
interaction styles are suddenly out-dated, and the new
ones still to be created. More importantly, unless the
impacted groups feel safe and comfortable with the

new reality, the implemented change won’t be
successful (Burnes, 2004).

Though the above ideas are mostly speculative,
we present them in this paper because we believe that
they are quite important and promising for ISD
practice. It is also our hope that they may guide
further theory building efforts carried out by both IS
and SE researchers. Interestingly, though similar
interests were originally inherent mostly to research
in the sociology of professions, it is argued that this
discipline gradually “came to an intellectual
standstill” (Gorman and Sandefur, 2011, p. 290).
Instead of occupational sociologists, increasingly
often scholars who educate knowledge workers
dominate the field research on “their” professions,
focusing on everyday activities of “their”
professionals (ibid.).

5 CONCLUSION

This paper has discussed the topic of organizational
patterns between programmers and testers, and how
these patterns evolve in Agile ISD. Drawing on the
problem of testers’ independence (Sunyaev and
Basten, 2015), and extending the problem to the Agile
world, the paper has summarized existing knowledge
and indicated the further research direction. We have
taken a critical stance to pinpoint some problems we
see when “Agile ideals” are blindly followed and
used as a rhetorical tool and salvation device (Case,
1999).

Our position articulated in this paper is that the
previous IS and SE research indicates that
programmers and testers form distinct groups with
distinct social and professional identities. These
groups execute their work activities in a different
manner. We support the view that agile ISD must be
philosophically based on a new set of fundamental
principles (Cohn, 2010). However, based only on
anecdotal evidence, we remain undecided whether
transformation to a “combined software engineering”
model in a traditional company can be successful. If
it can, it will be imperative to understand situational
factors that contribute to this success (Clarke and
O’Connor, 2012).

We indeed agree that ISD teams may function
very well without dedicated testers (Prechelt, 2016).
We, however, cautiously note that before going this
route, a “traditional” company where software testers
are a well-established profession should carefully
analyse the impact of such decision, and propose
sound risk mitigating strategies. The history teaches
us that simply jumping on the bandwagon of the latest

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

342

management fad hardly ever paves the way towards
the success of the intended change (Case, 1999).

We are eager to hear about further independent
research efforts that probe into organizations who
deployed such models. We propose that success or
failure of the change initiative should be understood
in terms of the following criteria (though not
necessarily all adopted in a single case study): (i)
objective, measurable quality metrics demonstrate
that software quality is not degraded under the new
conditions; (ii) fulfilling all tasks of the former ISD
actors, new ISD teams have a high level of group
maturity (Gren et al., 2017); (iii) previous
programming and testing personnel is still motivated
and happily working in the new setting (Deak et al.,
2016), proud of their newly acquired identity. Based
on anecdotal evidence and our own work-in-progress
research data, we are concerned about, especially
with regards to the last criteria. We have noticed that
effects on the morale and motivation of both the
unique software species seem to devastating when the
changes are introduced insensitively, and people do
not understand reasons behind them (see also Jensen,
2016).

Our research continues to concentrate mostly on
the standing of testers in hybridized ISD settings
(Cram and Newell, 2016; Kuhrmann et al., 2017). We
work on an empirical study that uses the lens of SIT
and IDT to understand the challenges introduced by
blending the roles and responsibilities of
programmers and testers in agile ISD processes. In
parallel, we also explore the growing influence of
DevOps on software testing concepts, as exemplified
by the concept of “testing in production”.

REFERENCES

Anderson, D. J. (2003), Agile Management for Software
Engineering, Pearson Education, Upper Saddle River,
NJ.

Andrade, R., Santos, I., Lelli, V., Oliveira, K. and Rocha,
A. (2017), “Software Testing Process in a Test Factory:
From Ad hoc Activities to an Organizational Standard”,
International Conference on Enterprise Information
Systems, pp. 132–143.

Ashfort, B. E. (2001), Role Transitions in Organizational
Life: An Identity-Based Perspective, Lawrence
Erlbaum Associates, Inc., Mahwah, NJ.

Atkinson, R. (1999), “Project management: cost, time, and
quality, two best guesses and a phenomenon, it’s time
to accept other success criteria”, International Journal
of Project Management, Vol. 17 No. 6, pp. 337–342.

Balijepally, V., Mahapatra, R. and Nerur, S. (2006),

 “Assessing Personality Profiles of Software Developers
in Agile Development”, Communications of the
Association for Information Systems, Vol. 18 No. 1, p.
Article 4.

Beecham, S., Baddoo, N., Hall, T., Robinson, H. and Sharp,
H. (2008), “Motivation in Software Engineering: A
systematic literature review”, Information and Software
Technology, Vol. 50 No. 9–10, pp. 860–878.

Beer, A. and Ramler, R. (2008), “The Role of Experience
in Software Testing Practice”, Software Engineering
and Advanced Applications, pp. 258–265.

Boehm, B. (1984), “Verifying and validating software
requirements and design specifications”, IEEE
Software, Vol. 1 No. 1, pp. 75–88.

Burnes, B. (2004), “Kurt Lewin and the planned approach
to change: A re-appraisal”, Journal of Management
Studies, Vol. 41 No. 6, pp. 977–1002.

Case, P. (1999), “Remember re-engineering? The rhetorical
appeal of a managerial salvation device”, Journal of
Management Studies, Vol. 36 No. 4, pp. 419–441.

Clarke, P. and O’Connor, R. V. (2012), “The situational
factors that affect the software development process:
Towards a comprehensive reference framework”,
Information and Software Technology, Vol. 54 No. 5,
pp. 433–447.

Cohen, C. F., Birkin, S.J., Garfield, M.J. and Webb, H.W.
(2004), “Managing conflict in software testing”,
Communications of the ACM, Vol. 47 No. 1, pp. 76–81.

Cohn, M. (2010), Succeding with Agile, Addison Wesley,
Upper Saddle River, NJ.

Conboy, K. (2009), “Agility from first principles:
Reconstructing the concept of agility in information
systems development”, Information Systems Research,
Vol. 20 No. 3, pp. 329–354.

Cram, W.A. and Newell, S. (2016), “Mindful revolution or
mindless trend? Examining agile development as a
management fashion”, European Journal of
Information Systems, Vol. 25 No. 2, pp. 154–169.

Crispin, L. and Gregory, J. (2009), Agile Testing: A
Practical Guide for Testers and Agile Teams, Addison-
Wesley, Upper Saddle River.

Daudigeos, T. (2013), “In Their profession’s service: How
staff professionals exert influence in their
organization”, Journal of Management Studies, Vol. 50
No. 5, pp. 722–749.

Deak, A., Stålhane, T. and Sindre, G. (2016), “Challenges
and strategies for motivating software testing
personnel”, Information and Software Technology, Vol.
73, pp. 1–15.

Dobrigkeit, F., Meyer, S. and Uflacker, M. (2016), “Case
Studies on End-User Engagement and Prototyping
during Software Development”, Design Thinking
Research: Taking Breakthrough Innovation Home, pp.
183–213.

Doležel, M. (2017), “Images of Enterprise Test
Organizations: Factory, Center of Excellence, or
Community?”, Software Quality Days, Vienna.

Evetts, J. (2014), “The concept of professionalism:
Professional work, professional practice and learning”,

Organizational Patterns between Developers and Testers

343

International Handbook of Research in Professional
and Practice-Based Learning, pp. 29–57.

Fuggetta, A. and Nitto, E. Di. (2014), “Software Process”,
Proceedings of the on Future of Software Engineering,
pp. 1–12.

Garousi, V. and Felderer, M. (2017), “Worlds Apart:
Industrial and Academic Focus Areas in Software
Testing”, IEEE Software, Vol. 34 No. 5, pp. 38–45.

Garousi, V. and Mäntylä, M. V. (2016), “A systematic
literature review of literature reviews in software
testing”, Information and Software Technology, Vol.
80, pp. 1339–1351.

Gorman, E. H. and Sandefur, R. L. (2011), “‘Golden Age,’
Quiescence, and Revival”, Work and Occupations, Vol.
38 No. 3, pp. 275–302.

Grechanik, M., Jones, J. A., Orso, A. and Van Der Hoek, A.
(2010), “Bridging gaps between developers and testers
in globally-distributed software development”, FoSER,
Santa Fe, New Mexico, pp. 149–153.

Gren, L., Torkar, R. and Feldt, R. (2017), “Group
development and group maturity when building agile
teams: A qualitative and quantitative investigation at
eight large companies”, Journal of Systems and
Software, Vol. 124, pp. 104–119.

Hassan, N. R. and Mathiassen, L. (2018), “Distilling a body
of knowledge for information systems development”,
Information Systems Journal, Vol. 28 No. 1, pp. 175–
226.

Hughes, E.C. (1958), Men and Their Work, Free Press,
London.

Charrett, A.-M. (2012), “Appendix D: Cost of Starting Up
a Test Team”, How to Reduce the Cost of Software
Testing, CRC Press, Boca Raton, FL.

Chemuturi, M. (2011), Mastering Software Quality
Assurance: Best Practices, Tools and Techniques for
Software Developers, J.Ross Publishing, Fort
Lauderdale, FL.

ISTQB. (2011), “ISTQB Foundation Level Syllabus”,
available at: https://www.istqb.org/downloads/.

Jensen, B. (2016), “The Combined Engineering Software
Model”, available at: https://testastic.wordpress.com/
2016/01/03/the-combined-engineering-software-
model/.

Koch, A. S. (2000), “‘A’ is for ‘Assurance’– A Broad View
of SQA”, Pacific Northwest Software Quality
Conference, Portland, OR, pp. 217–236.

Kuhrmann, M., Hanser, E., Prause, C.R., Diebold, P.,
Münch, J., Tell, P., Garousi, V., et al. (2017), “Hybrid
software and system development in practice: waterfall,
scrum, and beyond”, Proceedings of the 2017
International Conference on Software and System
Process, pp. 30–39.

Laloux, F. (2014), Reinventing Organizations: A Guide to
Creating Organizations Inspired by the Next Stage in
Human Consciousness, Nelson Parker, Brussels,
Belgium.

Larman, C. and Vodde, B. (2010), Practices for Scaling
Lean & Agile Development, Addison-Wesley, Upper
Saddle River, NJ.

McKay, J. (2007), Managing the Test People: A Guide to

 Practical Technical Management, Rocky Nook, Santa
Barbara, CA.

Onita, C. and Dhaliwal, J. (2011), “Alignment within the
corporate IT unit : an analysis of software testing and
development”, European Journal of Information
Systems, Vol. 20 No. 1, pp. 48–68.

Page, A., Johnston, K. and Rollison, B. (2009), How We
Test Software in Microsoft, Microsoft Press, Redmond,
WA.

Pettichord, B. (2000), “Testers and Developers Think
Differently”, Software Testing and Quality Engineering
Magazine, Vol. Jan/Feb, pp. 42–46.

Prechelt, L. (2016), “Quality Experience : A Grounded
Theory of Successful Agile Projects Without Dedicated
Testers”, International Conference on Software
Engineering.

Scrum.org. (n.d.). “What is a Scrum Development Team?”,
available at: https://www.scrum.org/resources/what-is-
a-scrum-development-team.

Shah, H. and Harrold, M.J. (2013), “Culture and Testing:
What is the Relationship?”, 8th International
Conference on Global Software Engineering, IEEE, pp.
51–60.

Smircich, L. (1983), “Concepts of Culture and
Organizational Analysis”, Administrative Science
Quarterly, Vol. 28 No. 3, p. 339.

Stryker, S. and Burke, P.J. (2000), “The Past, Present, and
Future of an Identity Theory”, Social Psychology
Quarterly (Special Millenium Issue on the State of
Sociological Social Psychology), Vol. 63 No. 4.

Sunyaev, A. and Basten, D. (2015), “Truth and myth of
independent software testing”, Proceedings of the 30th
Annual ACM Symposium on Applied Computing, pp.
1722–1728.

Tajfel, H. and Turner, J.C. (1986), “The Social Identity
Theory of Intergroup Behavior”, Psychology of
Intergroup Relations, Nelson-Hall Publishers, Chicago,
IL, pp. 7–24.

Thonangi, U. (2014), “Why did Microsoft lay off
‘Programmatic testers’?”, available at: https://www.
linkedin.com/pulse/20140806183208-12100070-why-
did-microsoft-lay-off-programmatic-testers/.

TMMi Foundation. (2012), “Test Maturity Model
integration”, Ireland, available at: www.tmmi.org.

Walz, D. B., Elam, J. J. and Curtis, B. (1993), “Inside a
software design team: knowledge acquisition, sharing,
and integration”, Communications of the ACM, Vol. 36
No. 10, pp. 63–77.

Whittaker, J. A., Arbon, J. and Carollo, J. (2012), How
Google Tests Software, Addison-Wesley, Upper Saddle
River, NJ.

Zhang, X. “Paul”, Nickels, D., Poston, R. and Dhaliwal, J.
(2018), “One World, Two Realities: Perception Differen-
ces between Software Developers and Testers”, Journal
of Computer Information Systems, No. in press.

Zhang, X., Stafford, T. F., Dhaliwal, J. S., Gillenson, M. L.
and Moeller, G. (2014), “Sources of conflict between
developers and testers in software development”,
Information and Management, Vol. 51 No. 1,
pp. 13–26.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

344

