
A Bug Assignment Approach Combining Expertise and Recency of Both
Bug Fixing and Source Commits

Afrina Khatun and Kazi Sakib
Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Keywords: Bug Assignment, Bug Report, Commit Log, Tf-idf Weighting.

Abstract: Automatic bug reports assignment to fixers is an important activity for software quality assurance. Existing
approaches consider either the bug fixing or source commit activities which may result in inactive or inexpe-
rienced developers suggestions. Considering only one of the information can not compensate another leading
to reduced accuracy of developer suggestion. An approach named BSBA is proposed, which combines the
expertise and recency of both bug fixing and source commit activities. Firstly, BSBA collects the source code
and commit logs to construct an index, mapping the source entities with their commit time, which presents
developers’ source code activities. Secondly, it processes the fixed bug reports to build another index which
connects the report keywords to the fixing time. Finally, on arrival of new reports, BSBA queries the two
indexes, and combines the query results using tf-idf weighting technique to measure a BSBA score for the
developers. The top scored developers are suggested as appropriate fixers. BSBA is applied on two open
source projects - Eclipse JDT and SWT, and is compared with three existing techniques. The results show
that BSBA obtains the actual fixer at Top 1 position in 45.67%, and 47.50% cases for Eclipse JDT and SWT
respectively, which is higher than the existing approaches. It also shows that BSBA improves the accuracy of
existing techniques on average by 3%-60%.

1 INTRODUCTION

Bug assignment is an essential step for fixing software
bugs. When a new bug report arrives, an appropriate
developer who is proficient in fixing that bug, needs
to be identified from a huge number of contributing
developers. This turns manual bug assignment into
a difficult and time-consuming task. Any mistake in
assigning the bugs to appropriate fixers may lead to
unnecessary reassignments as well as prolonged bug
fixing time. These factors raise the need of an auto-
matic and accurate bug assignment technique capable
of identifying potential fixers.

Automatic bug report assignment is generally per-
formed using information sources such as bug reports,
source code and commit logs (Anvik and Murphy,
2007). The fixed bug reports generally represent de-
veloper’s activity in terms of fixing those. However,
with the passage of time developers may move to dif-
ferent projects or company. As a result, considering
only bug fixing activity may direct to suggestion of
inactive developers. On the contrary, the source code
and commit logs generally represent developers’ ac-
tivities in developing the system modules. However,

a developer may not have fixed bugs related to all
the modules. Analysing only source related activities
may result in suggestion of inexperienced develop-
ers. So, considering only bug fixing or source related
activities may suggest inactive or novice developers,
which reduces the accuracy of bug assignment.

Understanding the importance of automatic bug
assignment, various techniques have been proposed
in the literature. In order to reduce the cost of man-
ual assignment, Murphy et al. first proposed an ap-
proach based on text categorization of fixed reports
(Murphy and Cubranic, 2004). BugFixer, another text
categorization based method has been proposed by
Hao et. al (Hu et al., 2014). This method constructs
a Developer-Component-Bug (DCB) network, using
past bug reports and suggests developers’ list over this
network. The list becomes less accurate with join-
ing of developer or switching of development teams.
Shokripour et. al (Shokripour et al., 2015) have pro-
posed a time based approach that indexes source iden-
tifiers along with commit time to prioritize recent de-
velopers. However, the technique fails to achieve high
accuracy due to considering only developers’ source
code activities. Tian et al. combines developers’ pre-

Khatun, A. and Sakib, K.
A Bug Assignment Approach Combining Expertise and Recency of Both Bug Fixing and Source Commits.
DOI: 10.5220/0006785303510358
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 351-358
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

351

vious activities and suspicious program locations to
identify bug fixers (Tian et al., 2016). However, this
technique requires attached source patches with bug
reports and also ignores the recent timing of source
commits. An expertise and recency based bug assign-
ment has been presented in (Khatun and Sakib, 2016).
However, it ignored the bug report fixing recency of
the developers. As a result, the developers are over-
prioritized with the experience of bug fixing.

A bug assignment technique, combining the ex-
pertise and recency of both bug fixing and source
commit activities called BSBA (Bug fixing and
Source commit activity based Bug Assignment) has
been proposed. The overall bug assignment is per-
formed using three steps - Source Activity Collection,
Fixing History Collection and Developer Suggestion.
The Source Activity Collection module takes source
code and commit logs as input. It builds an index
connecting source code identifiers with commits, to
represent identifier usage owner and time. Besides,
the Fixing History Collection module uses fixed bug
reports to construct another index connecting bug re-
port features (i.e. keywords) with the report fixer and
fixing time. Finally, when new bug reports arrive, the
Developer Suggestion module extracts the bug report
keywords, and queries the indexes with these key-
words. Based on the query results, a BSBA score
is assigned to each developer using tf-idf weighting
technique considering the experienced and recent use
of keywords. The high scored developers are recom-
mended as appropriate fixers.

BSBA, has been applied on Eclipse JDT and SWT
for assessing it’s compatibility. For these projects,
the source code, commit logs and bug reports are
collected from open source. BSBA’s performance
is measured using metric- Top N Rank [Shokripour
et al., 2015]. In order to measure competency, it is
compared with one source activity based technique
known as ABA-time-tf-idf (Shokripour et al., 2015),
one bug fixing activity based technique called TNBA
(Shokripour et al., 2014) and one unified previous
activity and program location based technique (Tian
et al., 2016), which will be referred in remaining of
this paper as Unified Model. The result shows that
BSBA suggests 45.67% and 47.50% actual fixers at
Top 1 position for Eclipse JDT and SWT respectively,
which outperforms studied projects.

2 RELATED WORK

Concerned with the increased importance of auto-
matic bug assignment, a number of techniques have
been proposed by researchers. Significant works re-

lated to this research topic are outlined in following.
A survey has divided the existing bug assignment

techniques into text categorization, tossing graph,
source based techniques etc. (Sawant and Alone,
2015). Text categorization based techniques build a
model that trains from past bug reports to predict cor-
rect rank of developers (Hu et al., 2014; Matter et al.,
2009; Baysal et al., 2009). Baysal et al. have en-
hanced the text categorization techniques by adding
user preference of fixing certain bugs in recommenda-
tion process (Baysal et al., 2009). The framework per-
forms its task using three components. The Expertise
Recommendation component creates a ranked list of
developers using previous expertise profile. The Pref-
erence Elicitation component collects and stores the
preference level of fixing certain bug types through a
feedback process. Lastly, knowing the preference and
expertise of each developer, Task Allocation compo-
nent assigns bug reports. Since the framework consid-
ers only past historical activities, it ignores the source
related activities of developers, and may recommend
developers who are either working in another project
or company. As a result, inactive developers may get
recommended which reduces prediction accuracy.

Tossing graph based bug triaging techniques for
reducing reassignment have also been developed (e.g.
(Bhattacharya and Neamtiu, 2010), (Jeong et al.,
2009)). The main focus of these techniques is to re-
duce the number of passes or tosses a bug report goes
through because of incorrect assignment. In such
techniques, the graph is constructed using previous
bug reports (Jeong et al., 2009). Due to considering
previous bug report information, the technique results
in low accuracy of recommended list and search fail-
ure in case of new developer arrival.

Matter et al. have suggested Develect, a source
based expertise model for recommending developers
(Matter et al., 2009). The model parses the source
code and version history for indexing bag of words
representing vocabulary of each source code contrib-
utor. A model is trained using existing vocabularies
and stored in a matrix as a term-author matrix. For
new reports, the model checks the report keywords
using lexical similarities against developer vocabular-
ies. The highest scored developers are taken as fixers.
For overcoming inactive developer recommendation,
the technique uses a threshold value. However, the
technique totally ignores experienced developers in
recommendation process, which leads to assignment
of bugs to novice or inexperienced developers. Subse-
quently, it increases bug reassignments, prolongs fix-
ing time and reduces recommendation accuracy.

Time based bug assignment techniques have also
been proposed in the literature. Shokripour et al. has

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

352

devised a technique focusing on using time meta data,
while identifying the recent developers for bug as-
signment (Shokripour et al., 2015). The technique
first parses all the source code entities (such as name
of class, method, attributes etc.) and connects those
with contributor to construct a corpus. In case of new
bug reports, the keywords are searched in the index
and given a weight based on frequent usage and time
meta data. The high scored developers are shown at
the top of the list. Although it correctly identifies re-
cent developers, it generally fails to achieve high ac-
curacy due to ignoring expert fixers. Another Time
aware Noun based Bug Assignment (TNBA) tech-
nique has also been proposed in (Shokripour et al.,
2014). The technique first takes the fixed bug re-
ports as input and identifies the fixers of the report.
The fixers of the reports are determined using source
patches or commit history. However, this technique
ignores the source code activities of developers lead-
ing to suggestion of inactive developers.

Various techniques for automatic fixer recommen-
dation have been proposed in the literature. Most
of the techniques learn information from previous fix
history or current commit history of software repos-
itories. However, these techniques suffer from low
accuracy due to recommendation of inactive or inex-
perienced developers. So, consideration of only one
information source while assigning bug reports, can-
not suggest accurate fixers.

3 METHODOLOGY

In this paper, a technique named Bug fixing and
Source commit based Bug Assignment (BSBA) has
been proposed, which combines developers’ expertise
and recency of both fixing and source related activi-
ties for accurate fixer suggestion. BSBA performs de-
veloper suggestion using three modules, which are -
Source Activity Collection, Fixing History Collection
and Developer Suggestion. The overall fixer sugges-
tion procedure of BSBA is described below.

Source commits of developers generally reveal
their source related activity information. Firstly, the
Source Activity Collection module receives software
source repository and commit logs as shown in Fig-
ure 1. It then extracts the source code entities from
the source files and constructs an index which maps
each source entity against the developers who com-
mitted the entities. This index represents the source
code activities of the developers which will be later
used by the Developer Suggestion module.

Next, Fixing History Collection module receives
XML formatted bug reports as input as shown in Fig-

Figure 1: Overview of the ERBA.

ure 1. The fixed bug reports indicate developers’
bug solving history. So, this module extracts key-
words from the bug reports and generates another in-
dex which associates the keywords to the developers,
who previously fixed those keyword related bugs.

Finally, Developer Suggestion module suggests an
accurate developers’ list on arrival of new bug reports.
When a bug report arrives at the system, its keywords
are extracted to formulate a query and searched in
the constructed indexes. Lastly, tf-idf technique is
applied on the search results to calculate a score for
suggesting developers. In the following these mod-
ules are described in detail.

3.1 Source Activity Collection

The source code commits represent developers’ ex-
pertise and recency of developing the system ((Matter
et al., 2009)). The Source Activity Collection module
is responsible for identifying developers’ source ac-
tivities. This module takes software source code and
commit logs as inputs. It then parses the source files
in the repository to extract the source entities. The
names of classes, methods, attributes and method pa-
rameters are extracted as source entities. These data
are taken into consideration as these entities represent
developer vocabularies and activities.

Moreover, data by nature may contain unneces-
sary characters and keywords. For improved tok-
enization, all these parsed data undergoes through text
pre-processing. The text pre-processing step contains
identifier decomposition based on CamelCase letter
and separator character, number and special character
removal, stop word removal and stemming. In order
to retrieve relevant results, both the complete and de-
composed identifiers are considered for indexing.

The commit history of the project is also extracted

A Bug Assignment Approach Combining Expertise and Recency of Both Bug Fixing and Source Commits

353

in XML format using git commands. A sample of the
extracted commit history of Eclipse JDT is illustrated
in Figure 2. The commit XML contains a number of
attributes such as commit id (hash), author, commit
date, subject and a list of changed identifiers associ-
ated with the commit. For example, the commit of
Figure 2 shows that developer “Markus Keller” has
committed changes to four source identifiers such as
“FactoryPluginManager”, “JavaElementLabelsTest”,
“JavadocView” and “JavadocHover” on 5 Dec, 2011.

In order to determine developers’ expertise and
recency of using identifiers, proper links between the
extracted source identifiers and commit logs need to
be established. Again an identifier can be used by
a number of developers in different phases of time
during the project development. For searching recent
usage of the identifiers by the developers, an index of
all the identifiers needs to be built. So, Algorithm 1
is proposed which performs the task of developers’
source activity collection. Algorithm 1 takes a

Figure 2: Partial Commit Log of Eclipse JDT.

processed list of source identifiers as input. In order
to associate the list of identifiers with corresponding
developer list, a complex data structure, SourceAc-
tivity is constructed. It contains two properties -
developer name and commit date. To construct the
index, an empty postingList is declared (Algorithm 1,
line 2). An empty variable d, of type SourceActivity is
also declared in line 3 for populating the postingList.
A for loop is defined to iterate through the identifier
list I, for index construction (Algorithm 1, line 4).
For each identifier i, corresponding commits in which
the identifier is changed, are extracted by calling
function getCommitsOfIdentifier as shown in line
5. This function takes an identifier as input and
returns a commit list of type Commit. Each Commit
contains aforementioned commit log attributes. A
nested inner loop is also defined to iterate on the
Commits list (Algorithm 1, line 6). Each iteration
of this loop initializes d with a new SourceActivity
instance. It then updates the name and date property
of d with author and date property of commit c,
respectively (Algorithm 1, lines 7-9). For adding

Algorithm 1: Source Activity Collection.

Input: A list of string identifiers (I)
Output: An index associating identifiers with a post-

inglist of developers, (SourceActivity). Each
SourceActivity represents a data structure con-
taining developer name (name) and identifier us-
age date (date)

1: Begin
2: Map < String,List < SourceActivity >>

postingList
3: SourceActivity d
4: for each i ∈ I do
5: Commits← getCommitsOfIdentifier(i)
6: for each c ∈Commits do
7: d← new SourceActivity()
8: d.name← c.author
9: d.date← c.date

10: if !postingList.keys.conatins(i) then
11: postingList.keys.add((i)
12: postingList[i].developers.add(d)
13: End

identifiers into the postingList, the list is first checked
whether it already contains the identifier (Algorithm
1 line 10-11). In the next step, the updated value of d
is added to the postingList against the identifier (Al-
gorithm 1, line 12). This postingList will be searched
later using identifiers found in the arrived bug reports.
Finally, Algorithm 1 returns an index of triplet data
structure containing identifiers, developers who use
those identifiers and their identifier using date.

3.2 Fixing History Collection

The fixed bug reports of a system is another key indi-
cator of developers’ proficiency of fixing similar bugs.
The higher number of times and the more recent a de-
veloper fixed certain keyword related bugs, the higher
potential the developer has to solve those keyword
related bugs. The Fixing History Collection module
performs the task of identifying expert and recent de-
velopers, who are proficient for solving similar bugs.
A fixed bug report contains the full resolution history
of the bug report. For this purpose, the bug reports
are collected from bug tracking system, Bugzilla. The
module then takes those bug reports for identifying
developers’ experience information. These bug re-
ports are input in XML format for making it pro-
gram readable. A partial XML structure of Eclipse
bug #264606 is shown in Figure 3. It shows that the
bug report contains a number of attributes such as id,
developer, creation_time, summary, description etc.
The more familiar a developer is with the keywords

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

354

Figure 3: Partial XML Formatted Bug Report of JDT.

of fixed bug reports, the more expertise the developer
has in fixing these keyword related bugs. As, a key-
word related bugs can be fixed by several develop-
ers, an index is required which connects the keywords
with the list of developers. For this purpose, another
algorithm similar to Algorithm Algorithm 1 is used.
It receives a list of fixed bug reports. Each report has
three properties - a list of bug report keywords, the
name of a developer who fixed the bug and bug fix-
ing date. The keywords are collected from bug report
summary and description. These keywords are then
connected with the fixer and fixing date of the bug re-
ports. As a result, another index containing the exper-
tise information of the developers is constructed. This
built index is later used by the Developer Suggestion
module for ultimate fixer determination.

Figure 4: Developer Suggestion Procedure of BSBA.

3.3 Developer Suggestion

Finally, BSBA combines both the recency and ex-
pertise information gained from above mentioned in-
dexes for appropriate developer ranking. The overall
developer suggestion procedure is represented in Fig-
ure 4. When a new bug report arrives, Developer Sug-
gestion module first extracts the summary, description
and reporting date of the report. A search query is
formulated using the keywords of the summary and
description field of the report as shown in Figure 4.
This query is then executed on the two indexes built
by the previous two modules. Both the queries re-
turn a set of developers who uses or fixes the term of

the new bug report. This module then combines these
query results and construct a complex data structure
of type Map<String,Map<String,TermInfo>>. The
outer map associates each developer with a list of
new bug report terms used by this developer. On
the other hand, the inner map connects each term,
to its usage information of type TermInfo. It repre-
sents a data structure consisting of four properties -
useFreq, fixFreq, useDate and fixDate. The explana-
tion of these properties is given in Table 1. Next, the

Table 1: Explanation of Attributes and Methods of Algo-
rithm 2.

Variables

useFreq
no. of times a term is used in source

commits by a developer

useDate last usage time of a term by a developer

fixFreq
no. of times a term related bug is fixed by

a developer

fixDate last fixing time of a term by a developer

#dev no. of developers in the project

Methods

devUseFreq(t)
takes term, t as input and returns

the no. of developers who commit the term

devFixFreq(t)
takes term, t as input and returns the no. of

developers who fixed the term related bugs

combined search results are used to calculate an ex-
pertise and recency score for each developer. This
score is called a BSBA score. The overall sugges-
tion is performed using Algorithm 2. The getTermIn-
formation function takes bug report (B) as input, and
performs the above mentioned search query formula-
tion and execution task (Algorithm 2, line 2). There-
fore, it returns a complex data structure devTermInfo
constructed from query results. An empty list of de-
velopers, devList of type Developer is declared in line
3 for storing ultimate developer rank. An outer loop
is defined at line 4 to iterate on devTermInfo. Two
empty variables usage and fixation are declared for
storing each developer’s source code and bug fixing
information d, (line 5). The variables useRecency and
fixRecency are initialized at line 6, for getting the time
information associated with the source usage and bug
fixation of the terms respectively. Next, an inner loop
is constructed to iterate over the new bug report terms
used by this developer (line 7). For each term, its cor-
responding information t of type TermInfo is extracted
from devTermInfo (line 8).

For accurate developer recommendation, both the
frequent and recent activities in the source code and
bug fixing are important. tf-idf weighting technique
is applied for measuring the frequent use of a term in

A Bug Assignment Approach Combining Expertise and Recency of Both Bug Fixing and Source Commits

355

Algorithm 2: Developer Suggestion.

Input: A new bug report (B). (B) contains a set of
keywords (terms) and bug reporting date (Date).

Output: A sorted developer list (devList).
1: Begin
2: Map < String,Map < String,TermIn f o >>

devTermIn f o← getTermIn f ormation(B)
3: List < Developer > devList
4: for d ∈ devTermIn f o do
5: double usage, f ixation
6: double useRecency, f ixRecency
7: for term ∈ devTermIn f o[d.name] do
8: t← devTermIn f o[d.name][term]

9: t f Id f ← t.useFreq× log(#dev
devUseFreq(t))

10: useRecency← (1/devUseFreq(t))+
(1/

√
(B.Date −

t.useDate))
11: usage+← t f Id f ×useRecency
12: t f Id f ← t. f ixFreq× log(#dev

devFixFreq(t))

13: f ixRecency← (1/devFixFreq(t))+
(1/

√
(B.Date −

t. f ixDate))
14: f ixation+← t f Id f × f ixRecency
15: dev = newDeveloper()
16: dev.name← d.name
17: dev.score← usage+ f ixation
18: devList.add(dev)
19: devList.sort()
20: End

the source code by a developer (line 9). This tech-
nique determines the weight of a term using the fre-
quency of its usage (useFreq) and the generality of it
in the project (log(#dev

devUseFreq(t))). Considering only
frequent use of terms in source code may result in
recommendation of inactive developers. To alleviate
this problem, the recent use of a term is incorporated
with its frequent use in the source code. The recency
of a term is determined by adding the inverse of the
number of developers who used this term, and the
inverse of date difference between the bug reporting
date (Date) and this term using date (useDate) (line
10). The greater the value of devUseFreq(t) is, the
more important the term is for the developer. Again
the greater the interval (B.Date− t.Date) is, the less
recent the term is used. This recency of a term us-
age (useRecency) is then multiplied by its frequency
(t f Id f) to calculate developer’s source usage infor-
mation on this term. Finally, the sum of the usage of
all the new report’s terms determines the developer’s
source code activities regarding these terms (line 11).

On the other hand, the expertise and recency of

a developer, in resolving a term is calculated using
similar tf-idf weighting technique. It determines the
experience of fixing a term, by multiplying the term
fixing frequency (fixFreq) with the generality of fix-
ing the term related bugs (log(#dev

devFixFreq(t))) (line 12).
The developer who fixed a term recently should get
higher priority than the developer who fixed it a long
time ago. Hence, the recent fixation of a term is incor-
porated with the expertise weight in a similar manner
as shown in line 13. Developer’s bug fixing expertise
and recency is obtained by summing the fixing ex-
pertise and recency of all terms (line 14). Lastly, for
each iteration of devTermInfo, an instance dev, of type
Developer is constructed, initialized (using developer
name and BSBA score) and inserted into devList (line
15-18). The technique incorporates recency and ex-
pertise values for assigning BSBA score to develop-
ers. As a result, Algorithm 2 ends its task by sort-
ing the devList in a descending order based on BSBA
scores. BSBA concludes its task by suggesting the
developers at the top of the list as fixers for handling
the recently arrived bugs.

4 RESULT ANALYSIS

For evaluating the compatibility of BSBA, experi-
mental analysis have been conducted on two projects
- Eclipse JDT and SWT. The experimental analysis is
focused to evaluate the ranking of the actual fixers in
the suggested list. The suggested list is evaluated us-
ing metric, Top N Rank. The results of BSBA is com-
pared with ABA-time-tf-idf (Shokripour et al., 2015),
TNBA (Shokripour et al., 2014) and Unified model
(Tian et al., 2016). The details of the experimental
arrangements are demonstrated below.

4.1 Dataset

Table 2 enlists the properties of the two studied
projects. These projects are also used in evaluating
bug assignment techniques (Shokripour et al., 2015),
(Tian et al., 2016). The collected experimental data
are available in the repository of BSBA (bsb, 2017).
Top N rank or accuracy refers whether the top N sug-

Table 2: Properties of Experimetal Dataset.

Project No. of
Commits

No. of
Classes

No. of Bug
Reports

JDT 25,700 6,899 6,274
SWT 24,265 1,981 4,151

gested developers contain the actual bug fixer, where

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

356

N=1,3,5,...,n (Shokripour et al., 2015). If the top
N developers contain any of the actual fixers, the
suggestion is considered correct. For example, N=3
refers, an actual fixer is obtained in the top 3 sug-
gested developers. A higher value of this metric rep-
resents higher accuracy of BSBA.

Table 3: Performance of BSBA on Two Studied Projects.

Proj

-ect

No. of

Test

Report

Top 1 Top 3 Top 5 Top 10

JDT 600
274

45.67%

466

80.00%

522

87.00%

584

97.33%

SWT 400
190

47.50%

311

77.75%

354

88.50%

399

99.75%

Table 3 shows the Top N ranking performance of
BSBA. The number of times actual fixers obtained
within the Top 1, Top 3, Top 5 and Top 10 positions
are calculated. For example, in case of Eclipse JDT,
the recent 600 reports (out of 6274) sorted by date, are
selected for testing purpose. It also shows that out of
600 test reports, 274 times (i.e. 45.67%) BSBA shows
the correct developer at position 1. That is, in 45.67%
cases the first developer may correctly fix the bug
without reassigning it to other developers. Moreover,
80.00%, 87.00% and 97.33% cases the actual fixers
are obtained at the Top 3, Top 5 and Top 10 ranks re-
spectively. These, higher values indicate that BSBA
can successfully place the actual fixers at the top of
the suggested list. In case of SWT 47.50% actual fix-
ers are obtained at position 1, which is also promis-
ing. It also depicts that for all the three projects above
97.00% of the fixers can be suggested by BSBA.

In order to identify whether the actual fixers are
suggested at the top of the list by BSBA, the number
of fixers obtained at each Nth rank position is plot-
ted in Figure 5. It shows that with the increasing
size of the rank position, the number of obtained de-
velopers at that rank position is decreased. For both
projects, the ranking of the developers has followed a
pattern near similar to positive skewness. This skew-
ness refers that most of the developers are obtained at
the left side of the graph, which indicates that BSBA
suggests most of the actual developers at lower rank
positions that is at the top of the lists. Besides, it
is also visible from Figure 5 that, for each of the
three projects, the highest number of developers are
achieved at Top 1 position.

Figure 6 and 7 show the comparison of
Top N Ranking accuracy among ABA-time-tf-idf
(Shokripour et al., 2015), TNBA (Shokripour et al.,
2014), Unified Model (Tian et al., 2016) and BSBA.

Figure 5: Top N Ranking of BSBA on Two Projects.

Figure 6: Comparison of Top N Ranking on Eclipse JDT
among ABA-time-tf-idf, TNBA, Unified Model and BSBA.

Figure 7: Comparison of Top N Ranking on SWT among
ABA-time-tf-idf, TNBA, Unified Model and BSBA.

For example, Figure 6 shows that for each of the po-
sitions, BSBA achieves higher bar than the existing
ones in JDT. It retrieves 45.67% fixers within posi-
tion 1 which is higher than ABAtime-tf-idf (5.85%),
TNBA (23.83%) and Unified Model(42%). A similar
trend is also found while Top N ranking in SWT (Fig-
ure 7). Besides, the reason behind BSBA’s bar at po-
sition 5 for SWT, being lower than Unified Model is
that, BSBA shows most of the developers before po-
sition 5. For each of the studied subjects, BSBA out-
performs ABAtime-tf-idf, TNBA and Unified Model
while ranking the developers. These figures also show
that BSBA outperforms the accuracy of existing tech-
niques on average from 3% ((Tian et al., 2016)) upto
60% ((Shokripour et al., 2015)). These improvement
of ranking ensure higher accuracy of BSBA due to
combining both recency and expertise information
which is ignored by the existing approaches.

A Bug Assignment Approach Combining Expertise and Recency of Both Bug Fixing and Source Commits

357

5 THREATS TO VALIDITY

This section presents the threats which can affect the
implementation and evaluation validity of BSBA. The
naming convention of the source entities, the quality
of bug reports and commit logs can introduce redun-
dant information, which can reduce the accuracy of
assignment. However, this risk is also minimized by
collecting the source repository, commits, and bug re-
ports from widely used information tracking systems
such as git and Bugzilla. Analysing the performance
of BSBA with other metrics can also affect the gen-
eralization of the results. This risk is handled by se-
lecting metric which is widely applied in evaluation
of bug assignment techniques.

6 CONCLUSION

The paper proposes a bug assignment technique
named as BSBA which considers the expertise and
recency of both bug fixing and source committing of
developers . The Source Activity Collection module
firstly takes source code and commit logs as input,
and constructs an index for associating the source en-
tities with the commit time of entities. In order to col-
lect the bug fixing activity of developers, Fixing His-
tory Collection module builds another index which
connects the bug report keywords with fixing time.
Lastly, Developer Suggestion module queries the two
indexes with new reports’ keywords, and applies tf-
idf weighting on the query result to calculate a BSBA
score for all developers. Actual fixers are selected
based on the highest scoring developers.

The applicability of BSBA is experimented on two
projects - Eclipse JDT and SWT. The experimental
results are compared with existing approaches. For
Eclipse JDT, BSBA shows 45.67% of the actual fix-
ers at Top 1 position which is higher than the exist-
ing three approaches (5.85%, 23.83%and 42%). For
SWT, in 47.50% cases actual fixers are obtained at
position 1 respectively.

In future, the bug reports which keywords are not
found in the bug and source activity indexes, needs to
be considered. Besides, handling newly joined devel-
opers, who owes no bug fixes or source commits, can
be another future direction.

REFERENCES

(2017). Afrina/Expertise And Recency Based Bug Assign-
ment. URL: https://drive.google.com/drive/folders/

0B_Jc3FdEOCHzakxqRFg0ckVxOXM?usp=sharing
[accessed: 2017-03-05].

Anvik, J. and Murphy, G. C. (2007). Determining imple-
mentation expertise from bug reports. In 4th Inter-
national Workshop on Mining Software Repositories
(MSR), page 2. IEEE Computer Society.

Baysal, O., Godfrey, M. W., and Cohen, R. (2009). A bug
you like: A framework for automated assignment of
bugs. In 17th International Conference on Program
Comprehension (ICPC), pages 297–298. IEEE.

Bhattacharya, P. and Neamtiu, I. (2010). Fine-grained in-
cremental learning and multi-feature tossing graphs to
improve bug triaging. In 26th International Confer-
ence on Software Maintenance (ICSM), pages 1–10.
IEEE.

Hu, H., Zhang, H., Xuan, J., and Sun, W. (2014). Effective
bug triage based on historical bug-fix information. In
25th International Symposium on Software Reliability
Engineering (ISSRE), pages 122–132. IEEE.

Jeong, G., Kim, S., and Zimmermann, T. (2009). Improv-
ing bug triage with bug tossing graphs. In 7th joint
meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foun-
dations of software engineering (ESEC/FSE), pages
111–120. ACM.

Khatun, A. and Sakib, K. (2016). A bug assignment
technique based on bug fixing expertise and source
commit recency of developers. In 19th International
Conference on Computer and Information Technology
(ICCIT), pages 592–597. IEEE.

Matter, D., Kuhn, A., and Nierstrasz, O. (2009). Assigning
bug reports using a vocabulary-based expertise model
of developers. In 6th International Working Confer-
ence on Mining Software Repositories (MSR), pages
131–140. IEEE.

Murphy, G. and Cubranic, D. (2004). Automatic bug triage
using text categorization. In 16th International Con-
ference on Software Engineering & Knowledge Engi-
neering(SEKE), pages 1–6.

Sawant, V. B. and Alone, N. V. (2015). A survey on vari-
ous techniques for bug triage. International Research
Journal of Engineering and Technology, 2:917–920.

Shokripour, R., Anvik, J., Kasirun, Z. M., and Zamani,
S. (2014). Improving automatic bug assignment us-
ing time-metadata in term-weighting. IET Software,
8(6):269–278.

Shokripour, R., Anvik, J., Kasirun, Z. M., and Zamani, S.
(2015). A time-based approach to automatic bug re-
port assignment. Journal of Systems and Software,
102:109–122.

Tian, Y., Wijedasa, D., Lo, D., and Le Gouesy, C. (2016).
Learning to rank for bug report assignee recommen-
dation. In 24th International Conference on Program
Comprehension (ICPC), pages 1–10. IEEE.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

358

