
On the Performance of Cloud-based Spreadsheets as a Backend for
View-only Web Applications

Andrea Schwertner Charão1, Felipe Marin1, João Carlos D. Lima1, Cristiano Cortez da Rocha3

and Luiz Angelo Steffenel2
1Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil

2Université de Reims Champagne-Ardenne (URCA), Reims, France
3Centro de Informática e Automação do Estado de Santa Catarina (CIASC), Florianópolis, SC, Brazil

Keywords: Cloud Computing, Data Backend, Spreadsheet, Performance Evaluation.

Abstract: The wide offering of cloud-based services brings alternatives to traditional approaches for developing modern
information systems. In this work, we examine cloud spreadsheet services as an alternative for data backend in
small scale, view-only web applications. We review 6 cloud-based spreadsheets offering data access APIs to
third-party applications, then we present a set of performance tests over spreadsheets hosted on Google Sheets.
Preliminary findings show a performance penalty for transferring JSON-formatted data and an expressive
failed request rate for many simultaneous accesses.

1 INTRODUCTION

Cloud computing is not only changing the way we
use software, but also the way we build it. As
more and more services migrate to the cloud, tradi-
tional components in software architecture may be
provided by cloud-based services. Since the early
days of cloud computing, the range of services has
grown and spanned from personal to corporate ap-
plications. Examples of cloud services include word
processors, spreadsheets, database managers and a lot
more (Miller, 2008).

Databases are usually a core component of large
information systems as well as of smaller web and
mobile applications. Relational Database Manage-
ment Systems (RDBMS) are well known for their ef-
ficiency in querying and filtering data or processing
transactions. As so, they are the first choice for data
backend in a wide range of web applications.

Modern web applications can vary greatly in their
purposes and architectures. Some are highly interac-
tive websites or mobile applications which perform
frequent data read and write operations. Others are
“applications that use backend data, supporting the
searching, sorting, filtering and visualizing of the data
based on the user input” (Chang and Myers, 2014).
These are view-only web applications, in the sense
that the end user only reads data that have been previ-
ously registered in the storage backend.

For such class of web applications, some develop-
ers are reportedly using cloud-based spreadsheets in-
stead of relational databases as an alternative for data
backend (Fisher, 2014; Hankinson, 2015), as many
cloud providers offer APIs for reading or writing data
onto the online spreadsheets. Arguments in favor of
this approach usually mention its simplicity for de-
velopers, which do not need to create administrative
interfaces for simple operations, as the spreadsheet
interface already meets this need. Against this ap-
proach, arguments emphasize that spreadsheets and
databases are very distinct components and this solu-
tion might a prototyping-only alternative.

In technical articles, arguments in favor or against
this approach are not based on evidence from experi-
ments and analysis in a given situation, but rather on
general knowledge about the matter. Also, real appli-
cations relying on spreadsheets provide no public data
on their performance.

In this work, we aim to further the discussion
around this approach by focusing on performance is-
sues. We begin by reviewing the current offering of
cloud-based spreadsheets and examine their service
plans and their endpoints for developers. We focus
mainly on free services, so as to characterize what is
the current entry-level performance. We chose a pop-
ular service (Google Sheets) to be the target of a set of
performance tests with varying data sizes and number
of accesses.

642
Schwertner Charão, A., Marin, F., D. Lima, J., Cortez da Rocha, C. and Steffenel, L.
On the Performance of Cloud-based Spreadsheets as a Backend for View-only Web Applications.
DOI: 10.5220/0006787006420647
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 642-647
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



The rest of the paper is organized as follows: Sec-
tion 2 presents a background to this work while re-
viewing 6 cloud-based spreadsheets offering data ac-
cess APIs to third-party web applications. Section
3 briefly discusses related work. Sections 4 and 5
respectively describe our methodology and results,
while Section 6 draws some conclusions and presents
future work.

2 BACKGROUND

2.1 Cloud-based Spreadsheets

Cloud-based spreadsheets have been around as a ser-
vice for roughly a decade. In (Miller, 2008), some
web-based spreadsheets are presented, but few of
them remain in the market nowadays. In the next
paragraphs, we review some current offerings for this
kind of cloud-based service.

Google Sheets1 is a web and cloud-based spread-
sheet from Google Inc., which is the first large
provider of a SaaS spreadsheet and other office ap-
plications. Google launched its first release on 2006
and its capabilities are evolving since then. Among
its features are multi-user concurrent editing, cloud-
based availability and storage, multiple export/import
options and a REST API for developers. It is available
as a free service but is also offer some paid plans.

Zoho Sheet2 is part of Zoho Docs, a cloud-based
office suite from Zoho Corporation. It was launched
in 2006 and is similar to Google Sheets, but its pricing
plans only offer a free trial version which expires after
15 days. It does offer a publishing capability to export
data, but it is not available in the free trial version.
Alternatively, there is Zoho Creator, which is targeted
to rapid developed of web applications. Zoho Creator
allows to import a spreadsheet as data source and to
export it through a REST API.

Excel Online3 is a service from Microsoft Office
Online, which offer a web-based office suite. It is
a lightweight version of Excel on premises, offer-
ing collaboration features as in other cloud-based ser-
vices. It was launched in 2010, but its REST API was
only announced in 2016.

Airtable4 is a cloud service which extends the typ-
ical spreadsheet features by incorporating some facil-
ities for building simple web-based applications (for
example, customized cell views, types and controls).

1https://www.google.com/sheets/about/
2https://www.zoho.com
3https://office.live.com/start/Excel.aspx
4https://airtable.com

It was launched around 2013 and its API was made
available in 2015.

Fieldbook5 is a spreadsheet-database hybrid ser-
vice in the cloud launched around 2013. Its interface
resembles other cloud-based spreadsheets, but it lets
one to link sheets so to view and edit related items, as
in database powered applications.

Rowshare6 provide a cloud-based service for man-
aging online collaborative tables. It provides fine-
grained capabilities (for example, sharing a row in-
stead of an entire table) and customizable interfaces
for table viewing and editing. It was launched in
2015.

To develop web applications using the aforemen-
tioned cloud-based spreadsheets, one must rely on
their provider’s API. To illustrate this point, Table 1
presents example API requests for each of the ser-
vices. Most of them provide an Uniform Resource
Identifier (URI) to address an entire spreadsheet ta-
ble. Depending on the provider, authentication may
be required even for reading data, as for example in
Excel Online. Some APIs require more than a sin-
gle request to get the data, as it may be necessary
to query a spreadsheet id which may not be known
in advance. This is the case with Rowshare and Ex-
cel Online. Also, there may be different ways to get
the spreadsheet data, as in the case of Google Sheets,
which offers a comprehensive API for data access.

Each provider may have multiple service plans,
which define prices and limits for data storage and
API usage. Table 2 summarizes service plans for each
cloud-based spreadsheet. Most providers offer free
plans with lower limits than paid plans.

In Table 3, we present resource limits for the 6
cloud-based spreadsheet services, focusing on their
free plans. Google Sheets stand out for its relatively
high limits for its free plan. Also, this is the service
of choice of some real-world examples using spread-
sheets as a data backend, so we chose Google Sheets
for the experiments in this work.

2.2 Spreadsheets as Data Backends

Using cloud-based spreadsheets as a data backend for
web applications may sound surprising and controver-
sial, as traditional approaches rely on databases. Even
so, there is evidence that such alternative has been ex-
plored in some cases, as for example in the news and
media domain (Fisher, 2014) and even in game devel-
opment (Hankinson, 2015).

For developers, there are libraries exploring this

5https://fieldbook.com
6https://rowshare.com

On the Performance of Cloud-based Spreadsheets as a Backend for View-only Web Applications

643



Table 1: Example API Request.

Service Request Format
Google Sheets https://spreadsheets.google.com/feeds/

list/¡ID¿/¡SHEET¿/public/values?alt=json
Zoho Creator https://creator.zoho.com/api/json/¡ID¿/view/

¡SHEET¿?authtoken=¡TOKEN¿&zc ownername=¡USER¿&scope=creatorapi
Excel Online https://graph.microsoft.com/v1.0/me/drive/

items/¡ID¿/workbook/worksheets(¡SHEET¿)/range(address=¡RANGE¿)
Airtable https://api.airtable.com/v0/¡ID¿/¡SHEET¿?api key=¡KEY¿
Fieldbook https://api.fieldbook.com/v1/¡ID¿/¡SHEET¿
Rowshare https://www.rowshare.com/api/row/loadforparent/¡KEY¿

Table 2: Service Plans.

Service Plans
Google Sheets Free, Basic, Business, Enterprise
Zoho Creator Per user: Free, Basic, Premium. Unlimited users: Express, Express Plus, Ultimate
Excel Online Free
Airtable Free, Plus, Pro, Enterprise
Fieldbook Free Trial (=Business, 7 days), Pro, Business, Enterprise
Rowshare Free, Business

alternative, as for example Sheetsee.js 7 and Table-
top.js8. Both are Javascript libraries targeted to de-
veloping web applications that store data on Google
Sheets. Another resource for developers is Tarbell9,
which uses Google Sheets as a content manager for
building websites. A similar approach is taken by
Tabledo10, which is a service based on Fielbook
spreasheets.

Using a cloud-based spreadsheet in place of a
database may be advantageous because it brings with
it a simple yet effective, well-known web interface for
data management. The web-based spreadsheet user
interface support insert, update and delete operations,
which would otherwise need to be implemented for
managing data records. Also, as they are built for
collaboration, cloud-based spreadsheets usually offer
easy access management features for granting read-
write permissions.

A drawback of this approach is related to the lim-
its imposed by the cloud service provider. This affects
even paid service plans, so scalability is usually com-
promised. Also, performance may be a problem, as
data transfers may take long and there is generally no
guarantees in this regard.

7http://jlord.us/sheetsee.js/index.html
8https://github.com/jsoma/tabletop
9http://www.tarbell.io/

10http://tabledo.com

3 RELATED WORK

Many technical articles present cloud-based spread-
sheets as a simple yet effective solution for data back-
end in web or mobile applications (Noble, 2015; Sta-
noev, 2015; Doubintchik, 2016; Dayagi, 2017). They
highlight the ease of use of this approach and mostly
recommend it for simple applications and prototyp-
ing.

From a different perspective, some authors have
conducted a thorough investigation on cloud-based
spreadsheets as statistical software (McCullough and
Yalta, 2013). They point out many limitations, but do
not focus on performance.

Focusing on performance, some authors evaluate
traditional relational database management systems
in cloud environments (Bini et al., 2014; Litchfeild
et al., 2017). Findings indicate inefficiencies related
to the cloud environment.

To the best of our knowledge, no previous work
has addressed the performance of cloud-based spread-
sheets as a replacement for relational databases in
small-scale, view-only web applications.

4 METHODOLOGY

We conducted all experiments on a machine with an
Intel Xeon E5620 2.4 GHz quad-core HT processor,
12 GB of DDR3 RAM and one 512 GB SATA disk.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

644



Table 3: Limits for cloud-based spreadsheet services.

Service Size limits Request limits
Google Spreadsheets 2,000,000 cells / spreadsheet 20 / second
Zoho Creator 1,000 rows / spreadsheet 250 / day
Excel Online 10 MB / spreadsheet N/A
Airtable 1,200 rows / spreadhseet 5 / second (after exceeding this rate, clients have to

wait 30 s before subsequent requests will succeed)
Fieldbook 25,000 rows / spreadsheet 25,000 / month
(Free Trial = Business) 500 columns / sheet
Rowshare 1,500 rows / spreadsheet N/A

The server runs Debian 6 (Squeeze) operating system
and is connected to a 1 Gigabit Ethernet switch.

The server was fully dedicated to this work and all
experiments were carried out in a time frame of low
internet traffic. However, the machine is located in a
large institutional network with more than a thousand
installations, so the internet link was naturally shared
and subjected to uncontrollable traffic variations.

We prepared a set of 8 tables with varying number
of rows (1000 to 20000) and columns (10 to 100). All
cells are text fields of the same size (100 characters).
These table properties take into account the service
limits presented in Table 3.

Using a free account of Google Sheets, we im-
ported those tables as spreadsheets and adjusted shar-
ing/publishing permissions as to make them available
as JSON-formatted data using REST API requests.

For the testbed, we used Apache JMeter to per-
form two test plans for simulating: (i) a single user
requesting each one of the spreadsheets and (ii) mul-
tiple users requesting a single spreadsheet. All tests
used a ramp-up period of 1 second. The first test plan
allowed us to examine the impact of different table
sizes on the service response and, consequently, on
the elapsed response time perceived by the user. The
second test plan was conceived to investigate how the
service responds to different request rates.

To favor the replication of the experiments in
other environments, all test scripts are available online
at: https://github.com/AndreaInfUFSM/iceis2018-
cloudspreadsheet.

5 RESULTS

In this Section, we describe the results we obtained
from our testbed.

5.1 Single User Requests

In Table 4, we present response times for a single user
requesting spreadsheets of varied sizes from Google
Sheets, in JSON format. The transferred size for each
requested spreadsheet comprises all table data plus
JSON-formatted metadata. This size grows as we add
rows or cols, and different table dimensions (rowsX-
cols) lead to different transferred sizes, even for a con-
stant number of cells (see, for example, dimensions
1000x100 and 10000x10, both with 100000 cells).

As we can observe, the average response time
grows with the transferred size, and even a relatively
small table takes more than a second to be transferred.
Also, minimum and maximum values for response
times may vary significantly. This may be attributed
to both the cloud service provider and the network
traffic.

5.2 Multiple User Requests

In Table 5, we present response times for simultane-
ous requests over the smallest table (1000x10). As we
increase the number of (virtual) users, we can observe
the response times grow. This may be due to the cloud
service delaying the response, but also due to a client
overload. In either case, a web application running
on a single machine will notice such response times
when serving multiple users.

As we exceed the API request limits, some re-
quests may fail and return an error code instead of
the actual data. In this experiment, there are no failed
requests for up to 200 users. Starting from 250 users,
error rates grow and can reach high percentages. Even
so, we may expect some requests to be successful if
they are sent just after a failed batch, as Google Sheets
do not impose a waiting time before subsequent re-
quests succeeds.

On the Performance of Cloud-based Spreadsheets as a Backend for View-only Web Applications

645



Table 4: Response times for a single user requesting tables of varied sizes from Google Sheets.

Response Time (ms)
Rows x Cols Size (KB) Average Min. Max. Std. Dev.

1000x10 4582 1996 1613 3867 658
1000x100 42094 5763 5460 6727 423
2000x10 9167 2435 2198 3285 333

2000x100 84224 10592 9905 12169 709
10000x10 45849 6389 5752 7239 586

10000x100 421307 48068 44059 65799 6241
20000x10 91701 11357 10641 13032 798

20000x100 842655 102179 91169 134397 11666

Table 5: Response times for simultaneous user requests over a 1000x10 table from Google Sheets.

Virtual
Users

Response Time (ms) Std.
Dev.

Error
(%)Average Min. Max.

10 4001 2014 8949 1933 0.0
20 7219 1920 21751 4748 0.0
50 13856 2434 26447 6058 0.0
150 39491 2489 64130 18258 0.0
200 54417 2355 84309 25146 0.0
250 57372 2387 93441 26789 14.8
300 58753 2982 95241 28746 29.6
500 61061 5921 105279 26723 56.4
700 62294 3026 102273 27711 67.8
900 61111 6254 103616 28993 75.1
1000 65230 3306 108314 29855 76.1

6 CONCLUSIONS

In this work, we conducted a preliminary investiga-
tion on the performance of a prominent cloud-based
spreadsheet service, Google Sheets, which is used as
a backend of some existing view-only web applica-
tions. We used the provider’s API that returns data in
JSON format, as mentioned in technical articles from
developers adopting this approach.

The results indicate a significant penalty in getting
JSON-formatted data from the cloud-based service, as
the provider includes numerous metadata. This may
not be a problem for the smallest cases, but may be-
come a performance bottleneck as we add rows and
columns to a table.

Our experiments also show the response times are
significant and highly variable. This may be expected
from a cloud-based service which does not mention
this metric in its pricing plans. This may also occur in
other non-cloud approaches where data is hosted far
from the application server, where network traffic has
great influence. Equally importantly, our experiments
show to what extent the service supports concurrent
requests.

Taking all this into account, it is important that

developers made an informed decision when consid-
ering this approach. Also, when adopting such data
backend, it is necessary to employ techniques to coun-
terbalance the drawbacks of this approach, as for ex-
ample using asynchronous tasks for data transferring.

Although this study is preliminary and has only
covered a free service, our test scripts may be reused
as-is to analyze the performance of paid plans from
the same provider. It should be noted, however, that
the testbed has limitations, as it issues concurrent re-
quests from a single machine. This simulates a sce-
nario where the web application is hosted on a sin-
gle server, which consequently is the only source of
all requests sent by the application to the cloud-based
service. While this is a real-world scenario, the re-
sults are influenced by the concurrency on both the
requester and the provider.

As future work, the testbed may be extended to
other cloud-based spreadsheet services and include
experiments with fine-grained operations offered by
some APIs. Also, a comparison with other ap-
proaches for data backend may be useful as a refer-
ence to developers focusing on small-scale, view-only
web applications.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

646



REFERENCES

Bini, T. A., Sunyé, M. S., and Lange, A. (2014). Cloud
computing - an evaluation of rules of thumb for tun-
ing RDBMSs. In ICEIS 2014 - Proceedings of the
16th International Conference on Enterprise Informa-
tion Systems, Volume 1, Lisbon, Portugal, 27-30 April,
2014, pages 187–192.

Chang, K. S.-P. and Myers, B. A. (2014). Creating interac-
tive web data applications with spreadsheets. In Pro-
ceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, UIST ’14, pages
87–96, New York, NY, USA. ACM.

Dayagi, G. (2017). Get sheet done – Using Google
Spreadsheets as your data backend. Available at:
http://crwd.fr/2wzmJee.

Doubintchik, M. (2016). Retrieve Google Spread-
sheets using JSON feed & output to HTML.
Available at: https://allurewebsolutions.com/google-
spreadsheets-json.

Fisher, T. (2014). How we built Border-
land out of a spreadsheet. Available at:
http://blog.apps.npr.org/2014/04/23/how-we-built-
borderland-out-of-a-spreadsheet.html.

Hankinson, W. (2015). Turning data into enemies:
How we used google spreadsheets as a CMS
for Unity in Defend the Dam. Available at:
https://www.gamasutra.com/blogs/WillHankinson/
20150323/239489/.

Litchfeild, A., Althwab, A., and Sharma, C. (2017).
Distributed relational database performance in cloud
computing: an investigative study. In AMCIS 2017 -
Proceedings of the 23rd Americas Conference on In-
formation Systems.

McCullough, B. D. and Yalta, A. T. (2013). Spreadsheets in
the cloud - not ready yet. Journal of Statistical Soft-
ware, 52(7).

Miller, M. (2008). Cloud Computing: Web-Based Applica-
tions That Change the Way You Work and Collaborate
Online. Que Publishing Company, 1 edition.

Noble, C. (2015). Quantified anything: Turning
Google Sheets into a backend database. Avail-
able at: https://nobleintentstudio.com/blog/google-
docs-as-a-backend/.

Stanoev, K. (2015). Using Google spreadsheets as
data source in your Android app. Available at:
https://www.telerik.com/blogs/google-spreadsheet-
as-data-source-android.

On the Performance of Cloud-based Spreadsheets as a Backend for View-only Web Applications

647


