
Co-Transformation to Cloud-Native Applications
Development Experiences and Experimental Evaluation

Josef Spillner1, Yessica Bogado2, Walter Benı́tez2 and Fabio López-Pires2

1Service Prototyping Lab, Zurich University of Applied Sciences, Winterthur, Switzerland
2Information and Communication Technology Center, Itaipu Technological Park, Hernandarias, Paraguay

Keywords: Cloud-Native Applications, Elasticity, Resilience, Continuous Development, Music Royalties.

Abstract: Modern software applications following cloud-native design principles and architecture guidelines have in-
herent advantages in fulfilling current user requirements when executed in complex scheduled environments.
Engineers responsible for software applications therefore have an intrinsic interest to migrate to cloud-native
architectures. Existing methodologies for transforming legacy applications do not yet consider migration from
partly cloud-enabled and cloud-aware applications under continuous development. This work thus introduces
a co-transformation methodology and validates it through the migration of a prototypical music identification
and royalty collection application. Experimental results demonstrate that the proposed methodology is capa-
ble to effectively guide a transformation process, resulting in elastic and resilient cloud-native applications.
Findings include the necessity to maintain application self-management even on modern cloud platforms.

1 INTRODUCTION

Users regularly expect software applications with out-
standing features according to specific requirements,
but also with indisputable technical qualities, inclu-
ding unlimited on-demand availability, constant high-
quality behaviour independent from any interference
or outside circumstances, as well as predictable costs
which are aligned with the actual utilisation.

Modern cloud computing concepts and technolo-
gies facilitate the creation of such applications, but do
not themselves guarantee them per se, and would thus
not meet the requirements of SMEs and other users
unless additional steps are taken (Wood and Buck-
ley, 2015). Rather, application engineers are tasked
to exploit these facilities to weave the desired quali-
ties into the applications. This process is currently
not dissimilar from a lottery. With a bit of luck, archi-
tects may create the right software architecture and
engineers may correctly implement it. However, in
order to make properly engineered cloud applications
a commodity, a well-defined methodology to achieve
Cloud-Native Applications (CNAs) is needed (Tof-
fetti et al., 2017; Andrikopoulos, 2017; Yousif, 2017).
Current research still focuses on transforming legacy
version of existing applications but do not account for
double effort when development and transformation
to a cloud-native architecture occur in parallel.

In this context, the aim of this paper is thus to in-
troduce a co-transformation methodology which star-
ting from a sub-optimal and not fully reversible legacy
application design through transformation during de-
velopment achieves the desired characteristics in he-
terogeneous cloud computing environments.

To demonstrate the proposed methodology, we in-
troduce HENDU1 as running example. HENDU is an
unfinished, continuously developed web-based appli-
cation to record and analyse music played at arbitrary
locations, events and radio stations (see Section 4).
This considered application was designed and imple-
mented taking into account some cloud principles and
could be initially classified as a cloud-enabled appli-
cation at the start of our work (see Section 2).

In order to provide essential characteristics for its
massive deployment in production, HENDU must in-
clude cloud-native characteristics such as elasticity
and resilience, which are achieved by co-transforming
the application from a cloud-enabled to a cloud-native
application, considering an application-specific co-
transformation concept derived from the generic co-
transformation methodology proposed in this work.
In order to validate that the co-transformed applica-
tion fulfils the requirements during development, se-
veral experiments are part of the concept.

1Guaranı́ word that means listen.

596
Spillner, J., Bogado, Y., Benítez, W. and López-Pires, F.
Co-Transformation to Cloud-Native Applications.
DOI: 10.5220/0006790305960607
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 596-607
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

According to (Toffetti et al., 2017), cloud-native
characteristics considered in this work can defined as:

• Elasticity: CNAs supports adjusting their capa-
city by adding or removing resources to provide a
required Quality of Service (QoS) in face of load
variation avoiding over- and under-provisioning.
CNAs should take full advantage of cloud envi-
ronments being a measured service offering on-
demand self-service and rapid elasticity.

• Resilience: CNAs anticipate failures and fluctu-
ation in QoS for both cloud resources and third-
party services needed to implement an applica-
tion to remain available during outages. Resource
pooling in clouds imply that unexpected fluctua-
tions of the infrastructure performance need to be
expected and accordingly managed.

The remainder of this paper is structured in the
following way: First, a model of cloud computing
application maturity levels is introduced, and the
generic cloud-native co-transformation methodology
is proposed. Subsequently, a detailed analysis of
the HENDU application scenario is performed and
a concrete fitting co-transformation concept is deri-
ved. The resulting implementation and an experimen-
tal evaluation thereof are then shown in the perfor-
med experiments. Finally, conclusions of this work
are summarised.

2 CLOUD APPLICATION
MATURITY LEVELS

Even though cloud computing is a well established
research area, the work on cloud applications is of-
ten sidelined and not rigorous (Yousif, 2017). The
lack of a model to describe the cloudiness of an ap-
plication is particularly evident and vague terms such
as cloud-ready are often seen. Andrikopoulos defines
an entire lifecycle for engineering cloud-based appli-
cations (Andrikopoulos, 2017) but it applies prima-
rily to new software development without considering
legacy code bases. The Open Data Center Alliance
(ODCA) defines a four-level model (Ashtikar et al.,
2014) but assumes isolated applications. Based on
previous work (Toffetti et al., 2017), we therefore in-
troduce a model which captures the cloudiness aspect
as maturity levels even though application engineer-
ing not necessarily proceeds through all levels chro-
nologically.

The presented model (see Figure 1) assumed a
four-level maturity evolution for cloud applications.
The first level (legacy) encompasses legacy applicati-
ons which have not been designed for cloud environ-

Figure 1: A generic model for cloud application maturity
levels and associated criteria, contrasting ODCA’s model.

ments. Often, this type of application even predate
the corresponding platform technologies and require
a manual installation and sizing. The second level
(cloud-enabled) comprises of applications which al-
ready ship in a ready-to-deploy format such as a vir-
tual machine or a container. Yet such applications
work as isolated units outside of the platform’s feed-
back loop. This is the starting point of the conside-
red HENDU application. When instead they integrate
with surrounding cloud services such as service bro-
kers, databases or health checks which are provisio-
ned on demand outside of the application scope, the
next level is achieved (cloud-aware). Finally, if appli-
cations fully exploit all facilities cloud environments
offer to maximise availability, elasticity and resilience
through self-management, they are considered to have
reached the final level (cloud-native). The sequence
of all levels is shown in Figure 1.

This work focuses on presenting a novel co-
transformation methodology to migrate applications
under current development from cloud-enabled to
cloud-native levels. In more colloquial terms, we may
say that cloud-enabled means that the application can
be deployed and runs, cloud-aware means that it in-
tegrates with its environment but behaves counterin-
tuitively concerning some of the expected behaviours
in clouds, and cloud-native means that it behaves per-
fectly under any circumstances.

Each level can be subdivided to account for the
amount of effort required by the application engineer
or operator for maintaining the application offered
as a service. For instance, the detection of platform
services and the rebinding may happen automatically
through discovery, or manually through configuration
settings. Thus, the levels are not fully discrete but rat-
her indicate the progress on a maturity spectrum.

Eventually, a CNA should be elastic and resilient
through a certain degree of self-management. On an
architectural level, the self-management can be com-
pletely self-contained within the application logic, or
partially or wholly outsourced to an application ma-
nagement platform, e.g. a container platform in cloud
environments. The platform must then expose the
same characteristics, being elastic and resilient.

Co-Transformation to Cloud-Native Applications

597

3 TRANSFORMATION
METHODOLOGIES

The specialised literature on Cloud-Native Applicati-
ons and suitable architectures reports on several mi-
gration and transformation strategies. In this section,
we briefly present an overview about the field to jus-
tify the need for a proper co-transformation methodo-
logy, and then proceed to present ours as main contri-
bution of this work.

3.1 Existing Methodologies

Similar to the perspective differences between cloud
computing operations and cloud applications engi-
neering, there is still a gap between cloud-native com-
puting infrastructure and platforms, such as the ecosy-
stem defined by the Cloud-Native Computing Foun-
dation and other industrial approaches, and the ap-
plications side whose progress is driven by academic
research, often through experience reports.

The previous work of one of the authors on trans-
forming legacy software applications to cloud-native
ones consisted of a technological fitting to distributed
container and configuration management systems at
that time (Toffetti et al., 2017). The application under
transformation, Zurmo CRM, gained horizontal sca-
ling and resilience capabilities which were validated
experimentally over the period of almost two years.

Another experience report published in parallel
by Balalaie et al. instead focused on reusability, de-
centralised data governance, automated deployment
and built-in scalability, leaving little overlap in terms
of defining the characteristics of the resulting cloud-
native application (Balalaie et al., 2015). Additio-
nally, a more recent architecture evolution progress
proposal by Fowley et al. focuses on the feasibility of
cloud-native transformations for SMEs (Fowley et al.,
2017). It acknowledges the lack of in-house compe-
tencies and the need for re-engineering existing code
due to the contained investment. According to the aut-
hors, the benefits will eventually outweigh associated
costs.

A recent proposal, inspired by industrial research,
is BlueShift which attempts to automate application
transformation to cloud-native application architectu-
res. The application functionality is discovered, ana-
lysed, transformed into artefacts and finally enabled
as a cloud service (Vukovic et al., 2017). The method
is leaning towards IBM’s BlueMix offering as target
platform. It is not clear if this method, or any other,
would work for generic targets.

In summary, existing methodologies to transform
and lift applications to the cloud-native level do not

yet consider migration for partly cloud-enabled and
cloud-aware applications under continuous develop-
ment. In consequence, this work introduces a co-
transformation methodology, validating it through the
migration of a prototypical music identification ap-
plication, resulting in an elastic and resilient cloud-
native application.

3.2 Co-Transformation Methodology

The proposed methodology consists of a number of
transformation steps of which almost all can be exe-
cuted in parallel to speed up the transformation in on-
going software development projects.

The necessary steps to achieve a cloud-aware
application based on a cloud-enabled one are:

• The application must be aware about the cloud
environment it is running in and about available
associated capabilities for flexible use of cloud
services and platform features to outsource cri-
tical secondary functionality (e.g. data storage).
Standardised discovery and broker services such
as the Open Service Broker API increasingly be-
come enablers for the awareness.

• The application contains mechanisms for se-
lective static use of cloud management facilities,
such as declaring rules for auto-scalers or load-
balancers based on general metrics (e.g. CPU), as
well as health checks and restarts.

To mature the application to a fully cloud-
native level to maximise elasticity and resilience,
the following additional steps are necessary:

• Conversion to a strictly separated set of stateless
and stateful microservices as a set of types.

• Self-healing logic (in a basic form, restarts) for all
microservices as a set of type instances in addition
to platform features.

• Inclusion of sophisticated auto-scaling logic ba-
sed on domain-specific metrics (e.g. response
time) in addition to platform-defined metrics.

• Further self-management including policies to
adaptively and autonomously enact the me-
chanisms for switching between application-
controlled and platform-controlled services.

The methodology is not without alternatives. For
example, it might be possible to create cloud-native
applications without microservices. Given today’s
trends in cloud platforms, such alternative designs
would however be more costly and less native. Furt-
hermore, the methodology does not mandate a loca-
tion of implementation. Given the requirement of

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

598

adaptivity, the location may vary with the cloud envi-
ronment. For instance, a cloud application hosted on
Kubernetes may simply declare an auto-scaling rule
which is processed outside of the application scope.
The same application must however be prepared to
execute in the same manner on other stacks and the-
refore needs portable platform services for the self-
management which, even in a basic form, could serve
as drop-in replacements for these mechanisms.

Summarising, Figure 2 shows the basic integra-
tion of an application under successive transformation
to a cloud-aware and a cloud-native maturity level
into a corresponding cloud computing environment.
The cloud-nativeness is determined by the ability of
the application to process environment information to
make autonomous decisions about the degree of self-
management.

4 HENDU
CO-TRANSFORMATION

As previously described, the scenario application
HENDU could be classified as a cloud-enabled ap-
plication (see Figure 1) considering that its original
version (cloud-enabled HENDU) is composed of a set
of services, detailed in Section 4.1. These mentioned
services are packed into Docker containers for high
scalability (Dikaleh et al., 2016), being possible to run
in platforms such as Google Container Engine, Ama-
zon Elastic Container Service or even plain Docker
computing environments.

Services in cloud-enabled HENDU still work as
isolated units and required characteristics as elasticity
and resilience are not achieved. Consequently, cloud-
enabled HENDU must be transformed to a cloud-
native HENDU to achieve current requirements for
massive deployment. To demonstrate an application-
specific application of the proposed methodology,
Section 4.2 presents concepts and steps performed for
the application co-transformation.

4.1 Original Cloud-enabled HENDU

Music royalties are often subject to fees on natio-
nal composer or publisher rights organisations such
as APA (Paraguay), SUISA (Switzerland) or GEMA
(Germany). In this context, HENDU uses a mu-
sic fingerprint database to heuristically determine the
played songs, create a list of songs relevant to an event
or radio station and finally submits it to the rights or-
ganisation for subsequent charging and billing.

HENDU (cloud-enabled) is composed of seven
services: (1) Hash Generator, (2) Communication,

Figure 2: Typical cloud-native application integration into a
runtime environment.

(3) Radio Monitor, (4) Audio Recognition, (5) Fil-
ter, (6) Web User Interface and (7) Event Handler, as
shown in Figure 3. Additionally it considers two da-
tabase systems: (1) Operational (non-relational) and
(2) Application Management (relational). The above
mentioned components run as a single-instance con-
tainer configuration without auto-scaling rules. As a
main consequence, cloud-enabled HENDU does not
achieve neither elasticity nor resilience.

Figure 3 shows the service architecture of cloud-
enabled HENDU and its interaction with the external
components for data acquisition as well as data vi-
sualisation for users. To be able to identify music,
it is necessary to obtain the complete fingerprint of
each music track. For that purpose, the Hash Ge-
nerator service creates a set of fingerprints for each
music Ma, dividing the original music Ma in blocks
of 30 seconds (i.e. m fa,i), considering an overlap of
15 seconds. The obtained set of fingerprints for each
music track Ma is stored in a Music Fingerprint col-
lection and in a Musics table for further processing
and comparison with collected samples. Music is col-
lected for recognition from radio stations and events,
as considered in the motivational examples of service
operations presented as follows.

4.1.1 Music Recognition from Radios

The monitor of online radio stations is made through
the Radio Monitor service that obtains audio samples
and generates the fingerprint of each radio stream af-
ter a registration in Radios table for further proces-
sing and identification. The Radio Monitor service
connects to the stream through the URL of radio Rb.
Then, the mentioned service collects 30 second sam-
ples s j on MP3 format to generate a sample finger-
print s fb, j for each collected sample j of the radio Rb.
The generated sample fingerprint (s fb, j), radio name
(Rb), radio station location and a time-stamp are sto-
red in the Sample Fingerprint collection.

Once a fingerprint s fb, j is generated and stored in
the Sample Fingerprint collection, the Audio Recog-
nition service compares it with existing music finger-
prints (e.g. m fa,i), previously created with the Hash
Generator service, resulting in a list of possible ma-
tches sorted by an affinity value called score. The

Co-Transformation to Cloud-Native Applications

599

Single-Host

Sensor 1

App

Sensor m

App

Communication

 OPERATIONAL

SAMPLE

FINGERPRINT

MUSIC

FINGERPRINT

MUSIC

BINARY

RAW

RESULTS

NON-RELATIONAL DATABASE MANAGEMENT SYSTEM

MANAGEMENT

MUSICS DEVICES RESULTS USERS

RELATIONAL DATABASE MANAGEMENT SYSTEM

R R

Web User Interface

Event Handler

R

Audio Recognition

Hash Generator

Filter

JSON

JSON

SQL

User 1 User n

Web Browser Web Browser

R
HTTP

R
HTTP

SQL

JSON

JSON

SQLSQL

Radio 1

Radio Monitor

JSON

Radio k

RADIOS

SQL

JSON

Figure 3: Original cloud-enabled HENDU architecture.

identified music with the highest score is stored in the
Raw Results collection as a suitable match.

Based on the results of the Audio Recognition,
the Filter service analyses and defines what music is
played. The service creates threads for each radio,
ensuring the concurrency for a faster process. Each
thread Tb process the set of documents db,k in the Raw
Result collection that corresponding with its own as-
signed radio Rb. The thread Tb reads the music of
the first document db,1, and the amount of blocks qm
of that music, previously stored in Musics table and
defined by its duration, then search’s for a match in
the next qm− 1 documents. If a match threshold is
reached, the filter removes all the set db,qm of the col-
lection and considers that the music was played, then
save this information on the Results table. But if not,
the filter removes only the document db,1 and the cy-
cle start again with the next document db,2.

4.1.2 Music Recognition from Events

At the same time that the system monitors online
radio stations, it can obtain audio from events, ha-
ving a similar process. The purpose in events is to
obtain and process audio gathered from the environ-
ment through sensors Sc for the creation of sample fin-
gerprints s fc, j. These are subsequent sent to the server
for recognition. The sensor Sc establishes a commu-
nication with the system through the Communication
service using a Transmission Control Protocol (TCP)
connection with an application-specific protocol, de-

signed to handle multiple clients in a single instance.
The connection between the sensor Sc and the service
is made through three steps. The sensor Sc sends a
request with its International Mobile Station Equip-
ment Identity (IMEI) for habilitation. With IMEI the
service consults Devices table and sends the response.
Once the Sc receives the response, it sends another re-
quest asking for a specific port. The server responds
to this and opens a dedicated port to receive data
from Sc, this mean that another sensor cannot con-
nect through the same port assigned to Sc. The sensor
sends the sample data and the service stores it in the
Sample Fingerprint collection, closing the assigned
port. The rest of the process is similar to online ra-
dios, with the difference that the Filter service creates
threads and processes documents according to Devi-
ces table.

4.1.3 Data Visualisation

The main purpose of HENDU is to give information
to musicians about music played in different events
and online radio stations. Musicians can login to the
system through the Web User Interface service and vi-
sualise which musics were played and where, as well
as other relevant information registered. The Event
Handler service establish a web socket connection,
this is necessary for consults the Users tables for the
login of the users and obtains the necessary informa-
tion from the Results table.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

600

4.2 Transformation Concept

Following the co-transformation methodology, a
HENDU application-specific concept is derived.
First, the application maturity needs to be lifted from
cloud-enabled to cloud-aware, considering that:

• Cloud-Aware 1 (CA1): Applications must be
able to flexibly switch between self-managed and
provider-managed services. As cloud awareness
requires a conscious use of platform services, an
explicit awareness about whether HENDU needs
to launch its own data handling services, such as
containerised databases, or bind to third-party ser-
vices within or even beyond hosting platforms,
such as Database as a Service (DBaaS), is needed
along with a suitable reconfiguration mechanism.

• Cloud-Aware 2 (CA2) Addition of auto-scaling
rules for main services. This step is required to ba-
sically fulfil the elasticity characteristic expected
for HENDU. Typically, this would be a combina-
tion of dynamic rules for auto-scalers and static
rules for the initial scaling following the method
of Ramı́rez López (López and Spillner, 2017).

With these steps, the application becomes cloud-
aware as it integrates with stateful services of the en-
vironment and becomes itself entirely stateless. Sub-
sequently, the maturity needs to be lifted further from
cloud-aware to cloud-native, considering that:

• Cloud-Native 1 (CN1): Services must be de-
composed into qualified microservices (see Figure
4). To support the disposable nature of microser-
vice instances, their implementations, for instance
container images, should be as fast-booting as
possible, which calls for more light-weight ima-
ges.

• Cloud-Native 2 (CN2): Provider-managed and
self-managed health-checking for self-healing
tools and restart mechanisms must be included
for the application. This step is required to ba-
sically fulfil the resilience characteristic expected
for HENDU.

• Cloud-Native 3 (CN3): Addition of auto-scaling
rules for all microservices based on domain-
specific metrics. Auto-scaling rules based on
general-purpose metrics (e.g. CPU utilisation
bounds) are not applicable for cloud-native appli-
cations that must perform with an expected QoS
defined particularly for the application.

• Cloud-Native 4 (CN4): Provider-managed servi-
ces could be limited for CNAs and consequently,
CNAs should be able to independently and adap-
tively complement the cloud platform, and pro-

vide application-controlled services to avoid plat-
form limitations (e.g. platform-controlled health
checks).

5 IMPLEMENTATION

We have transformed HENDU into a cloud-native ap-
plication following the proposed concept. Due to
space limitations, this section reports on selected im-
plementation aspects for CA1, CN1 and CN2.

5.1 Flexibility (CA1)

In today’s cloud platforms, the bindings to microser-
vices are configured either by custom hostnames assu-
ming authority over the Domain Name System (DNS)
or by environment variables. DNS records can be up-
dated any time during the execution but may be limi-
ted by incorrect Time-To-Live (TTL) settings, causing
outdated records to be used.
Environment variables (e.g. MYDB=192.168.0.1)
require a hierarchical launch of containers called
master-slave model (Amaral et al., 2015) and furt-
hermore require a restart of the container upon any
change. In this context, Table 1 summarises the adap-
tivity options in two considered target cloud plat-
forms.

Independent of the technical means to realise
the bindings, there needs to be a systematic process
to identify all binding locations, retrieve the list
of candidate services, and perform the rebinding.
For manual rebinding, this process needs to be
made available to the developer through appropriate
tooling. In our co-transformation work, we have
designed a new tool to (i) parse HENDU’s Docker
Compose files, (ii) identify service links within
the composition, and (iii) offer to the developer
to override the bindings. Thus, for any specified
self-managed service, equivalent platform-hosted
services may be used instead. Docker Compose
would generate environment variables of the form
MYSQL 1 PORT 3306 TCP=tcp://192.168.0.1:3306.
Upon the developer decision to use a platform-hosted
service instead, the self-managed service is removed
from the composition and the equivalent environment
variables are injected into all services previously
depending on it. Additionally, to achieve CA2 we
considered platform-managed auto-scalers based on
CPU utilisation metrics as liveness probes for health
checks in Kubernetes for service restarts.

Co-Transformation to Cloud-Native Applications

601

Table 1: Discovery and adaptivity comparison among cloud platforms.

Adaptivity Feature Docker-Compose Kubernetes
Hostnames only in Docker Cloud yes

Environment variables only in Docker Cloud yes

Kubernetes-Cluster

Sensor 1

App

Sensor m

App

User 1 User n

Web Browser Web Browser

Radio 1 Radio k

Sensor 1

App

Sensor m

App

User 1 User n

Web Browser Web Browser

Radio 1 Radio k

R R

external communication svc

Communication

Redis

Audio

Recognition

audio recognition svc

R

recognition svc

mongo svc

Recognition

Persistence

Mongo

MongoDBPersistent

volume

Hash Generator Web User

Interface

Event Handler

R

MySQL

persistence mongo svc
Persistent

Volume

web interface svc

mysql svc

Radio Monitor

internal communication svc

Filter

hash

generator

svc

R R

R

Figure 4: Resulting cloud-native HENDU microservice architecture. Notice that svc means service.

5.2 Microservices Decomposition (CN1)

We have realised CN1 by proposing a new microservi-
ces architecture of cloud-native HENDU. In contrast
with the original cloud-enabled HENDU architecture
shown in Figure 3, the microservice architecture pre-
sented in Figure 4 considers several pods, compo-
sed by one or more containers for each microservice.
These pods can be elastically replicated according to
current demand. Each pod, except Filter, has a ser-
vice layer to communicate with the others, represen-
ted in the architecture with dotted lines. Additionally,
we have realised CN1 by switching from Ubuntu Doc-
ker base images to Alpine images. Due to their small
size, Alpine-based services are sometimes referred to
as micro-containers. Across all image sizes, the re-
duction in size has on average been 81% (see Table 2)
and consequently a reduction in taking snapshots and
live migration time for containers has been significant
as well. Measuring the time saved for these two ma-
nagement actions is out of the scope of this work and
left as a future work.

5.3 Self-healing Method (CN2)

Originally, self-management has been a crucial
functionality within applications to survive faults and
usage surges in the cloud. With the leverage of por-
table off-the-shelf microservice management frame-
works, the alternative approach is to deploy those in
conjunction with the application on plain disposable
virtual machines or lower-level containers. Thus, the
principle of dumb pipes, smart endpoints is evolved
to dumb pipes, dumb infrastructure, smart endpoints
which greatly simplifies the application design. Still,
a bare minimum of self-management must be present
within the application to account for failures within
the platform. Consequently, the container composi-
tion of HENDU has been ported from Docker Com-
pose to Kubernetes. In this context, Table 3 compares
the self-management aspects of both platforms. What
is apparent is the inability of both platforms to de-
tect crashes and inconsistencies within the platform
itself, leading to the need to include complementary
application-level checks for high resilience. Over-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

602

Table 2: Reductions in image size when considering microcontainers for microservices.

HENDU Service Ubuntu image size (MB) Alpine image size (MB) Reduction
Communication 212 16 92%
Radio Monitor 771 166 78%
Hash Generator 770 165 78%

Audio Recognition 532 111 79%
Filter 544 118 78%

all, the co-transformation experience for HENDU is
summarised in Tables 4 and 5 for the successively
considered maturation levels (cloud-enabled to cloud-
aware to cloud-native). The mentioned tables contrast
the respective steps from the co-transformation met-
hodology, from the derived application-specific trans-
formation concept, and from the resulting considered
implementation.

6 EXPERIMENTAL EVALUATION

We have installed HENDU in its various maturity le-
vels for a side-by-side comparison into a container
management platform hosted at the institutional data
centre of one of the authors which provides cloud self-
services to all research and teaching staff.

The system runs OpenStack and offers Ubuntu
16.04 VMs in a m1.small instance size configuration.
A second control installation was set up at the fede-
rated cloud of the European Grid Initiative (EGI) for
comparison and cross-checking. In both cases, the
container composition was scheduled using Docker
Compose and Kubernetes running atop the virtual ma-
chines.

Additionally, a Kubernetes cluster composed by 2
nodes with the following characteristics was installed:

• RAM: 3GB.

• CPU: 4 cores (AMD Opteron 23xx 2.4Ghz).

• OS: CentOS 7.

For monitoring and visualisation purposes the He-
apster service with an Influxdb database as well as
Kubernetes dashboard to retrieve metrics.

6.1 Platform-managed Elasticity (CA2)

To demonstrate that HENDU may elastically adjust
its computational resources according to current de-
mand, it was evaluated against a HENDU version wit-
hout auto-scaling capabilities as the original cloud-
enabled HENDU. To achieve this, a workload simu-
lation was considered, taking into account JMeter as
suitable benchmark tool. The application was con-
figured to simulate a workload trace of 100 HTTP

POST requests, sent using a uniform distribution in 5
seconds periods, over a duration of 10 minutes. Obtai-
ned results were measured considering the Average
Response Time (AvRT) and the Number of Requests
Correctly Sent per minute (RS/m).

Experimental results are summarised as follows:

• HENDU with CPU auto-scaling:

– AvRT = 120 (ms).
– RS/m = 2833.1.

• HENDU without auto-scaling:

– AvRT = 2923 (ms).
– RS/m = 1212.7.

As the obtained results reveal, even when consi-
dering a basic metric for auto-scaling such as CPU,
applications can improve response times by adjus-
ting computational resources according to current de-
mand. Including more sophisticated domain-specific
metrics that are particular for each different applica-
tion may incur in better QoS. Achieving this type of
auto-scaling is left as a future work.

6.2 Platform-managed Resilience (CN2)

Existing experimentation tools such as Chaosmonkey
or MC-EMU allow for random termination of micro-
services of an application (Spillner, 2017). As our
interest is finding out about the combined resilience
of application and platform, we have designed and
implemented an MC-EMU-inspired custom parame-
terised Docker container terminator which targets the
process running in the container as well as the mana-
gement processes of Docker.

Docker represents a container management plat-
form with three kinds of operating system processes
on the host system: the top-level process dockerd,
as its child the instance handling process containerd
and below it a per-instance process called containerd-
shim. Through a restart policy, Docker is supposed to
be resilient against crashes.

We have assessed the resilience of the Docker en-
gine with a technique which forces a single or repea-
ted termination of up to two of these processes. Spe-
cifically, we run the assessment in two modes: One

Co-Transformation to Cloud-Native Applications

603

Table 3: Self-management features comparison.

Self-Management Feature Docker-Compose Kubernetes
Termination detection internal crash only yes

Slowness detection no no
Inconsistency detection no no

Custom detection yes (health check) yes (liveness, readiness)

Table 4: Methodology, Concept and Implementation for Transforming Cloud-Enabled to Cloud-Aware Applications.

Methodology (Sect. 3.2) Concept (Sect. 4.2) Implementation (Sect. 5)
The application must be aware
about the cloud environment it is
running in and about available as-
sociated capabilities for flexible use
of cloud services and platform fea-
tures to outsource critical secondary
functionality.

Applications must be able to flex-
ibly switch between self-managed
and provider-managed services. As
cloud awareness requires a cons-
cious use of platform services, an
explicit awareness about whether
HENDU needs to launch its own
services . . . or bind to third-party
services . . . (CA1).

Manual implementation as a
YAML configuration file in
the deployment process. It
contains references to end-
points and credentials which
can be turned into links
to platform-managed secrets
for higher security.

The application contains mecha-
nisms for selective static use of
cloud management facilities, such
as declaring rules for auto-scalers
or load-balancers based on general
metrics, as well as health checks
and restarts.

Addition of auto-scaling rules for
main services. This step is required
to basically fulfil the elasticity cha-
racteristic expected for HENDU.
Typically, this would be a combi-
nation of dynamic rules for auto-
scalers and static rules for the initial
scaling . . . (CA2).

Use of Kubernetes horizon-
tal auto-scaling API with
data provided by Heap-
ster monitoring service, al-
lowing auto-scaling based
on Target CPU: 20%, Min
Pods: 1 and Max Pods: 20.

0 2 4 6 8 10 12 14 16 18 20
No. of termination attempts

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f p
ro

ce
ss

es

Spin
Missing
Confused

0 2 4 6 8 10 12 14 16 18 20
No. of termination attempts

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f p
ro

ce
ss

es

Spin
Missing
Confused

Figure 5: Resilience of the Docker container platform – left graph: containerd-shim, right graph: containerd and containerd-
shim.

which only targets containerd-shim and one which
also targets its parent process with hard termination
signals (SIGKILL) in successive order with breaks
of 0.1s. After each termination sequence, the usa-
bility of the container under test is checked repea-
tedly, again using 0.1s intervals. For each number
of termination attempts per sequence, 100 runs are
performed. The results as shown in Figure 5 are cle-
arly showing weaknesses within Docker which due
to it being a core runtime also affects container ma-
nagement platforms such as Docker’s own Compose,

Kubernetes and OpenShift. While few terminations
do not show practical issues, repeatedly terminating
containerd-shim eventually leads to exited containers
with forgotten restarts (missing state). When also ter-
minating containerd, containers rarely go missing but
the Docker engine often ends up in a confused in-
consistent state where the process list shows a con-
tainer as running but Docker commands sent to it re-
port about a non-existing container (confused). Even-
tually, in both cases the number of successful waits
(spin), which use an exponential back-off strategy, is

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

604

Table 5: Methodology, Concept and Implementation for Transforming Cloud-Aware to Cloud-Native Applications.

Methodology (Sect. 3.2) Concept (Sect. 4.2) Implementation (Sect. 5)
Conversion to a strictly separated
set of stateless and stateful micro-
services as a set of types.

Services must be decomposed into
microservices. To support the dis-
posable nature of microservice in-
stances, their implementations, for
instance container images, should
be as fast-booting as possible,
which calls for more light-weight
images (CN1).

Services were decomposed
into microservices using
Flask as a micro-framework
for Python and changing
the application specific
protocols to REST for inter-
operability. Additionally,
container images were also
considerably reduced.

Self-healing logic (in a basic form,
restarts) for all microservices as a
set of type instances in addition to
platform features.

Provider-managed and self-
managed health-checking for
self-healing tools and restart me-
chanisms must be included for the
application. This step is required
to basically fulfil the resilience
characteristic expected for HENDU
(CN2).

Use of liveness probe for
the Kubernetes implementa-
tion and health-checks for
the docker-compose imple-
mentation.

Inclusion of sophisticated auto-
scaling logic based on domain-
specific metrics . . . in addition to
platform-defined metrics.

Addition of auto-scaling rules for
all microservices based on domain-
specific metrics. Auto-scaling rules
based on general-purpose metrics
. . . are not applicable for cloud-
native applications that must per-
form with an expected QoS defi-
ned particularly for the application
(CN3).

Left as a future work.
For HENDU, application-
specific metrics such as
response time and instance
count would be useful.

Further self-management including
policies to adaptively and auto-
nomously enact the mechanisms
for switching between application-
controlled and platform-controlled
services.

Provider-managed services could
be limited for CNAs and conse-
quently, CNAs should be able to
independently and adaptively com-
plement the cloud platform, and
provide application-controlled ser-
vices to avoid platform limitations
. . . (CN4).

Left as a future work. In
conjunction with multi-
tenancy and notifications
from service brokers,
cloud-native HENDU could
optimise non-functional
properties following com-
plex requirements.

0 2 4 6 8 10 12 14 16 18 20
No. of termination attempts

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f p
ro

ce
ss

es

Spin
Missing
Confused

0 2 4 6 8 10 12 14 16 18 20
No. of termination attempts

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f p
ro

ce
ss

es

Spin
Missing
Confused

Figure 6: Improved resilience of the Docker container platform with revive container – left graph: 2s revive window, right
graph: 5s revive window.

diminished significantly to around 0% and 60%, re-
spectively.

6.3 Self-managed Resilience (CN2)

In the next step, we have implemented and deployed
an auxiliary (side car) container called Revive which

Co-Transformation to Cloud-Native Applications

605

runs in privileged mode with control over the Docker
command socket as part of the application. It auto-
nomously monitors launched containers, learns about
their names and launch commands, and replicates the
exact setup in case the container goes amiss.

As there is a race condition between Docker’s re-
start attempts, the clean restart attempts at the end of
each experiment rounds and Revive’s own attempts,
the success of each attempt is carefully checked for
and information about new instances is read from
Docker’s process list in case of losing the restart race.
With Revive, the number of missing containers when
terminating only containerd-shim decreases signifi-
cantly as shown in Figure 6. Furthermore, the average
time for bringing the container back into service de-
creases significantly from 5.10s to 1.87s which gre-
atly improves the overall application availability es-
pecially for delay-sensitive scenarios.

Figure 7 explains Docker’s container restart beha-
viour in greater detail. By default, a container is sche-
duled to be restarted after a cooldown period which is
characterised by an exponential backoff. The period
is reset after ten seconds of uninterrupted container
runtime. A manual restart in the scheduled waiting
period takes priority and leads to less cooldown, es-
pecially when greedily restarting containers already
marked for restart. Some measurements did not ter-
minate due to Docker health-checks enabled in these
runs. When health checks are enabled, there is a like-
lihood that terminating the container from within does
not succeed and the appropriate termination com-
mand hangs forever, followed by an inconsistent state
in which a container is shown as running but can-
not be referenced anymore. As result of the last ex-
periment, Figure 8 shows that independently of the
injected termination signal (SIGTERM or SIGKILL)
within the container, there is a rate of around 34–37
inconsistent states after 1000 terminations, which is
rather high (3.55%) and unacceptable for a production
application. The results lead to a three-pronged re-

0 10 20 30 40 50 60 70 80 90 100
No. of termination attempts

0

50

100

150

200

250

300

350

400

De
cis

ec
on

ds revive
no-revive-0s
revive-greedy
no-revive-1s

Figure 7: Exponential backoff during repetitive restarts of
Docker container with health check and 0/1s kill pauses.

0 200 400 600 800 1000 1200
No. of termination attempts

0

5

10

15

20

25

30

35

In
co

ns
ist

en
cie

s

hangsterm
hangskill

Figure 8: Hanging termination commands as precursor to
container scheduling inconsistencies.

commendation for self-healing CNAs aiming at hig-
her resilience on contemporary platforms.

1. Platform mechanisms to handle crashes of micro-
services should be complemented by application-
controlled handlers for crashes and quality degra-
dations in service implementations. These mecha-
nisms are necessary but insufficient.

2. Due to immature microservice management plat-
forms, consistency checks need to be performed
and resolved, for instance by restarting the plat-
form itself.

3. Portable microservice implementations should be
implemented and deployed over multiple plat-
forms to decrease the risk of failure, at the expense
of additional network traffic and reduced volume
discounts.

7 CONCLUSIONS AND FUTURE
WORK

Software application engineering increasingly targets
cloud computing environments for evident benefits in
the quality level of the application delivery process.
Our work, following the use case of the music royalty
application HENDU operated in the cloud, has deli-
vered a detailed analysis concerning systematic mi-
gration strategies through co-transformation and con-
cerning resilient cloud-native applications in contem-
porary runtime environments. By systematically ap-
plying the proposed generic co-transformation metho-
dology (see Tables 4 and 5), we introduced elasticity
and resilience to the HENDU application.

Additionally, we have shown experimentally that
outsourcing application-level self-management featu-
res, in particular self-healing to achieve resilience, to
application management platforms is showing limited
results. In particular, Docker, which also forms the

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

606

basis for Kubernetes and several other container plat-
forms, does not protect against slowness of responses
from microservices, and its protection against cras-
hes and inconsistencies is limited due to missing self-
resilience within the platform. Future work will in-
clude the consideration of additional fault types, im-
proved automated derivation of scaling rules to cut
down the engineering effort on their definition, and a
strengthened co-transformation by considering deve-
lopment integration in modern cloud onboarding pla-
forms such as the Kubernetes-based OpenShift.

Several future directions were also been identified
to further advance this relevant research area. Our ex-
periment code and raw data results are available for
future research at https://osf.io/zsj7k/.

REFERENCES

Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M.,
and Steinder, M. (2015). Performance evaluation of
microservices architectures using containers. In 14th
IEEE International Symposium on Network Compu-
ting and Applications, NCA 2015, Cambridge, MA,
USA, September 28-30, 2015, pages 27–34.

Andrikopoulos, V. (2017). Engineering Cloud-based Ap-
plications: Towards an Application Lifecycle. In 3rd
International Workshop on Cloud Adoption and Mi-
gration (CloudWays), Oslo, Norway.

Ashtikar, S., Barker, C., Casper, D., Clem, B., Fichadia,
P., Krupin, V., Louie, K., Malhotra, G., Nielsen, D.,
Simpson, N., and Spence, C. (2014). Architecting
Cloud-Aware Applications Rev. 1.0. Open Data Cen-
ter Alliance Best Practices.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2015). Mi-
grating to cloud-native architectures using microservi-
ces: An experience report. CoRR, abs/1507.08217.

Dikaleh, S. G., Moghal, S., Sheikh, O., Felix, C., and Mi-
stry, D. (2016). Hands-on: build and package a highly
scalable microservice application using docker contai-
ners. In Proceedings of the 26th Annual International
Conference on Computer Science and Software Engi-
neering, CASCON 2016, Toronto, Ontario, Canada,
October 31 - November 2, 2016, pages 294–296.

Fowley, F., Elango, D. M., Magar, H., and Pahl, C. (2017).
Software system migration to cloud-native architec-
tures for SME-sized software vendors. In SOFSEM
2017: Theory and Practice of Computer Science -
43rd International Conference on Current Trends in
Theory and Practice of Computer Science, Limerick,
Ireland, January 16-20, 2017, Proceedings, pages
498–509.

López, M. R. and Spillner, J. (2017). Towards Quantifia-
ble Boundaries for Elastic Horizontal Scaling of Mi-
croservices. In 6th International Workshop on Clouds
and (eScience) Applications Management (CloudAM)
/ 10th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC) Companion, pages 35–
40, Austin, Texas, USA.

Spillner, J. (2017). Multi-Cloud Simulation + Emu-
lation framework (MC-SIM/MC-EMU). online:
https://github.com/serviceprototypinglab/mcemu.

Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., and
Bohnert, T. M. (2017). Self-managing cloud applica-
tions: design, implementation, and experience. Future
Generation Computer Systems, 72:165–179.

Vukovic, M., Hwang, J., Rofrano, J. J., and Anerousis, N.
(2017). Blueshift: Automated application transforma-
tion to cloud native architectures. In 2017 IFIP/IEEE
Symposium on Integrated Network and Service Mana-
gement (IM), Lisbon, Portugal, May 8-12, 2017, pages
778–792.

Wood, K. and Buckley, K. (2015). Reality vs hype - does
cloud computing meet the expectations of SMEs? In
CLOSER 2015 - Proceedings of the 5th Internatio-
nal Conference on Cloud Computing and Services
Science, Lisbon, Portugal, 20-22 May, 2015., pages
172–177.

Yousif, M. (2017). Cloud-native applications—the journey
continues. IEEE Cloud Computing, 4(5):4–5.

Co-Transformation to Cloud-Native Applications

607

