
Handling Tenant-Specific Non-Functional Requirements through a
Generic SLA

Khadija Aouzal1, Hatim Hafiddi1,2 and Mohamed Dahchour1

1INPT, Rabat, Morocco
2ENSIAS, Rabat, Morocco

Keywords: SaaS, Non-Functional Variability, SPLE, MDE, QoS Characteristics, SLA.

Abstract: In a multi-tenant architecture of a Software as a Service (SaaS) application, one single instance is shared among
different tenants. However, this architectural style supports only the commonalities among tenants and does
not cope with the variations and the specific context of each tenant. These variations concern either functional
or non-functional properties. In this paper, we deal with non-functional variability in SaaS services in order
to support the different quality levels that a service may have. For that purpose, we propose an approach
that considers Service Level Agreements (SLAs) as Families in terms of Software Product Line Engineering.
We define two metamodels: NFVariability metamodel and VariableSLA metamodel. The first one models
and captures variability in quality attributes of services. The second one models a dynamic and variable
SLA. Model-to-model transformations are performed to transform Feature Model (NFVariability metamodel
instance) to Generic SLA (VariableSLA instance) in order to dynamically deal with the tenant-specific non-
functional requirements.

1 INTRODUCTION

Software as a service (SaaS) is a software delivery
model, which represents the capability offered to the
customer to use, on an on-demand and a pay-as-you-
go bases, the provider's application hosted on a cloud
infrastructure (Mell and Grance, 2011).

SaaS applications are mainly hosted based on
multi-tenancy, in order to maximize the advantages of
economy of scale (Bezemer and Zaidman, 2010). In
a multi-tenant architecture, one single instance of the
application is shared among different tenants, which
enables cost efficiency and easy maintenance for the
providers. However, this architectural style, based
on one-size-fits-all approach, supports only the com-
monalities among the tenants and does not cope with
the variations and the specific context of each tenant.
These variations are introduced at two main and ma-
jor levels: at the level of functionality in terms of e.g.
variant business logics, service compositions, etc; and
at the level of quality attributes in terms of e.g. per-
formance, availability, security, etc. This variability is
driven by several aspects such as law regulations, na-
ture of processed data, tenant-specific requirements,
etc. Therefore, variability is an inherent aspect that
characterizes a given service and which crosscuts all

the layers of a SaaS application: Presentation, Busi-
ness, Service and Data layers. Due to these rea-
sons, the tenants need to have services tailored to
their particular needs, especially when it comes to
non-functional requirements in a multi-tenant envi-
ronment. Our focus is on non-functional variability
at the level of the service layer.

Variability management is a core concept of Soft-
ware Product Lines Engineering (SPLE) (Pohl et al.,
2005). This paradigm enables high reusability of soft-
ware artefacts by building product families or lines
and then deriving the final product tailored to specific
contexts or users. A product family contains members
that share a set of commonalities and that have vari-
abilities which characterize each one of them. These
commonalities, variabilities and the relationships be-
tween them are usually modeled using Feature Model
(FM) (Batory, 2005) or Orthogonal Variability Model
(OVM) (Pohl et al., 2005) which are structured as hi-
erarchical trees. In the Feature Model, both common-
alities and variabilities are identified, respectively, as
mandatory and optional features. However, in the Or-
thogonal Variability Model, only the variabilities are
modeled exploiting, from SPLE, the concepts of vari-
ation point and variant which refer to a variable item
and to the instantiation of this variable item, respec-

Aouzal, K., Hafiddi, H. and Dahchour, M.
Handling Tenant-Specific Non-Functional Requirements through a Generic SLA.
DOI: 10.5220/0006791403830391
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 383-391
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

383

tively. In the proposed approach, we use the bases
and concepts of Feature Model to express and repre-
sent variability in Non-Functional Properties of SaaS
services.

Since quality level of services is specified through
the Service Level Agreement (SLA) contract, this
paper proposes an approach that considers SLAs as
Families in terms of Software Product Line Engi-
neering. We introduce variability in SLA through
the notion of Generic SLA, a document that encom-
passes the terms of all contracting tenants. We define
two metamodels: NFVariability metamodel and Vari-
ableSLA metamodel. The first one, which is based
on the QoS Metamodel of QoS&FT profile (OMG,
2008), models and captures variability in quality at-
tributes of services. The second one models a dy-
namic and variable SLA. Model-to-model transfor-
mations are performed to transform Feature Model
(NFVariability metamodel instance) to Generic SLA
(VariableSLA instance).

The remainder of the paper is structured as fol-
lows. Section 2 gives generalities about SLA and QoS
Framework Metamodel of QoS&FT standard. Sec-
tion 3 presents related works. Section 4 presents the
problem statement. Section 5 describes the proposed
metamodels and the process for generating Generic
SLA. Section 6 concludes the paper and gives future
work for our on-going research.

2 BACKGROUND

2.1 Service Level Agreement

Service Level Agreement (SLA) is a contract es-
tablished between service provider and service con-
sumer. It aims to clearly define and monitor the
service and its quality requirements. Generally, its
clauses cover: the involved parties which are, in most
cases, the service provider and the service consumer;
the terms agreed upon after negotiation; and penal-
ties against the service provider in case of SLA vio-
lations. Several languages have been proposed to de-
fine SLAs, namely: WS-Agreement (Andrieux et al.,
2006), WSLA (Keller and Ludwig, 2003), SLAC
(Uriarte et al., 2014) and CSLA (Serrano et al., 2016).
The two former languages are used to specify SLAs in
Web Services, as for the two latter ones, they are used
for Cloud services. In this paper, we introduce a novel
concept and structure of SLA, Generic SLA, which
supports variability of quality attributes across multi-
ple tenants. This concept goes in line with SPLE prin-
ciples, as it considers commonalities and variabilities

of quality attributes, and forms a family of tenant-
specific SLAs derived from the Generic SLA.

2.2 QoS Metamodel of QoS&FT Profile

The QoS&FT profile comprises two metamodel
frameworks: QoS Metamodel and Fault Tolerance
Metamodel (OMG, 2008). In our approach, we are
interested in QoS Metamodel as it models quality
characteristics in software systems. This QoS frame-
work metamodel comprises three packages which
represent three metamodels: QoSCharcteristics meta-
model, QoSConstraints metamodel and QoSLevels
metamodel. The QoSCharacteristics metamodel con-
sists of modeling quantifiable quality characteristics
of services and their dimension of quantification. The
QoSConstraints metamodel introduces concepts of
constraints over service qualities, QoS offered, QoS
required and QoS contract. As for QoSLevels meta-
model, it defines levels of qualities that depend on dif-
ferent execution modes of the system modeled.

3 RELATED WORKS

Variability management has been subject of many re-
searches in different domains. Recently, the interest
was on extrapolating these works to the area of Cloud
Computing. Therefore, many researches are con-
ducted in order to build Cloud applications tailored
to customers'requirements, however the emphasis was
on functional requirements (Aouzal et al., 2015).

In (Fehling et al., 2011), the authors introduced a
framework that enables customization and provision-
ing of flexible cloud applications. It provides a self-
service portal to end-users in order to configure the
application according to their needs. This framework,
however, does not support multi-tenancy and non-
functional variability. In (Abu-Matar et al., 2014),
the authors model variability in Cloud services us-
ing SPL techniques, multi-view modeling and MDE
approaches. The proposed framework is constituted
of a set of meta-views and views that describe cloud
services in their requirements and architecture as-
pects. Considering users’ preferences changes as the
main driver of adaptation, the approach presented in
(Garcı́a-Galán et al., 2014; Garcı́a-galán et al., 2016)
relies on the activities of MAPE (Monitoring, Analy-
sis, Provisioning and Execution) loop to adapt shared
multi-tenant services in a user-centric manner in or-
der to maximize users'satisfaction. In order to ensure
dynamic adaptation and configuration of multi-tenant
SaaS applications, a feature middleware is designed
(Gey et al., 2014) as a runtime artifact. In (Landuyt

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

384

et al., 2015), the authors presented, through the notion
of service lines, a middleware that supports variabil-
ity in multi-tenant SaaS applications, with a focus on
the operational aspects. In (Tizzei et al., 2017) the au-
thors rely on SPLE and microservices to support both
reuse and independent evolution of multi-tenant SaaS
services.

However, the aforementioned works mostly focus
on adapting multi-tenant services according to ten-
ant functional needs, and they do not deal with non-
functional variability, its modeling and the dependen-
cies between quality attributes.

A systematic literature review conducted on vari-
ability in software systems (Galster et al., 2014) con-
cluded that the focus on variability in Quality At-
tributes is minor and the works were mostly interested
in specific Quality Attributes, such as: performance,
availability, security, etc. To cope with that, (Galster,
2015) gives research directions regarding variability
in Quality Attributes. In (Horcas et al., 2016; Horcas
et al., 2017), the authors rely on SPLE approach to
model Functional Quality Attributes (FQAs) in soft-
ware applications, and on Aspect Oriented Program-
ming to inject FQAs into the application. Contrary to
that work, our approach is generic and not limited to
FQAs.

To the best of our knowledge, no work has con-
sidered SLA as a product family, though several SLA
languages were proposed to specify and define Cloud
services quality such as (Boukadi et al., 2016; Serrano
et al., 2016; Uriarte et al., 2014; Tata et al., 2016; Mo-
hamed et al., 2017).

4 PROBLEM STATEMENT

4.1 Non-Functional Variability

Non-functional variability in service-based systems,
namely SaaS applications, is defined in (Mahdavi-
Hezavehi et al., 2013) as the ability of a service to be
tailored to the different non-functional requirements
of tenants, thus offered with several levels of non-
functional properties. Non-functional variability is
classified in (Galster, 2015) into two categories, ac-
cording to the sources that trigger it and introduce the
variations: intentional variability and unintentional
variability. Intentional variability is directly tied to
the variations of non-functional requirements of ten-
ants. As for unintentional variability, it is introduced
due to variations in hardware resources, and due to the
interactions between functional properties and non-
functional ones and within non-functional properties
themselves.

Therefore, non-functional variability introduces
several challenges in building configurable and cus-
tomizable multi-tenant SaaS services; particularly, the
issue of modeling variability in non-functional re-
quirements and linking it with service quality level
specified in SLA.

4.2 Motivating Scenario

We illustrate the problem with a document manage-
ment application, which serves multiple tenants using
the SaaS model. This application automates the ac-
tivities of creation, management and storage of any
nature of documents: contracts, financial documents,
etc. It gives tenants and end users control and visibil-
ity on modifications made to documents or contracts,
on their status during the process of review, negotia-
tion, approval or signature. All the activities made to
a document are kept synchronized between the par-
ties involved in those activities for that document to
ensure that data are real time and accurate.

Since the application is implemented following
the multi-tenancy architecture, i.e. a single applica-
tion instance serves multiple tenants, ensuring secu-
rity is a crucial need. Therefore, in terms of secu-
rity, the application requires, among others: 1) au-
thentication: the user must be authenticated to ac-
cess the application using either username and pass-
word credentials or QR code to use the application
in other devices; 2) data integrity and privacy: data
of a tenant must not be altered or modified by non-
authorized users, and must be kept private from other
tenants; 3) authorization and access control: autho-
rization and access rules must be defined to restrict
the access to certain components and features of the
application to user roles that are allowed to; 4) and
session duration and time management: the access
might be restricted in duration according to the access
rules assigned to user roles. In addition to security,
the application must fulfill certain levels of other non-
functional properties such as response time, availabil-
ity and service adaptability according to the used de-
vice or/and the user location.

The application has to cater for variant levels of
non-functional properties that characterize each ten-
ant. For instance, consider three tenants that consist
of: Medical Insurance Provider, Healthcare Analyt-
ics Provider and a Research Laboratory. The Medi-
cal Insurance Provider uses the application to manage
his documents and contracts with existing and new
clients. Concerning security, he requires authentica-
tion, data integrity and privacy and user access con-
trols. He requires also an availability of 99.95%, a
response time not exceeding 500 ms, and the service

Handling Tenant-Specific Non-Functional Requirements through a Generic SLA

385

to be device and location-aware. As for the Health-
care Analytics Provider, he makes use of the appli-
cation as a central repository where he manages his
contracts with all his clients, and where he has visi-
bility on the status of contracts all along their cycle,
from negotiation to signature. His security require-
ments are the same as for the first tenant. However, he
differs in availability and response time; he requires
99% and 300 ms, respectively; and he does not re-
quire device awareness. The third tenant automates
the process of research papers review through the ap-
plication. For this purpose, the research laboratory
requires authentication, privacy, user access controls
and session duration and time management; as well
as 98% and 800 ms of availability and response time,
respectively. But, he does not want the service to con-
sider adaptability.

Table 1 summarizes these requirements for the
three tenants.

5 GENERIC SLA GENERATION
PROCESS

5.1 Approach Overview

In order to have a SaaS service that meets non-
functional requirements of tenants, we believe that an
initial step for that purpose would be to model non-
functional variability in SaaS services. Therefore, our
approach combines MDE and SPLE principles. Fig-
ure 1 depicts the process for generating Generic SLA.

First, variations in non-functional requirements
are represented using Feature Models. These mod-
els are in accordance with NFVariability Metamodel.
This metamodel, intends to model non-functional
properties of SaaS services, their dependencies, and
their variable aspect, i.e. different levels of a QoS at-
tribute for the same service. Therefore, QoS charac-
teristics are represented, in this metamodel, as vari-
able features that can be either mandatory or op-
tional. After instantiation of this metamodel to Fea-
ture Model, model-to-model transformations are per-
formed in order to generate a Generic SLA. The
generic SLA is a global and dynamic SLA that con-
tains all the non-functional properties of all tenants,
.i.e. an SLA with variability represented at the level
of its terms and its Service Level Objectives (SLOs).

Figure 1: Generic SLA generation process.

It is in conformance with VariableSLA metamodel,
which represents variability in SLA.

5.2 NFVariability Metamodel

Figure 2 depicts the proposed metamodel that extends
the QoS Metamodel of QoS&FT profile with variabil-
ity concepts.

In this metamodel, a capability represents the
SaaS service offered to tenants. Each capability can
be associated to multiple QoS characteristics. QoS
characteristics represent quantifiable non-functional
requirements, grouped into categories such as: perfor-
mance category to denote availability, response time,
reliability, etc; or security category to represent au-
thentication, authorization, access control, integrity,
etc. QoS characteristics are modeled as features that
may be either mandatory or optional. A mandatory
QoS attribute means it is selected for all the tenants.
An optional one may be selected for just the ten-
ants that required it. Variation Point and Variant in
QoS characteristics are represented, respectively, by
the references parent and child. QoS characteristics
that have the same feature parent, i.e. characteristics
that are brothers, can rely on each other through these
three operators: AND, OR and Alternative. This re-
lation is modeled by Association. An AND opera-
tor between two quality attributes means that those
AND-linked attributes may be selected in the derived
application, depending on their optionality. Two OR-
linked quality attributes mean that one or both of them
may be selected. The Alternative operator plays the
role of XOR, which means the presence of a qual-
ity attribute variant excludes the presence of another

Table 1: Non-functional requirements of different tenants.

Tenant
Security Performance Adaptability

Integrity, Privacy, Access Control Session Duration and Time Mngt Authentication Availability Response Time Device Awareness Location AwarenessLogin Credentials QR Code
Medical Insurance Provider + - + - 99.95% 500ms + +

Healthcare Analytics Provider + - + - 99% 300ms - +
Research Laboratory + + + + 98% 800ms - -

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

386

Figure 2: NFVariability Metamodel for modeling variability in quality attributes.

variant. The interdependencies between QoS charac-
teristics variants are modeled by Dependency using
two types: requires and excludes. QoSDimension de-
fines the different ways a QoS characteristic can be
quantified, e.g. for response time we can consider ex-
ecution time or network time or both (Boukadi et al.,
2016). A QoS dimension can have different values,
and each value can refer to multiple tenants. QoSCon-
straint models the constraints, e.g. constraints intro-
duced by the infrastructure, which limit the space of
valid values for a certain QoS dimension.

The following OCL constraints define some rules
that enhance the metamodel semantic:

1. Brothers definition:

Context QoSCharacteristic :: brothers :
Set(QoSCharacteristic)
derive : self.child -> union(self.child.

brothers)

2. An optional QoS characteristic cannot exclude a
mandatory one:

context QoSCharacteristic inv:
self.optionality = optional implies self.

association -> forAll(a | a.brothers.
optionality = mandatory) -> including (
self.association.type = Excludes) ->
isEmpty()

3. When a parent feature is mandatory, at least one
of its children should be mandatory:

context QoSCharacteristic inv:
self.parent.optionality = mandatory implies

select (self.child.optionality =
mandatory) -> size() = 1

4. AND-linked features can be either mandatory or
optional

context Association inv:
self.type = AND implies ((self.quality.

optionality = mandatory or self.quality.
optionality = optional) and

(self.brothers.optionality= mandatory or
self.brothers.optionality=optional)

5. The alternative association is not allowed between
two manadatory variants as they both must exist in
the application:

context QoSCharacteristic inv:
self.association.type = Alternative implies

forAll(b | b.brothers.optionality <>
mandatory)

After domain analysis of an application and ex-
traction of its non-functional requirements, non-
functional variability is documented in accordance
to the NFVariability Metamodel. This variability is
modeled using Feature Models as illustrated in figure
3 for Document Management application. This fea-
ture model contains also some cross-tree constraints
that represent quality attributes interdependencies,
and they denote respectively: 1) Session Duration re-
quires Access Control; 2) Standard Cost excludes any
optional quality attribute, as this cost concerns only
basic and mandatory attributes; 3) Premium Cost re-
quires at least one optional feature.

5.3 VariableSLA Metamodel

The VariableSLA Metamodel is shown in figure 4.
It represents the contract SLA that supports variabil-

Handling Tenant-Specific Non-Functional Requirements through a Generic SLA

387

Figure 3: Feature Model for Document Management Service.

Figure 4: VariableSLA Metamodel for representing variability in SLA.

ity. It is structured into four main blocks: Contracting
Parties, Cloud Services, Terms and Constraints.

• Contracting Parties define the actors involved in
the contract: Cloud Provider and Tenant (Cloud
Consumer).

• Cloud Services represent the scope of services
covered by the agreement.

• Terms represent what was agreed upon during
SLA negotiation. They are divided into two cat-
egories: Mandatory Terms and Optional Terms.
Mandatory Terms specify the terms that are com-
mon to all tenants involved in the contract. As
for Optional Terms, they encompass the terms that
are specific to some tenants. Each term corre-
sponds to a quality attribute and is constituted of
one or more Service Level Objectives (SLOs) that
specify the quality level expected by the service.
Therefore, a mandatory term and an optional term
contain, respectively, mandatory SLOs and op-
tional SLOs. An SLO is expressed by means of

these attributes: name, threshold, unit and direc-
tionKind. DirectionKind defines the order relation
type; it is an enumeration of increasing, decreas-
ing and undefined values (OMG, 2008). An in-
creasing direction means that a value higher than
the threshold is the required objective, and vice-
versa for the decreasing direction. The SLO is
constrained by one or more preconditions, which
has to be satisfied to ensure the requested quality
level.

• Constraints express the dependencies between the
different SLOs.
The aim of VariableSLA metamodel is to con-

struct Generic SLAs. Listing 1 represents an example
of Generic SLA for Document Management service.

Listing 1: Generic SLA for Document Management ser-
vice.
...
<parties xsi:type="variableSLA:CloudProvider

" name="CloudServiceProvider"/>

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

388

<parties xsi:type="variableSLA:Tenant" name
="MedicalInsuranceProvider" id="1"/>

<parties xsi:type="variableSLA:Tenant" name
="HealthcareAnalyticsProvider" id="2" />

<parties xsi:type="variableSLA:Tenant" name
="ResearchLaboratory" id="3"/>

<parties/>
<services name="DocumentManagementService">
<terms xsi:type="variableSLA:MandatoryTerm"

name="Authentication">
<mandatorySlo name="Login Credentials"/>

</terms>
...

<terms xsi:type="variableSLA:OptionalTerm"
name="Performance">

<optionalSlo threshold="99.95" tenant="
MedicalInsuranceProvider" name="uptime
" Unit="%" directionKind="increaisng
"/>

<optionalSlo threshold="99" tenant="
HealthcareAnalyticsProvider" Unit="%"
directionKind="increasing"/>

<optionalSlo threshold="98" tenant="
ResearchLaboratory" name="uptime" Unit
="%" directionKind="increasing"/>

</terms>
<terms xsi:type="variableSLA:OptionalTerm"

name="Response Time">
<optionalSlo threshold="500" tenant="

MedicalInsuranceProvider" name="
execution time" Unit="ms"
directionKind="decreasing"/>

<optionalSlo threshold="300" tenant="
HealthcareAnalyticsProvider" name="
execution time" Unit="ms"
directionKind="decreasing"/>

<optionalSlo threshold="800" tenant="
ResearchLaboratory" name="execution
time" Unit="ms" directionKind="
decreasing"/>

</terms>
<terms xsi:type="variableSLA:OptionalTerm"

name="Access Control"/>
<terms xsi:type="variableSLA:OptionalTerm"

name="Session Duration Management"/>
...
<constraint expression="Session Duration

Management requires Access Control "/>
</services>

</variableSLA:SLA>

5.4 NFVariability to VariableSLA
Transformation

In order to generate the Generic SLA correspond-
ing to our motivating scenario, we rely on model-
to-model transformations performed using ATL lan-
guage. Model-to-model transformations are based
on mapping rules between entities of NFVariability
metamodel, the source, and VariableSLA metamodel

entities, the target. Table 2 defines these mappings.

Table 2: NFVariability and Variable SLA mappings.
NFVariability Metamodel Entity VariableSLA Metamodel Entity

Capability CloudService
Tenant Tenant

QoSCharacteristic Term
QoSDimension SLO

Dependency Constraint
QoSConstraint PreCondition

The following VariableSLA elements: Tenant,
CloudService and Precondition are copies of their
corresponding elements of the NFVariability meta-
model. Listing 2 depicts the rule that copies the Ten-
ant source to the Tenant target.

Listing 2: Tenant2Tenant transformation rule.
rule Tenant2Tenant{

from
IN: NFVarMM!Tenant
to
OUT: VarSLAMM!Tenant(

id <- IN.tenantId,
name <- IN.name

)
}

The mapping QoSCharacteristic-Term needs to spec-
ify whether the instance of QoSCharacteristic is
mandatory or optional so as to generate instances
of MandatoryTerm and OptionalTerm. For that pur-
pose, we define two helpers isMandatory() and isOp-
tional(), mentioned in Listing 3.

Listing 3: isMandatory() and isOptional() helpers.
helper context NFVarMM!QoSCharacteristic def:

isMandatory(): Boolean =
if self.child.oclIsUndefined() then

if self.optionality= #mandatory
then true

else false
endif

else self.child.including(self) ->
forAll(q | q.optionality=#mandatory
)

endif;
helper context NFVarMM!QoSCharacteristic def:

isOptional(): Boolean =
if self.optionality = #optional then

true
else false
endif;

Listing 4 presents the transformation rules that
transform QoSCharacteristic to MandatoryTerm and
OptionalTerm using, respectively, the two aforemen-
tioned helpers.

Listing 4: QoSCharacteristic to Term transformation rules.
rule QoSCharacteristic2OptionalTerm{

Handling Tenant-Specific Non-Functional Requirements through a Generic SLA

389

from
IN: NFVarMM!QoSCharacteristic (IN.

isOptional())
to
OUT: VarSLAMM!OptionalTerm(

name <- IN.name
)

}
rule QoSCharacteristic2MandatoryTerm{

from
IN: NFVarMM!QoSCharacteristic(IN.

isMandatory())
to
OUT: VarSLAMM!MandatoryTerm(

name <- IN.name
)

}

When transforming QoSDimension to SLO, we
need to retrieve the threshold values from QoSValue
and get the tenants corresponding to those values.
Therefore, we define a Tuple type that gathers a qual-
ity value with the concerned tenants. Listing 5 de-
scribes this transformation.

Listing 5: QoSDimension to SLO transformation rule.
helper context NFVarMM!QoSDimension def:

getValues(): Set(NFVarMM!QoSValue) =
NFVarMM!QoSValue.allInstances()
->collect(v| v.value);

helper context NFVarMM!QoSValue def: getTenant
(value: String): Set(NFVarMM!QoSValue) =

NFVarMM!Tenant.allInstances()
->select(t | self.value=value);
helper context NFVarMM!QoSDimension def:

getTuple(value : String):
TupleType(v: NFVarMM!QoSValue, t:
NFVarMM!Tenant) =

Tuple{v = value,t=value.
getTenant()};

rule QoSDimension2SLO{
from
IN: NFVarMM!QoSDimension
to
OUT: VarSLAMM!SLO(
name <- IN.name,
Unit <- IN.unit,
directionKind <- IN.directionKind,
threshold <- IN.getValues(),
tenant <- IN.getValues().first().

getTuple().t
)

}

The SLA constraints are generated by construct-
ing its expressions from the Dependency relation that
may exist between instances of QoSCharacteristic,
see Listing 6.

Listing 6: Dependency to Constraint transformation rule.
rule Dependency2Constraint{

from
IN: NFVarMM!QoSCharacteristic
to
OUT:VarSLAMM!Constraint(
expression <- IN.name + IN.dependency.

type + IN.dependency.on
)

}

6 CONCLUSION

SaaS applications are generally built on a multi-tenant
architecture. This architecture leverages economies
of scale but introduces new challenges in adapta-
tion and variability management, especially when it
comes to non-functional requirements. In this pa-
per, we proposed an approach that considers Service
Level Agreements (SLAs) as Families or Lines. For
that, we introduced a novel concept: Generic SLA.
We defined two metamodels: NFVariability meta-
model and VariableSLA metamodel, to model vari-
ability in non-functional requirements and in SLA, re-
spectively. These metamodels form the bases for per-
forming model-to-model transformations from Fea-
ture Model to Generic SLA.

Our approach is agile and enables reuse as high-
lighted through these scenarios that will be tackled in
our future work:

• As the Generic SLA forms a product line,
it factorizes the commonalities regarding non-
functional requirements of tenants, and it specifies
the variations among them. This will be exploited
to derive tenant-specific SLAs by extracting non-
functional properties for a specific tenant.

• In order to cater for dynamic changes in con-
texts and non-functional requirements of tenants,
the SaaS service will be built under context-
awareness to detect any changes. If there are
any, those changes will be communicated to the
Generic SLA so as to incorporate them in the cor-
responding tenant-specific SLAs after instantia-
tion.

• In case of on-boarding new tenants or appearance
of new non-functional requirements of the exist-
ing tenants, the Feature Model will be updated to
include those new needs and a new Generic SLA
is generated.

We will also take into consideration the internal
variability, triggered by changes in the infrastructure
or cloud provider architectural decisions, so as to de-
fine a monitoring process that checks the conformity
of the service to the tenant-specific SLAs.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

390

REFERENCES

Abu-Matar, M., Mizouni, R., and Alzahmi, S. (2014). To-
wards Software Product Lines Based Cloud Architec-
tures. 2014 IEEE International Conference on Cloud
Engineering.

Andrieux, A., CZajkowski, K., Dan, A., and Keahy, K.
(2006). Web Services Agreement Specification (WS-
Agreement).

Aouzal, K., Hafiddi, H., and Dahchour, M. (2015). An
Overview of Variability Management in Cloud Ser-
vices. Proceedings of the 2015 International Con-
ference on Cloud Technologies and Applications
(CloudTech).

Batory, D. (2005). Feature Models, Grammars, and Propo-
sitional Formulas. In Software Product Line Confer-
ence.

Bezemer, C.-P. and Zaidman, A. (2010). Multi-Tenant SaaS
Applications : Maintenance Dream or Nightmare ? In
Proceedings of the Joint ERCIM Workshop on Soft-
ware Evolution (EVOL) and International Workshop
on Principles of Software Evolution (IWPSE).

Boukadi, K., Grati, R., and Ben-Abdallah, H. (2016). To-
ward the automation of a QoS-driven SLA establish-
ment in the Cloud. Service Oriented Computing and
Applications.

Fehling, C., Leymann, F., Schumm, D., Konrad, R., and Mi-
etzner, R. (2011). Flexible process-based applications
in hybrid clouds. In Cloud Computing (CLOUD),
2011 IEEE International Conference on.

Galster, M. (2015). Architecting for Variability in Quality
Attributes of Software Systems. Proceedings of the
2015 European Conference on Software Architecture
Workshops.

Galster, M., Weyns, D., Tofan, D., Michalik, B., and Avge-
riou, P. (2014). Variability in Software Systems: A
Systematic Literature Review. Software Engineering,
IEEE Transactions on Software Engineering.

Garcı́a-Galán, J., Pasquale, L., Trinidad, P., and Ruiz-
Cortés, A. (2014). User-centric Adaptation of Multi-
tenant Services: Preference-based Analysis for Ser-
vice Reconfiguration. Proceedings of the 9th Interna-
tional Symposium on Software Engineering for Adap-
tive and Self-Managing Systems.

Garcı́a-galán, J., Pasquale, L., Trinidad, P., and Ruiz-
Cortés, A. (2016). User-Centric Adaptation Analysis
of Multi-Tenant Services. ACM Transactions on Au-
tonomous and Adaptive Systems.

Gey, F., Van Landuyt, D., Walraven, S., and Joosen, W.
(2014). Feature Models at Run Time Feature Middle-
ware for Multi-tenant SaaS Applications. In Proceed-
ings of the 9th Workshop on Models@run.time co-
located with 17th International Conference on Model
Driven Engineering Languages and Systems MOD-
ELS, Valencia, Spain.

Horcas, J. M., Pinto, M., and Fuentes, L. (2016). An auto-
matic process for weaving functional quality attributes
using a software product line approach. Journal of
Systems and Software.

Horcas, J.-M., Pinto, M., and Fuentes, L. (2017). Green
Configurations of Functional Quality Attributes. Pro-
ceedings of the 21st International Systems and Soft-
ware Product Line Conference - Volume A on - SPLC
’17.

Keller, A. and Ludwig, H. (2003). The WSLA Framework :
Specifying and Monitoring Service Level Agreements
for Web Services.

Landuyt, D. V., Walraven, S., and Joosen, W. (2015). Vari-
ability Middleware for Multi-tenant SaaS Applica-
tions. Proceedings of the 19th International Systems
and Software Product Line Conference - SPLC ’15.

Mahdavi-Hezavehi, S., Galster, M., and Avgeriou, P.
(2013). Variability in quality attributes of service-
based software systems: A systematic literature re-
view. Information and Software Technology.

Mell, P. and Grance, T. (2011). The NIST Definition of
Cloud Computing Recommendations of the National
Institute of Standards and Technology.

Mohamed, M., Anya, O., Tata, S., Mandagere, N., Bara-
caldo, N., and Ludwig, H. (2017). rSLA: An Ap-
proach for Managing Service Level Agreements in
Cloud Environments. International Journal of Coop-
erative Information Systems.

OMG (2008). Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms.

Pohl, K., Böckle, G., and van der Linden, F. (2005). Soft-
ware Product Line Engineering: Fundations, Princi-
ples and Techniques. SpringerVerlag, Berlin, DE.

Serrano, D., Bouchenak, S., Kouki, Y., De Oliveira, F. A.,
Ledoux, T., Lejeune, J., Sopena, J., Arantes, L., and
Sens, P. (2016). SLA guarantees for cloud services.
Future Generation Computer Systems.

Tata, S., Mohamed, M., Sakairi, T., Mandagere, N., Anya,
O., and Ludwiga, H. (2016). RSLA: A service level
agreement language for cloud services. IEEE Interna-
tional Conference on Cloud Computing, CLOUD.

Tizzei, L. P., Nery, M., Segura, V. C. V. B., and Cerqueira,
R. F. G. (2017). Using Microservices and Software
Product Line Engineering to Support Reuse of Evolv-
ing Multi-tenant SaaS. Proceedings of the 21st Inter-
national Systems and Software Product Line Confer-
ence - Volume A on - SPLC ’17.

Uriarte, R. B., Tiezzi, F., and Nicola, R. D. (2014).
SLAC: A Formal Service-Level-Agreement Language
for Cloud Computing. In 2014 IEEE/ACM 7th Inter-
national Conference on Utility and Cloud Computing
(UCC).

Handling Tenant-Specific Non-Functional Requirements through a Generic SLA

391

