
Testing Practices of Software in Safety Critical Systems: Industrial
Survey

Mohamad Kassab
Engineering Division, Pennsylvania State University, Malvern, PA, U.S.A.

Keywords: Safety-critical Systems, Software Testing, Software Professionals, Industrial Practices.

Abstract: The software becomes increasingly a core integrated part of the safety-critical systems. Unfortunately, little
contemporary data exists to document the actual practices used by software professionals for software testing
and quality assurance activities for software in safety-critical systems. To remedy the deficiency of lack of data,
we conducted a comprehensive survey of software professionals to attempt to discover these practices. In this
paper we report on our findings from this survey on the state of practice of testing software for safety-critical
systems in respect to three areas: 1) The integration of the testing activities within the software development
life cycle; 2) Testing methods and techniques; 3) Testing metrics and defects management. We also provide
some comparison with testing software for non-safety-critical systems.

1 INTRODUCTION

A safety-critical system is a system whose malfunc-
tion may result in death or serious injury to peo-
ple, loss or damage to property or environmental
harm. Engineers have developed safety-critical sys-
tems by relying on conservative best practices, stan-
dards (e.g. MIL-STD-882E: System Safety (DoD,
2012), ISO 26262, Road vehicles-Functional safety
(ISO, 2011), NASA-STD-8719.13C: Software Safety
Standard (NASA, 2013)) and a culture where safety
considerations are integral to all aspects of an organi-
zation (Feiler et al., 2013).

The software becomes increasingly a core inte-
grated part of the safety-critical systems. The indus-
try cost for the software of current-generation aircraft
has reached an $8 billion (Redman et al., 2010). The
avionics system in the F-22 Raptor consists of about
1.7 million lines of software code (Charette, 2009) as
80% of its functionality is achieved by software which
compromised 30% of engineering and manufacturing
development costs. Software in cars is only going to
grow in both amount and complexity. It is estimated
that cars will require 200 million to 300 million lines
of software code in the near future (Charette, 2009).

While a software in isolation cannot do physical
harm, a software in the context of a system and an em-
bedding environment could be vulnerable (Naik and
Tripathy, 2011). For example, a software module in
a database is not hazardous by itself, but if a radia-

tion therapy machine delivers fatal doses to patients
because of a software error then it is not a safe soft-
ware (Leveson and Turner, 1993). Software is con-
sidered safety-critical if it controls or monitors haz-
ardous or safety-critical hardware or software. Such
software usually resides on remote, embedded, and/or
real-time systems (NASA, 2013).

The organizations developing safety-critical soft-
ware systems should have a clear testing strategy that
defines the methods for identifying, tracking, evalu-
ating and eliminating hazards associated with a sys-
tem. Despite best build-then-test practices, system-
level faults due to software have increasingly domi-
nated the rework effort for faults discovered during
system integration and acceptance testing. Several
studies of safety-critical systems show that 80% of all
errors are not discovered until system integration or
later. The rework effort to correct a problem in later
phases can be as high as 300-1000 times the cost of
in-phase correction (Feiler et al., 2013).

In order to trigger any favorable change in this
state of practice, a serious effort is required in pre-
dicting the trends, learning the stakeholder mindsets,
and pinpointing the problem areas in software testing.
Unfortunately, little contemporary data exists to docu-
ment the actual practices used by software profession-
als for software testing and quality assurance (QA)
activities for safety-critical systems. This is partly be-
cause the data are commercially sensitive, and partly
because the data is not always collected systemati-

Kassab, M.
Testing Practices of Software in Safety Critical Systems: Industrial Survey.
DOI: 10.5220/0006797003590367
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 359-367
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

359

cally (McDermid and Kelly, 2006).
We conducted a comprehensive survey of software

professionals to attempt to discover these practices.
Surveys of software industry professionals are an ef-
fective way to determine the current trends in soft-
ware engineering processes. Survey responses can
also help others to understand the relationship be-
tween area such as software quality and testing (Ng
et al., 2004). A carefully constructed survey has the
potential to: 1) remedy the deficiency of lack of data
and 2) to identify the software testing best practices,
which can then be disseminated. Based on these two
objectives, We designed a survey study on the cur-
rent software testing state of practice. While an initial
view from the survey results was presented in (Kassab
et al., 2017), in this paper we provide a different prag-
matic view to report on the state of practice for testing
software in safety-critical systems.

The rest of the paper is organized as follows: Sec-
tion 2 discusses related work while Section 3 de-
scribes the survey’s design and conduct. In Section
4 we provide general statistics regarding the partic-
ipants, their organizations and the reported projects.
Section 5 provides our findings on the state of prac-
tice of testing software for safety-critical systems and
provides some comparison with testing software for
non-safety-critical systems. Section 6 discusses the
limitation to validity. Finally, the conclusions are pre-
sented in Section 7.

2 RELATED WORK

There are few works available involving surveys of
software professionals with respect to testing (e.g.
(Haberl et al., 2011), (Ng et al., 2004), (Causevic
et al., 2010), (Turkish-Testing-Board, 2014), (ISTQB,
2014), (Kasurinen et al., 2010), (Kanij et al., 2011),
(Knauss et al., 2016)). For example, in (Knauss
et al., 2016), the authors presented an investigation
the state-of-the-art and future trends of testing crit-
ical cyber-physical systems on the example of active
safety systems for vehicles. The results from conduct-
ing four focus groups with Swedish industrial partners
show that while the main testing processes and sce-
narios are supported, there is a clear need to enable
testing of more complex scenarios in realistic settings,
as well as increasing the degree of automating there-
for to achieve better repeatability and a more effective
test resource usage. Indeed, many other survey results
indicate that the percent of automated testing is low
in industry (Causevic et al., 2010), (Rafi et al., 2012),
(Lee et al., 2012). Supporting this fact are other stud-
ies that indicate tool adoption is also low (Ng et al.,

2004), (Garousi and Varma, 2010). While current
survey studies show that organizations do not make
effective use of testing tools (Grindal et al., 2006),
Garousi et al. (Garousi and Varma, 2010) found that
automated testing has increased since 2004.

Causevics survey results (Causevic et al., 2010)
indicated that the use of open source vs. proprietary
testing tools depended on whether or not they were
unit testing or performing higher level system test-
ing. Although Causevic (Causevic et al., 2010) found
that writing test cases before writing code is mostly
not considered a current practice, our survey results
showed that these approaches are becoming estab-
lished in practice.

Other surveys with focus on the cost and produc-
tivity aspects of testing also exist. For example, Ka-
surinen et al. (Kasurinen et al., 2010) examined the
cost factor for testing, finding that testing is often a
much underestimated part of the project. These re-
searchers found, however, that more effective testing
process may reduce testing time which is often under-
estimated.

Another area of testing research is how to build
an effective testing team. Kanij, Merkel and Grundy
(Kanij et al., 2011) conducted a survey of software
practitioners to determine the importance of factors
in building testing teams. The results suggest that ex-
perience in software testing is more important than a
team members interpersonal skills. The results also
suggest the desire for the testing team to be built
with members having diverse work experience (Kanij
et al., 2011).

On the other hands, The U.S. Army has recog-
nized that qualifying the airworthiness of rotorcraft
has increasingly become infeasible with current soft-
ware test practices trying to achieve full code cov-
erage due to increased software size and interaction
complexity (Boydston and Lewis, 2009). Compli-
ance with standards and practices specific to the cer-
tification of safety-critical software systems such as
DO-178B and C, SAE ARP 4754, and SAE ARP
4761 (Johnson et al., 1998), (International, 1996) be-
comes essential instrument besides testing to improve
the quality and ensure the safety of the software.
The Software Engineering Institute (SEI) published in
2013 a white paper presenting an improvement strat-
egy comprising four pillars of an integrate-then-build
practice that lead to improved quality through early
defect discovery and incremental end-to-end valida-
tion and verification (Feiler et al., 2013). The four pil-
lars are: 1. Capture of mission and safety-criticality
requirements in analyzable form; 2. Virtual integra-
tion of the physical system, hardware platform, and
software architectures through consistent analyzable

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

360

architecture models; 3. Static analysis techniques ap-
plied to the models and actual system implementation
to complement testing; and 4. Incremental assurance
of justified confidence through consistent end-to-end
evidence throughout the development life cycle.

There are also studies to investigate the sources
of errors in safety-critical systems. For example,
studies of safety-critical software-reliant systems de-
veloped show that 70% of the errors are introduced
in the requirements (35%) and architecture design
phases (35%) (Planning, 2002), (Galin, 2004), (Dab-
ney, 2003). A NASA study traced down requirements
errors and found that missing requirements accounts
for 33% of the all requirements errors comparing to
24% for incorrect requirements, 21% for incomplete
requirements, 6% for and ambiguous, 5% to inconsis-
tency, and 6% to over-specified requirements (Hayes,
2003).

3 SURVEY DESIGN AND
CONDUCT

We designed a web-based survey using Question-
Pro tool (www.QuestionPro.com). The survey ques-
tions were designed after a careful review to similar
other conducted survey studies (Haberl et al., 2011),
(Ng et al., 2004), (Causevic et al., 2010), (Turkish-
Testing-Board, 2014), (ISTQB, 2014). To allow a
valid comparison with the other conducted surveys,
we also included selected questions from these sur-
veys into ours. In total, the survey consisted of
40 questions arranged into six sections related to:
project information, integrating software testing ac-
tivities within the software development life cycle;
software testing methodologies and techniques; test-
ing metrics and defects management, organizations
information and participants professional informa-
tion. A summary of our survey questions is available
in https://goo.gl/kGBLhq. In this summary we also
highlight which questions are shared with the other
surveys mentioned above.

We drew our survey participants from multiple
sources but primarily from a database of past gradu-
ate students in Software Engineering of the Penn State
School of Graduate Professional Studies. The school
caters primarily to working professionals. An email
invitation (and subsequent reminder) was sent to these
individuals. We also posted an invitation at related
Linked-In professional testing and quality groups, to
which the author belonged. Respondents were asked
to base their responses on only one software project
that they were either currently involved with or had
taken part in during the past five years.

We collected survey data through two phases. The
first phase was from January and June 2015. At the
end of this phase, we conducted sessions to analyze
the captured responses. We presented an initial view
of the overall collected results from all projects by the
end of this phase (Kassab et al., 2017). We also made
a decision to go into a second phase to collect more
responses. The second phase lasted from June to De-
cember 2016. Overall, of the 293 who viewed the
survey; there were 195 who started taking the survey.
Of these survey takers; there were 72 who completed
the survey all the way to the end. The completion
rate was 37% and the average time taken to complete
the survey was 17 minutes. We also included the re-
sults of the partially completed responses, which have
been analyzed following the standard statistical prac-
tices (Phillips and Sweeting, 1996), particularly re-
vived in medical research (Rezvan et al., 2015), tak-
ing also into account the specificity of online ques-
tionnaires (including the lack of responses or the par-
tial responses), as discussed in details in (Tsikriktsis,
2005). All responses were treated anonymously and
only aggregate data were used - not the individual re-
sponses.

4 GENERAL STATISTICS
REGARDING THE
PARTICIPANTS AND
PROJECTS
CHARACTERISTICS

In order to make well-informed statements about the
practice of software testing, it was essential to at-
tract as many experienced participants as possible.
Both objectives were achieved for this study. Eigh-
teen different industries were represented. The re-
ported professional experience represented in the sur-
vey was impressive with an average of 7.8 years of
related IT/Software experience. The reported aca-
demic qualification indicated that 100% of survey
participants have successfully completed a bache-
lors or equivalent, and 32% even hold a masters
degree or doctorate. The survey responses cap-
tured a diverse mix of positions within the chosen
projects. To view the complete survey results on par-
ticipant and project characteristics in a graphical for-
mat, we suggest to the reader to view these charts at:
https://goo.gl/xWHEhO

Since we aimed at classifying the projects based
on their safety-criticality, the respondents were asked
to specify the maximum loss or damage if the soft-
ware being developed for the project failed (that is,

Testing Practices of Software in Safety Critical Systems: Industrial Survey

361

the delivered service no longer complies with the
specifications). There were 62 responses reported a
highly critical system where serious failure could in-
volve loss of one or more lives. The majority of re-
spondents (133 responses) reported the loss would be
limited to essential funds, discretionary funds or com-
fort. In this paper, we analyze in depth those 62 re-
sponses for the safety-critical software and compare
their reported practices with the non-safety-critical
software projects. In general, the projects were dis-
tributed across different categories with bias towards
database projects (22% of the projects). In case of
the safety-critical software sample, there was an obvi-
ous bias towards embedded systems (42%). The over-
all projects sample showed also a distribution across
a broad range of application domains with a mild
bias towards applications in the Information Tech-
nology sector (15% of the projects) while in case of
the of the safety-critical software sample, both the
Aerospace and Defense domains dominated the dis-
tribution at 53% and 37% correspondingly. The ma-
jority of the projects were classified as new devel-
opment (at 64% for the overall sample and 47% for
the safety-critical software sample), while 14% of the
overall projects were legacy system evolution (32%
of the safety-critical software) and 14% of the over-
all sample were classified as enhancement projects
(21% of the safety-critical software). The overall
sample population presents companies located in dif-
ferent geographic regions (9 countries were repre-
sented in this survey). As far as the size of the par-
ticipating companies is concerned, a representative
sample can be determined. Almost 44% of the par-
ticipants work in small companies (with 1- 100 full
time employees). But also very large companies (with
more than 1000 full time employees) are well repre-
sented at 28%. Regarding those software projects for
safety-critical systems, 40% of the corresponding re-
spondents worked in very large companies. It was
surprising to find that the question enquiring about
an independent QA department in the organization
was affirmed by 56% from the safety-critical projects
comparing to the higher figure of 67% from the non-
safety-critical projects.

5 STATE OF PRACTICE OF
TESTING SOFTWARE IN
SAFETY CRITICAL SYSTEMS

In this section we report on our findings from this sur-
vey in respect to three areas related to software testing
for safety-critical software: 1) The integration of the

testing activities within the software development life
cycle; 2) Testing methods and techniques; 3) Testing
metrics and defects management.

5.1 Integrating Testing Activities
Within Software Development Life
Cycle

Since software development has changed increasingly
into an engineering discipline, often involving widely
distributed teams, the methods and frameworks used
have evolved accordingly. The need for efficient and
cost-effective software production has also reached
software testing. Hence, we were motivated to in-
vestigate how is the software testing methodically
implemented in organizations. Several studies of
safety-critical systems show that 80% of all errors
are not discovered until system integration or later
(Feiler et al., 2013). The results from our survey
provided an evidence that performing QA measures
is concentrated on the late phases of software de-
velopment. This was actually the pattern in both
samples of safety-critical and non-safety-critical soft-
ware. Only 29% of the participants from the safety-
critical software agreed that they use QA measures
in the Study & Concept phase. While the shares of
those that use quality assurance in the Requirements
Specifications and System Design phases are 59% for
each. From the Implementation phase onwards, qual-
ity assurance practices increase significantly (Figure
1). We observed that quality activities for the safety-
critical software were performed at a higher rate than
for non-safety-critical software in every phase of de-
velopment except for Implementation.

Figure 1: In which phases are Quality Assurance measures
are / were applicable within this project?

When asked on the ”Testing as defined phase in
the project development”; 85% of participants from
the safety-critical software sample reported a level of

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

362

agreement (strongly agree or agree) that this was the
actual practice in the project, and 92% reported an
agreement that they personally prefer to have test-
ing as a defined phase on its own. The correspond-
ing numbers for the non-safety-critical software were
70% for the actual practices and 82% for the pref-
erence. If we considered a dissatisfaction in a ques-
tion as the difference between the current and the pre-
ferred practice, then these numbers indicate a higher
level of satisfaction in the safety-critical software on
how the software testing activities are distinct from
the rest of activities within a project. Planning the
duration and the budget of the quality assurance ac-
tivities together with other software development ac-
tivities in a total package was the most common ap-
proach in both safety-critical software (44%) and the
non-safety-critical software (37%) whenever the du-
ration and budget were planned (See Figure 2). The
safety-critical software sample showed a more matu-
rity level in budget and duration planning as only 5%
of the participants do not plan any explicit estimation
for QA activities (comparing to 18% from the non-
safety-critical sample) (see Figure 2).

About 33% from safety-critical software sample
reported that the team is not doing a good job for es-
timating the size / effort of software testing activates
(comparing to 30% from the non-safety-critical soft-
ware); nevertheless, it was surprising to see a signif-
icant difference between the two samples when re-
porting on that they didn’t have enough time to test
the software before its deployment (66% for safety-
critical and only 39% for non-safety-critical).

Figure 2: The quality assurance effort (budget and time) in
your projects is planned ...

5.2 Testing Methods and Techniques

Respondents, who indicated that they perform testing
activities were additionally asked questions regarding
tools and techniques in use within their projects.

It is very common for organizations to have de-
fined levels of testing. Those levels include unit, inte-
gration, system, acceptance and regression testing.

While the results in Figure 3 clearly show that
system-level testing is the most common level of
testing for safety-critical software (93% of partici-
pants reported applying system test for their projects),
around 90% of participants reported that system test-
ing was applied in order to test more than just one
characteristic of the system with a clear focus on test-
ing the functionality (Figure 4). Performance was the
most tested quality attribute in the surveyed projects.
This was the case for both samples: safety and non-
safety-critical software. As one may expect, both
regulatory and reliability testing were executed at a
higher rate for safety-critical software in comparison
to non-safety-critical (Figure 4).

Regression Testing is a level of software testing
that seeks to uncover new software bugs, or regres-
sions, in existing functional and non-functional ar-
eas of a system after changes such as enhancements,
patches or configuration changes, have been made to
them. We observed that Regression testing is ex-
ecuted more frequently for safety-critical software
(75% of respondents) in comparison to non-safety-
critical (49%) (Figure 4). Only 14% from the safety-
critical software sample reported that regression test-
ing was outsourced for their projects; and this num-
ber is close to the only 20% of participants from
safety-critical software who personally preferred to
outsource regression testing. This indicates a level of
satisfaction on the current outsourcing practices of the
regression testing activities.

Figure 3: Which of the following levels of testing are/ were
applied for this project? (Select all that apply).

The survey showed that in all of their dynamic
testing activities, participants from both samples use
principally Black-Box testing techniques (80% used
this technique in safety-critical sample comparing to

Testing Practices of Software in Safety Critical Systems: Industrial Survey

363

Figure 4: Which of the following types of system tests are /
were executed for your project? (Select all that apply).

79% in the non-safety-critical systems sample). It
is noticeable the difference between the two samples
on using the structured-based techniques (white-box).
Sixty percent of the safety-critical software reported
using white box in comparison to 39% of the non-
safety-critical software.

The results show that systematic test case design
and test data definition for the non-safety-critical soft-
ware are widespread. Even though 60% of the partic-
ipants reported that they prefer to have the test cases
written before writing the code; only 28% reported
that this was the actual practice in their projects.

It was surprising to see that for the non-safety-
critical software category of respondents, the current
practice of writing test cases before writing code was
more popular than for the safety-critical software cat-
egory (reported only at 14%). However, while the
non-safety-critical respondents seem quite willing to
even improve the situation more, the safety-critical re-
spondents show no interest as a group in changing
towards a more test-driven development (preference
was reported only at 20%). This is noteworthy con-
sidering the fact that empirical studies seem to ascribe
test-driven developed code a high external code qual-
ity. For fairness sake, it is not trivial to see how such
a practice would affect, and be affected by, other spe-
cific aspects of safety-critical system development,
e.g., fulfillment of safety certification standards.

On the positive side, formal languages are used
more often to describe test cases for the safety-critical
software (57%) than in non-safety-critical software
(43%). Most of the test cases for the non-safety-
critical software were described freely in verbal or
text-based forms (56%), while only 29% of the test
cases from the safety-critical sample were described
this way. The overall effectiveness of test cases for
the safety-critical software is rated high since almost
60% reported that most or all of defects are found

during test cases execution. This number was higher
than the one from non-safety-critical software sam-
ple (43%). About 40% rate test case effectiveness in
safety-critical software as medium (some defects are
found) (Figure 5).

Figure 5: How many of the defects in this project are / were
discovered by executing the test cases?

The expected test results from safety-critical soft-
ware sample were available prior to test execution
in 53% of all cases (in comparison to 70% for non-
safety-critical sample). This survey result is a sur-
prise. On the other hand, both samples were almost
similar in comparing the expected results with the ac-
tual results manually (80% for safety sample and 82%
for non-safety sample).

Data protection is a matter that organizations must
take very seriously these days. It is therefore quite
surprising that 33% of safety-critical sample use the
original the production data (in comparison to 20%
from non-safety-critical sample), and only 33% of the
respondents comprehensively document the test data
(Figure 6). In addition, majority (60%) of the survey
participants stated that they do not explicitly distin-
guish between test case generation and the generation
of associated test data. Only 40% of safety-critical
reported on using a separate test system. Respon-
dents from this sample utilized more often using the
integration system for testing purposes (73%) while
respondents from the non-safety-critical systems uti-
lized more often using the development system (82%)
(Figure 7).

5.3 Testing Metrics and Defects
Management

The results on exit criteria to conclude testing activ-
ities indicated that the majority from both samples
were in favor of concluding the test when ”all planned

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

364

Figure 6: In this project, test data are / were ...

Figure 7: Which system environments are used for testing
in your projects?

test activities were performed” and when ”each re-
quirement has been tested at least once” (Figure 8).
Although a good test process maturity can be con-
cluded from this, it is nonetheless 29% of the safety-
critical participants close their test activities when the
delivery time has been reached (42% for the non-
safety-critical). This finding is an indication that even
though the safety-critical sample showed a more ma-
ture practice; testing continues to be planned as a
”buffer” in the project that will be sacrificed if there
are delays from preceding project phases.

The most common cause in both samples for the
discovered defects was related to requirements prob-
lems (omissions, changes, and errors) - 72% reported
this cause. This is consistent with the findings from
other studies we referred to in Section 2 on the sources
of defects in the Software (Planning, 2002), (Galin,
2004), (Dabney, 2003), (Kassab, 2014), (Kassab,
2015). Design problems was the second most re-
ported cause at 66%. JIRA was the most used tool
to report the defects.

Figure 8: For test completion, the following exit criteria are
used ...

6 LIMITATION TO VALIDITY

We carefully examined our study for the possible
types threats to validity described in (Campbell and
Stanley, 2015), (Hyman, 1982) and (Wohlin et al.,
2012). One possible internal threat to validity that
we identified is related to the instrumentation. This
is the effect caused by the artifacts (e.g. survey ques-
tions) if these are badly designed. Our survey ques-
tions were designed after a careful review to similar
other conducted survey studies (Haberl et al., 2011),
(Ng et al., 2004), (Causevic et al., 2010), (Turkish-
Testing-Board, 2014), (ISTQB, 2014). In addition,
we sent out the link to the survey to a number of re-
searchers to collect their feedback before the data col-
lection phase started. We addressed the feedback to-
wards improving the quality of the questions. One
received comment during the survey design assess-
ment phase suggested providing an explanation next
the possible answers for particular questions to reduce
possible ambiguity. We implemented this suggestion
when applicable. For example, in the question on
what levels of testing were executed for the project, a
clear definition was provided next to each of the pos-
sible answers a participant may select from (e.g. unit
testing, integration testing, acceptance testing, etc.).

Another possible internal threat is related to the
morality. This is the effect due to the different kinds
of persons who drop out from the survey. We care-
fully examined the sample whom dropped out in re-
gards of three participants characteristics: job role,
education level and years of experiences. We ob-
served that the drop out sample was representative to
the total sample. We couldn’t relate the dropout to a
particular participants characteristic. In addition, we
examined the results from the perceptions of manage-
rial job roles and non-managerial roles. No significant

Testing Practices of Software in Safety Critical Systems: Industrial Survey

365

differences on the results came from these two sam-
ples.

A third aspect of internal validity we examined
was related to history. This is related to different re-
sults may be obtained by the same sample at differ-
ent times. To address this, we run our data collection
phase into two rounds as explained in Section 3. We
followed the same recruiting strategy in each round.
If we break the results into two samples to correspond
to the two rounds, we also observe no significant dif-
ferences on the findings between the two samples.

On the external validity threats, we examined the
possible threat related to interaction of selection and
treatment. This is an effect of having a subject pop-
ulation, not representative of the population we want
to generalize to. Judging from the participants char-
acteristics we presented in Section 3, this was not the
case. A second possible external validity threat may
be related to the interaction of history and treatment.
For example, if the survey is taken a few days after a
big software-related crash, people tend to answer dif-
ferently than few days before. To address this threat,
the two data collection phases were spanned over rel-
atively a long period (12 months).

Lastly, it is worth saying that all the studies
like this require replications and confirmatory stud-
ies, especially in software engineering. To facili-
tate the replication of our study, we posted the sur-
vey questions from this survey through the link:
https://goo.gl/kGBLhq. Researchers and practitioners
are welcome to execute further analysis on the data.
The author is available to offer the original text of the
questionnaire to any scientist interested in replication.

7 CONCLUSION

In this study, we collected 195 partial or complete re-
sponses from software professionals from wide range
of industries and backgrounds to analyze the software
testing state of practice. In this paper, we provided a
pragmatic view from the results to focus on the soft-
ware in safety-critical systems. The survey results in-
cluded a wide variety of raw information, but inter-
preting some of this information, we offer the follow-
ing key findings:

• Performing quality assurance measures for soft-
ware in safety-critical systems is concentrated on
the late phases of software development.

• The safety-critical software sample showed a
higher level of maturity (comparing to non-safety-
critical sample) in maintaining ”testing” as a dis-
tinct phase.

• The overall effectiveness of test cases is perceived
to be high for software in safety-critical soft-
ware (60%) comparing to 43% for the non-safety-
critical.

• Safety-critical software utilizes mostly formal
languages to describe test cases.

• Regulatory and reliability testing are executed at a
higher rate for safety-critical software (comparing
to non-safety-critical sample). White-box testing
techniques are also executed at a higher rate.

• Particular areas that require an attention for poten-
tial improvement include:

– Systematic test case design and test data defini-
tion are not uniformly practiced.

– Expected results need to be available sooner
and prior to test execution.

– The usage of production data need to be
avoided.

– There is a need to improve the size and effort
estimation practice for testing activities.

– Requirements problems continue to be the most
common cause for the discovered defects.

We hope the survey and corresponding results
stimulate research into prevailing software practices,
but moreover, we intend these results to highlight the
areas of software testing that need the attention of
both the research community and the industry profes-
sional. Our own subsequent work will offer more de-
tailed analysis of some of the survey results. We also
plan to replicate the study in the near future to observe
any potential changes in the landscape of testing prac-
tices for software in safety critical systems.

REFERENCES

Boydston, A. and Lewis, W. (2009). Qualification and reli-
ability of complex electronic rotorcraft systems. In
Army Helicopter Society System Engineering Meet-
ing.

Campbell, D. T. and Stanley, J. C. (2015). Experimental
and quasi-experimental designs for research. Ravenio
Books.

Causevic, A., Sundmark, D., and Punnekkat, S. (2010). An
industrial survey on contemporary aspects of software
testing. In Software Testing, Verification and Valida-
tion (ICST), 2010 Third International Conference on,
pages 393–401. IEEE.

Charette, R. N. (2009). This car runs on code. IEEE spec-
trum, 46(3):3.

Dabney, J. (2003). Return on investment of independent
verification and validation study preliminary phase 2b
report. Fairmont, WV: NASA IV&V Facility.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

366

DoD, U. (2012). Mil-std-882e, department of defense stan-
dard practice system safety. US Department of De-
fense.

Feiler, P., Goodenough, J., Gurfinkel, A., Weinstock, C.,
and Wrage, L. (2013). Four pillars for improving
the quality of safety-critical software-reliant systems.
Technical report, SOFTWARE ENGINEERING IN-
STITUTE.

Galin, D. (2004). Software quality assurance: from theory
to implementation. Pearson Education India.

Garousi, V. and Varma, T. (2010). A replicated survey of
software testing practices in the Canadian province of
Alberta: What has changed from 2004 to 2009? Jour-
nal of Systems and Software, 83(11):2251–2262.

Grindal, M., Offutt, J., and Mellin, J. (2006). On the testing
maturity of software producing organizations. In Test-
ing: Academic and Industrial Conference-Practice
And Research Techniques, pages 171–180. IEEE.

Haberl, P., Spillner, A., Vosseberg, K., and Winter, M.
(2011). Survey 2011: Software test in practice. Trans-
lation of Umfrage.

Hayes, J. H. (2003). Building a requirement fault taxon-
omy: Experiences from a NASA verification and vali-
dation research project. In 14th International Sympo-
sium on Software Reliability Engineering., pages 49–
59. IEEE.

Hyman, R. (1982). Quasi-experimentation: Design and
analysis issues for field settings (book). Journal of
Personality Assessment, 46(1):96–97.

International, S. (1996). Guidelines and methods for con-
ducting the safety assessment process on civil air-
borne systems and equipment. SAE International.

ISO, I. (2011). 26262: Road vehicles-functional safety. In-
ternational Standard ISO/FDIS, 26262.

ISTQB (2014). Istqb effectiveness survey 2013-14.
http://www.istqb.org/documents/ISTQB Effectiveness
Survey 2013 14.pdf.

Johnson, L. A. et al. (1998). Do-178b, software considera-
tions in airborne systems and equipment certification.
Crosstalk, October, 199.

Kanij, T., Merkel, R., and Grundy, J. (2011). A pre-
liminary study on factors affecting software testing
team performance. In 2011 International Symposium
on Empirical Software Engineering and Measurement
(ESEM), pages 359–362. IEEE.

Kassab, M. (2014). An empirical study on the requirements
engineering practices for agile software development.
In 40th EUROMICRO Conference on Software En-
gineering and Advanced Applications (SEAA), pages
254–261.

Kassab, M. (2015). The changing landscape of require-
ments engineering practices over the past decade. In
IEEE 5th International Workshop on Empirical Re-
quirements Engineering (EmpiRE), pages 1–8.

Kassab, M., DeFranco, J. F., and Laplante, P. A. (2017).
Software testing: The state of the practice. IEEE Soft-
ware, 34(5):46–52.

Kasurinen, J., Taipale, O., and Smolander, K. (2010). Soft-
ware test automation in practice: empirical observa-
tions. Advances in Software Engineering, 2010.

Knauss, A., Berger, C., and Eriksson, H. (2016). Towards
state-of-the-art and future trends in testing of active
safety systems. In Proceedings of the 2nd Interna-
tional Workshop on Software Engineering for Smart
Cyber-Physical Systems, pages 36–42. ACM.

Lee, J., Kang, S., and Lee, D. (2012). Survey on software
testing practices. IET software, 6(3):275–282.

Leveson, N. G. and Turner, C. S. (1993). An investigation
of the Therac-25 accidents. Computer, 26(7):18–41.

McDermid, J. and Kelly, T. (2006). Software in safety crit-
ical systems-achievement & prediction. Nuclear Fu-
ture, 2(3):140.

Naik, K. and Tripathy, P. (2011). Software testing and qual-
ity assurance: theory and practice. John Wiley &
Sons.

NASA (2013). Nasa-std 8719.13 software safety stan-
dard. https://standards.nasa.gov/standard/nasa/nasa-
gb-871913.

Ng, S., Murnane, T., Reed, K., Grant, D., and Chen, T.
(2004). A preliminary survey on software testing prac-
tices in Australia. In Software Engineering Confer-
ence, 2004. Proceedings. 2004 Australian, pages 116–
125. IEEE.

Phillips, M. and Sweeting, T. (1996). Estimation for cen-
sored exponential data when the censoring times are
subject to error. Journal of the Royal Statistical Soci-
ety. Series B (Methodological), pages 775–783.

Planning, S. (2002). The economic impacts of inadequate
infrastructure for software testing.

Rafi, D. M., Moses, K. R. K., Petersen, K., and Mäntylä,
M. V. (2012). Benefits and limitations of automated
software testing: Systematic literature review and
practitioner survey. In Proceedings of the 7th Inter-
national Workshop on Automation of Software Test,
pages 36–42. IEEE Press.

Redman, D., Ward, D., Chilenski, J., and Pollari, G. (2010).
Virtual integration for improved system design. In An-
alytic Virtual Integration of Cyber-Physical Systems
Workshop (AVICPS), volume 52498, pages 57–64.

Rezvan, P. H., Lee, K. J., and Simpson, J. A. (2015).
The rise of multiple imputation: a review of the re-
porting and implementation of the method in med-
ical research. BMC medical research methodology,
15(1):30.

Tsikriktsis, N. (2005). A review of techniques for treating
missing data in om survey research. Journal of Oper-
ations Management, 24(1):53–62.

Turkish-Testing-Board (2014). Software quality
report 2014-2015 released by Turkish test-
ing board. http://www.istqb.org/documents/
TurkeySoftwareQualityReport 2014 2015.pdf.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.

Testing Practices of Software in Safety Critical Systems: Industrial Survey

367

