
Towards Model based Testing for Software Defined Networks

Asma Berriri1, Jorge López1, Natalia Kushik1, Nina Yevtushenko2,3 and Djamal Zeghlache1

1SAMOVAR, CNRS, Télécom SudParis, Université Paris-Saclay, 9 rue Charles Fourier, 91000 Évry, France
2Department of Information Technologies, Tomsk State University, 36 Lenin street, 634050 Tomsk, Russia

3Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25 Alexander Solzhenitsyn street, 109004, Moscow, Russia

Keywords: Software Defined Networks, Formal Methods, Testing, Equivalent Classes, Graph Enumeration.

Abstract: Software Defined Networks (SDNs) and corresponding platforms are expected to be widely used in future
generation networks and especially deployed and activated on-demand as agile networking control service
components. The correct functioning of SDN platforms must be assured, i.e., such platforms should be tho-
roughly tested before deployment. After thorough verification of SDN controllers and switches, the composi-
tion of them still requires additional testing in order to guarantee the absence of critical faults. We propose a
model based testing technique for checking SDN platforms that relies on appropriate graph enumeration. In
particular, we define a fault model where the fault domain contains the wrongly and correctly implemented
paths allowed with respect to the underlying resource connectivity graph. We also establish the conditions
for deriving a complete test suite with respect to such fault model under black box and white box testing
assumptions.

1 INTRODUCTION

Software Defined Networks (SDNs) enable logically
centralized control over network devices through a
controller that operates independently of the network
hardware, and can be viewed as the network’s ope-
rating system (Sezer et al., 2013). As a result, SDN
provides a flexible controllability and programmabi-
lity by separating the control and data planes via in-
troducing an open interface between these planes.

The improvements in the control and management
of networks and networking services do not, however,
remove the need to address thoroughly the risk of mis-
configurations or software bugs that can lead to net-
work failures (Gill et al., 2011). Moreover, due to the
flexibility provided by SDNs, it is essential to guaran-
tee the correct (re-)configuration of the paths for net-
work flows. To ensure functional correctness of SDNs
and reduce the risk of misconfigurations, programma-
ble devices and components in an SDN framework
must be continuously tested. However, even if each
component is well debugged in isolation their com-
position can still face interoperability issues. One of
the solutions to check the framework functionality in
this case is to define methods and techniques for tes-
ting the system as a whole. These methods would al-
low administrators to estimate the correctness of their

SDN solutions and validate them before deployment.
Hereafter, we focus on testing functional aspects of
SDN frameworks, i.e., in this paper, we do not consi-
der non-functional SDN issues, such as security, trust,
etc.

We note that a number of techniques for SDN ve-
rification and testing have already been developed. In
this paper, we focus on so called active testing when a
system under test (SUT) is stimulated by appropriate
inputs, i.e., test sequences / cases, and the conclusion
about its correctness is made based on observations of
its output responses. Formal verification usually does
not require any stimulation of the SUT; it is mainly
reduced to the creation of a set of properties that are
iteratively checked at different phases of the software
development / life cycle. In the last decade, SDN veri-
fication techniques have been largely investigated and
thus, cover a big number of possibilities, starting from
the header space analysis of network packets and en-
ding with intricate and complicated model checking
problems that can be handled by SAT solving (Mai
et al., 2011) or deductive verification and theorem
provers (Guha et al., 2013). These approaches differ
in the way the verification is performed, namely off-
line and on-line (run-time) verification can be consi-
dered.

440
Berriri, A., López, J., Kushik, N., Yevtushenko, N. and Zeghlache, D.
Towards Model based Testing for Software Defined Networks.
DOI: 10.5220/0006805604400446
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 440-446
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Existing testing approaches1 for SDN infrastruc-
tures can be divided into three groups. The first group
aims at creating ‘problematic’ situations for the net-
work or any SDN component. In this case, the in-
puts to be applied are special (unexpected or rarely
applied) requests; the test assessment is given depen-
ding on the ability of the controller (or the switch) to
process the request correctly or reject it (Scott et al.,
2015; Shalimov et al., 2013). The second group of
techniques concerns conformance testing when a for-
mal specification of an SDN component is derived
(Yao et al., 2014; Zhang et al., 2016) and the test suite
is generated on the basis of this specification. The
approaches of the last group represent a combination
of formal verification and testing techniques, namely
model checking solutions are effectively utilized for
test suite derivation (see for example, (Canini et al.,
2011; Canini et al., 2012)).

We note however, that existing testing techniques
and particularly model based testing techniques have
been mostly applied to the SDN components, and not
to the entire SDN system (framework itself). This mo-
tivates us to provide novel formal solutions to com-
prehensively test the SDN system as a whole.

Consequently, we propose a model based testing
technique for checking SDN frameworks that relies
on appropriate graph enumeration. In particular, we
define a fault model where the fault domain contains
potential implementations of virtual paths requested
by a user. To guarantee the fault coverage, we prove
the conditions when under black box and white box
testing assumptions a complete test suite with respect
to such fault model can be derived.

The paper is structured as follows. Section 2 of
this paper presents the necessary background. Novel
formal SDN testing approaches based on the appro-
priate graph enumeration and preliminary experimen-
tal results are presented in Section 3. Section 4 con-
cludes the paper and describes future research chal-
lenges.

2 BACKGROUND

A fundamental characteristic of the SDN architecture
is the separation of the control plane from the forwar-
ding (data) plane (Opennetworking, 2012). A logi-
cally centralized control function maintains the state
of the network and provides instructions to the data
plane. The network devices in the data plane then

1Apart from those, developed for ‘classical’ communi-
cation networks that can be also applied to SDN data planes
(see, for example (Zeng et al., 2012)).

forward data packets according to these control in-
structions, more specifically, forwarding and filtering
rules (Sezer et al., 2013). A forwarding rule is confor-
med by three parts: a packet matching part, an action
part and a location / priority part. The matching part
describes the values which a received network packet
should have for a given rule to be applied. The action
part is simply the disposition of the matched network
packets; the location priority part controls the hierar-
chy of the rules using tables and priorities.

An SDN controller has a ‘global view’ of the
network and several packet forwarding devices are
controlled and configured remotely and dynamically
through interfaces using protocols such as the Open
Flow (OF) protocol (McKeown et al., 2008). SDN-
enabled switches contain one or more forwarding
(flow) tables which are ultimately managed by a con-
troller or a cluster of them, logically representing a
single controller; SDN switches receive the forwar-
ding rules from controllers to steer network packets
in the data plane. An example of an SDN architec-
ture is depicted in Fig. 1. In particular, Fig. 1 presents
an example of a network topology consisting of two
controllers, four switches and four hosts. Each switch
is connected to a single host as well as to one of the
SDN controllers.

Figure 1: Example of an SDN architecture.

As mentioned before, in order to assure the qua-
lity of the SDN architectures, one of the possibilities
is to define methods and techniques for testing such
complex composite systems.

Hereafter, under testing techniques, we assume an
active testing mode where test cases or test sequences
are applied to a system under test, and the conclusion
about the correctness of the SUT is made based on ob-
servations of the output responses to the test sequen-
ces. In this case, the observed outputs are generated

Towards Model based Testing for Software Defined Networks

441



upon applying a corresponding test sequence to the
system under test and (automatic) traffic generation
allows to make necessary observations, such as cor-
rect or wrong configurations, correct or wrong flow
tables, etc. The quality of a test suite is usually me-
asured by its fault coverage, i.e., the types and num-
ber of faults that can be detected with the test suite.
Model based testing techniques seek for test suites
with guaranteed fault coverage that can be stated as
(necessary and) sufficient conditions for a test suite
completeness. Such conditions can be proven when a
corresponding fault model is introduced. In this pa-
per, a fault model is represented by a pair 〈@,FD〉,
where @ is a conformance relation (between what is
requested and what is really implemented) and FD
is a set of potential implementations. Each correct
implementation I1 ∈ FD passes a complete test suite
while each faulty implementation I2 ∈ FD (with re-
spect to @) fails such a test suite.

3 MODEL BASED TESTING FOR
SDN ARCHITECTURES

3.1 Notations

In this paper, we refer to the data plane as the re-
source network connectivity topology (RNCT2), de-
picting the SDN elements in the resource network.
An RNCT is represented by an undirected (network
links are assumed to be bidirectional) and k-colored
graph G = (V,E,c), where the set V of nodes repre-
sents network devices (switches, hosts, etc.). Edges
of the graph (the set E) are unordered pairs (x,y),
x,y ∈ V , representing connections between two no-
des (links) in a network; and c is a coloring function
c : V 7→ N∪ {0} such that given a node in the net-
work, a corresponding color is assigned to it as a
hashed integer. Note that the colors of adjacent no-
des can be the same, differently from the common
graph coloring functions. As an example, the pre-
viously depicted model can accurately represent the
data plane (RNCT) shown in Fig. 1 by the following
binary-colored graph: RNCT = (V,E,c), where:

V ={s1,s2,s3,s4,h1,h2,h3,h4}

E =

{
(h1,s1),(h2,s2),(h3,s3),(h4,s4),(s1,s2),

(s1,s3),(s2,s4),(s2,s3),(s3,s4)

}
c(v) =

{
1, i f v = s1∨ v = s2∨ v = s3∨ v = s4

0, otherwise

2Hosting infrastructures can be physical or virtualized.

Note that in the above example, ‘1’ represents a
switch color, and ‘0’ represents a host color, corre-
spondingly.

Issuing a forwarding rule to an SDN-enabled
switch creates a virtual link from and to other
node(-s) adjacent to the switch if the rule forwards
traffic to a given port. For example, assume that
for switch s1 shown in Fig. 1 h1 is connected to
port 1 and s2 is connected to port 2. The rule
“ table =0, priority =99, in port =1, dl dst =01:80:
c2 :00:00:00, actions =resubmit (,2) ” creates a
virtual link h1 → s1 → s2 if the destination mac ad-
dress is 01:80:c2:00:00:00. Formally, the application
of a forwarding rule creates a virtual link a ∈ E∗ as a
sequence of directed edges from the RNCT edges. In
this paper, we consider a virtual path (simply a path
throughout the paper) as a sequence of directed edges
whose head and tail nodes are hosts and all other
intermediary nodes are switches. The reason is that
for testing purposes, observing traffic generated from
one host to another is how the resulting configuration
is collected as an ‘output’. We assume the hosts in
the RNCT do not act as switches or relays of network
packets, furthermore, we assume switches do not act
as hosts in the RNCT. Even if at a physical level the
previous cases are possible, the RNCT model must
not consider such possibilities. The forwarding rules
used to control the traffic in the RNCT construct a
virtual partial path or a set of those. Some examples
of the paths obtained from an RCNT (as depicted in
Fig. 1) are illustrated in Fig. 2. In this case, the RNCT
is a dense network with four switches. Each switch is
connected to a single host as well as to one controller.
We note that edges cannot be repeated in a path,
otherwise, infinite loops can be potentially formed.
Furthermore, in this paper we consider also that
nodes cannot be repeated, studying this possibility
is left for future work. Validating the correctness of

h1 s1 s2

s3 s4

h2

h4h3

RNCT

h1 s1

s2h2

P1

h1 s1 s2

s3 s4

h2

P2
Figure 2: RNCT and examples of its paths.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

442



the requests is also out of the scope of this paper (the
interested reader can refer to (López et al., 2017)).

3.2 Introducing an SDN Fault Model

Given the SDN infrastructure in Fig. 1, we propose
to test the SDN framework, including the controller(-
s), switches, and connections between them. Namely,
we propose to derive an application that is responsi-
ble for test generation and execution, i.e., a tester that
sends specific requests to the SDN controller asking
for different paths to be implemented in the RNCT.

The test generation architecture is illustrated in
Fig. 1, where the application layer is executing only
the tester. According to our assumptions, the inputs
that need to be generated by the orchestrator in order
to guarantee that the SDN infrastructure is functio-
ning properly are paths limited by the RNCT.

We assume that the SDN infrastructure is functio-
ning correctly when each requested path and only it is
created. As in fact, mostly connectivity issues are tes-
ted, similar to (El-Fakih et al., 2004), the fault model
has two items, i.e., the fault model is a pair 〈=,FD〉
where the conformance relation is the equality. Anot-
her issue is about the fault domain FD of the fault
model. According to the path definition, the follo-
wing types of faults can be considered: a requested
edge can be directed to a wrong node, additional ed-
ges can appear as well as some edges can disappear.
Thus, a fault domain FD contains all possible paths
of the RNCT. A test case is a path of the RNCT and a
test suite is a finite set of paths. As usual, a test suite
is complete w.r.t. 〈=,FD〉 if any difference between
a requested and implemented path can be detected.

Checking the output reaction of the SDN infra-
structure can be performed through a network traffic
initiation. As we try to check that the paths are im-
plemented correctly, we focus on specific traffic ge-
neration. For generating traffic, we propose to use
the ICMP echo request / echo reply packets through
the known ping utility3. The ICMP request / reply
is performed for each pair of hosts that correspond
to the head and tail nodes of the test cases. Later,
the passing traffic is inspected at all node interfaces
via a simple network sniffer. The network traffic of
all switches can be obtained in different ways, star-
ting from a simple Unix-like sniffer as the tcpdump
utility and finishing with non-software-based (phy-
sical / vendor) switches via protocols such as Net-
Flow (Claise, 2004) or sFlow (Phaal et al., 2001). As
an example, consider the requested path (h1,s1)(s1,

3We however note the existence of different approaches
for automatic traffic generation (see, for example (Zeng
et al., 2012; David et al., 2014; Fayaz et al., 2016)).

s3)(s3,s4)(s4,s2)(s2,h2) with respect to the RNCT in
Fig. 1. The corresponding traffic generation (through
ICMP echo request) and the traffic observation are de-
picted in Fig. 3. We depict the messages and a ti-
mestamp when the message was observed. Hereafter,
‘t1’ denotes the first time instance after traffic genera-
tion started. If the network flow follows the requested
path, i.e., the expected output response is observed
during the traffic generation, we consider that the test
case has passed. An example of traffic generation and
observation is shown in Fig. 3.

Figure 3: Traffic generation and flow observation.

After the fault model is set, usual testing approa-
ches can be used for deriving test suites with the gua-
ranteed fault coverage. Below, we discuss how black
and white test derivation approaches can be used for
this purpose.

3.3 Black Box Testing Approach

As the set of all paths of the RCNT is finite, the sim-
plest way to construct a complete test suite w.r.t. 〈=,
FD〉 is to consider the set of all such paths.

Proposition 1. The set of all RCNT paths is a com-
plete test suite w.r.t. 〈=,FD〉.

In general, this test suite is rather long and we
propose an approach for reducing its length based
on equivalence classes. Indeed, if we assume that
each node processes inputs independently of the node
where they come from, two paths can be considered
(i, j)-equivalent if both paths have a directed edge
from node i to node j. That is either all the pac-
kets that should be directed from i to j are either
processed correctly, i.e., are sent from i to j, or are
processed wrongly, i.e., are sent anywhere except the
j-th node. In Fig. 2, paths P1 = (h1,s1)(s1,s2)(s2,
h2) and P2 = (h1,s1)(s1,s3)(s3,s4)(s4,s2)(s2,h2) are
considered to be equivalent w.r.t. the edge (h1,s1) as
well as w.r.t. the edge (s2,h2) .

Proposition 2. The set of paths that contains a path
of each (i, j)-equivalent class where (i, j) is an edge
in the RCNT, is a complete test suite w.r.t. the fault
model 〈=,FD〉.

Towards Model based Testing for Software Defined Networks

443



Indeed, a complete test suite has at least one re-
quest where a packet should be sent from node i to
node j. If the packet is processed correctly (accor-
ding to the monitoring results), then due to the testing
assumptions, we conclude that each packet directed
from node i to node j will be sent to the j-th node.

By direct inspection, one can assure that the num-
ber of all paths for the RNCT example in Fig. 2 equals
36. However, the proposed equivalence classes ap-
proach allows to reduce this test suite up to ten paths
only.

In order to cover all equivalence classes in an op-
timal way, an optimization problem should be stated
and solved. One option is to consider the Boolean
(weighted) matrix and solve the corresponding cove-
ring problem (Villa et al., 1997) for which many li-
braries and scalable software solutions are developed.
If the node processes a packet depending on where it
comes from then equivalence classes could be consi-
dered w.r.t. path subsequences of length l ≥ 2. Given
a sequence γ of RNCT edges of length l between node
i and node j, two paths are considered γ-equivalent if
they both contain γ. A test suite is complete if it has at
least one path of each equivalence class. A minimal
cover of a corresponding Boolean matrix can also be
used for optimal test generation.

3.4 White Box Testing Approach

In some cases, mainly for reducing testing complex-
ity, it may be desired not to generate test suites w.r.t.
all possible edges in the RNCT. The complexity can
be reduced if a set of critical edges that need to be
tested first can be defined; for example, critical ed-
ges that include critical services. For this reason, we
propose Algorithm 1 that generates a test suite with
guaranteed fault coverage w.r.t. a set of critical edges,
i.e., if a fault occurs at a given ‘critical’ edge, it is
detected. The algorithm is based on generating a test
case tc = (v1,v2) . . .(vi,v j)(v j,v j+1) . . .(vn−1,vn) that
traverses a critical edge (vi,v j) for all critical edges
E ′. We consider in the fault domain, implementations
that can potentially contain three types of faults that
need to be detected, namely:

1. An edge is directed to a wrong node, i.e., from the
edge of interest (vi,v j) to (vi,v j′) where j 6= j′.

2. An edge e = (vi,v j) is deleted.

3. A non-existing edge (vi,vk) is created for a critical
edge (vi,v j), where j 6= k.

As potential faults are enumerated explicitly, Al-
gorithm 1 returns the test suite under the white box
testing assumption. By construction, the following
proposition holds.

Input : RNCT = (V,E,c), a binary-colored
graph where hosts are “0” colored;
E ′ ⊆ E, a set of critical edges

Output: A test suite T Sw
T Sw← /0;
foreach f = (vi,v j) ∈ E ′ do

1. Find (backtrack)
pb = (v1,v2) . . .(vi,v j), the shortest
sequence of edges such that c(v1) = 0,
i.e., the shortest sequence that starts in a
host and finishes at the node v j. Note
that if c(vi) = 0 then pb = (vi,v j);

2. Find (forwardtrack)
p f = (vi,v j) . . .(vn−1,vn), the shortest
sequence of edges such that c(vn) = 0,
i.e., the shortest sequence that finishes in
a host and starts at node v j. Note that if
c(v j) = 0 then p f = (vi,v j);

3. T Sw← T Sw∪{pb p f };
return T Sw

Algorithm 1: White box Complete Test Suite Ge-
neration

Proposition 3. Algorithm 1 returns a complete test
suite w.r.t. the fault model 〈=,FD〉 where FD has
each path with a critical edge.

We note that Algorithm 1 is somehow a naive al-
gorithm. However, a test minimization can be per-
formed similar to black box testing approach, via sol-
ving a covering problem. In this case, a minimal set
of paths that cover all critical edges can be identified.

3.5 Preliminary Experimental Results

In order to simulate the resource infrastructure, i.e.,
to provide the RNCT, we utilized the well known Mi-
ninet (Mininet, 2013) simulator executed under an
Ubuntu 14.04 LTS virtual machine running on Virtu-
alBox Version 5.1.14 r112924 (Qt5.6.2) for Mac OS
X, with 2GB of RAM and 1 core of a 2.3 GHz In-
tel Core i5. Our preliminary experimental setup is
a network containing 4 switches running Open vS-
witch version 2.0.2 (also 4 hosts, and 9 links), as de-
picted in Fig. 1. We note that even if the experiments
were not performed at a large scale, the test derivation
techniques do not have high complexity and can thus
be applied to larger environments. Furthermore, to
prove the validity of our approach, real SDN control-
lers were utilized for the experiments, especially an
OpenDaylight (ODL) (Medved et al., 2014) Boron-
S3, and an Onos (Berde et al., 2014) 1.10.4 running
under a dedicated CentOS 7 virtual machine with 8
cores and 12GB of RAM.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

444



Considering Proposition 2, we derived a test suite
T S for (i, j)-equivalence classes, including each edge
(i, j) at least once. When the test suite was executed
against the SDN framework composed by the expe-
rimental setup and the ODL controller, all tests fai-
led. The test suite has been executed by requesting
the proper flow instantiation via the ODL REST in-
terface. In fact, none of the requested paths of the test
suite were implemented. Nevertheless, the control-
ler gave positive replies (HTTP 201 - created) to the
creation of all individual flow entries, and none were
installed in the Open vSwitches. Certainly, positively
replying to a request for flow creation and not imple-
menting it is not considered to be a correct functio-
nality, independently of any potential misconfigurati-
ons. On the other hand, when the test suite was execu-
ted against the SDN framework with the experimental
setup using the Onos controller all tests successfully
passed.

T S is indeed a complete test suite with respect to
the presented fault model 〈=,FD〉, and therefore, its
execution against an SDN platform (implementation)
provides a guarantee regarding the correct functioning
of that SDN platform, if the test suite passes it. No-
netheless, it is interesting to check the fault detection
effectiveness of each test sequence α in the test suite
T S (test sequence ‘power’). For this reason, we de-
liberately introduced a bug in the Onos controller to
provide positive replies to the creation of flows which
are not installed on the devices. To obtain a faulty
implementation with the previously described bug, a
single statement was deleted from the Onos control-
ler’s source code 4; particularly, the statement was
deleted in the FlowsWebResource.java file. As Onos
compiles with regression tests, a special compilation
process ignoring such tests was executed. Given the
modified code for the Onos controller, the fault co-
verage of each test sequence in the test suite was as-
sessed. As a result, all the test sequences failed when
being executed against the modified SDN platform,
i.e., each test case is ‘capable’ of detecting the intro-
duced bug by its own. Therefore, these preliminary
experiments also showcase the power of the obtained
test cases and motivate to consider the test minimiza-
tion in the future.

Although these experiments were not performed
for realistic SDN infrastructures, some conclusions
can be drawn. First, the SDN architecture composed
by the experimental setup together with the Onos con-
troller is guaranteed to be free of faults of the wrong
redirection, edge deletion and edge creation faults as

4Statement deletion is often considered in mutation tes-
ting (Deng et al., 2013) when the test suite quality is esti-
mated.

considered in the fault domain. Moreover, the obtai-
ned test suite can detect other types of bugs (for exam-
ple, a single statement deletion) for which the relati-
onship with the errors listed above needs to be further
investigated. Second, the SDN architecture composed
by the experimental setup together with the ODL con-
troller seems not to be free of the bugs under conside-
ration. Note that even if the second conclusion may
be considered as trivial, the proposed approach can
be seen as a helpful mechanism to ‘certify’ the cor-
rect functionality of a given SDN infrastructure under
certain conditions and assumptions.

4 CONCLUSIONS

In this paper, we focused on testing techniques for
checking the functionality of SDN frameworks. As
the inputs of the SDN infrastructures are user-defined
paths, we proposed a formal approach for effective
test generation for such non-trivial inputs, namely,
specific graph enumeration techniques have been dis-
cussed for testing an SDN framework.

To formally prove the fault coverage, we defined
a fault model where the fault domain contains diffe-
rent implementations of the requested paths. We also
established the conditions when a complete test suite
with respect to such fault model can be derived.

As a future work we plan to investigate other fault
models, for example, we would like to check different
abstraction levels, i.e., to consider not a single path as
a test case but a set of those. Another direction for
future work is the test suite minimization for black
and white box testing assumptions, namely to choose
the minimal number of paths of interest so that the
test suite fault coverage is preserved. Finally, we plan
to perform experiments on a number of (distributed)
SDN architectures for estimating the effectiveness of
graph enumeration for detecting real bugs in the code
of switches / controllers.

ACKNOWLEDGEMENTS

The results in this work were partially funded
by the Celtic-Plus European project SENDATE,
ID C2015/3-1 and the Russian Science Foundation
(RSF), project # 16-49-03012.

The authors gratefully acknowledge senior rese-
archers Igor Burdonov and Alexander Kossatchev for
fruitful discussions.

Towards Model based Testing for Software Defined Networks

445



REFERENCES

Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M.,
Koide, T., Lantz, B., O’Connor, B., Radoslavov, P.,
Snow, W., et al. (2014). Onos: towards an open, dis-
tributed sdn os. In Proceedings of the third workshop
on Hot topics in software defined networking, pages
1–6. ACM.

Canini, M., Kostic, D., Rexford, J., and Venzano, D. (2011).
Automating the testing of openflow applications. In
Proceedings of the 1st International Workshop on Ri-
gorous Protocol Engineering (WRiPE).

Canini, M., Venzano, D., Perešı́ni, P., Kostić, D., and Rex-
ford, J. (2012). A nice way to test openflow appli-
cations. In Proceedings of the 9th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI), number EPFL-CONF-170618.

Claise, B. (2004). Cisco systems netflow services export
version 9.

David, L., Stefano, V., and Olivier, B. (2014). Towards
test-driven software defined networking. In 2014
IEEE Network Operations and Management Sympo-
sium, pages 1–9.

Deng, L., Offutt, J., and Li, N. (2013). Empirical evalu-
ation of the statement deletion mutation operator. In
IEEE Sixth International Conference on Software Tes-
ting, Verification and Validation (ICST), pages 84–93.

El-Fakih, K., Trenkaev, V., Spitsyna, N., and Yevtushenko,
N. (2004). FSM based interoperability testing met-
hods for multi stimuli model. In Testing of Communi-
cating Systems, 16th IFIP International Conference,
TestCom 2004, Oxford, UK, March 17-19, 2004, Pro-
ceedings, pages 60–75.

Fayaz, S. K., Yu, T., Tobioka, Y., Chaki, S., and Sekar, V.
(2016). BUZZ: testing context-dependent policies in
stateful networks. In 13th USENIX Symposium on
Networked Systems Design and Implementation, pa-
ges 275–289.

Gill, P., Jain, N., and Nagappan, N. (2011). Understanding
network failures in data centers: Measurement, ana-
lysis, and implications. In Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM ’11, pages
350–361, New York, NY, USA.

Guha, A., Reitblatt, M., and Foster, N. (2013). Machine-
verified network controllers. In ACM SIGPLAN Noti-
ces, volume 48, pages 483–494. ACM.

López, J., Kushik, N., Yevtushenko, N., and Zeghlache., D.
(2017). Analyzing and validating virtual network re-
quests. In The 12th International Conference on Soft-
ware Technologies (ICSOFT), Madrid, Spain, pages
441–446.

Mai, H., Khurshid, A., Agarwal, R., Caesar, M., God-
frey, P. B., and King, S. T. (2011). Debugging the
data plane with anteater. In Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM ’11, pages
290–301, New York, NY, USA.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,
G., Peterson, L., Rexford, J., Shenker, S., and Turner,
J. (2008). Openflow: enabling innovation in campus

networks. ACM SIGCOMM Computer Communica-
tion Review, 38(2):69–74.

Medved, J., Varga, R., Tkacik, A., and Gray, K. (2014).
Opendaylight: Towards a model-driven sdn controller
architecture. In Proceedings of the IEEE 15th Inter-
national Symposium on A World of Wireless, Mobile
and Multimedia Networks (WoWMoM), pages 1–6.

Mininet (2018). Mininet: An instant virtual network on
your laptop (or other pc)-mininet.

Opennetworking (2012). Software-defined networking:
The new norm for networks. ONF White Paper.

Phaal, P., Panchen, S., and McKee, N. (2001). Inmon cor-
poration’s sflow: A method for monitoring traffic in
switched and routed networks.

Scott, C., Wundsam, A., Raghavan, B., Panda, A., Or, A.,
Lai, J., Huang, E., Liu, Z., El-Hassany, A., Whit-
lock, S., et al. (2014). Troubleshooting blackbox
sdn control software with minimal causal sequences.
ACM SIGCOMM Computer Communication Review,
44(4):395–406.

Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B.,
Lake, D., Finnegan, J., Viljoen, N., Miller, M., and
Rao, N. (2013). Are we ready for sdn? implementa-
tion challenges for software-defined networks. IEEE
Communications Magazine, 51(7):36–43.

Shalimov, A., Zuikov, D., Zimarina, D., Pashkov, V., and
Smeliansky, R. (2013). Advanced study of sdn/open-
flow controllers. In Proceedings of the 9th central &
eastern european software engineering conference in
russia. ACM.

Villa, T., Kam, T., Brayton, R. K., and Sangiovanni-
Vincentelli, A. L. (1997). Explicit and implicit algo-
rithms for binate covering problems. IEEE Trans. on
CAD of Integrated Circuits and Systems, 16(7):677–
691.

Yao, J., Wang, Z., Yin, X., Shiyz, X., and Wu, J. (2014).
Formal modeling and systematic black-box testing of
sdn data plane. In The IEEE 22nd International Con-
ference on Network Protocols (ICNP), pages 179–
190.

Zeng, H., Kazemian, P., Varghese, G., and McKeown, N.
(2012). Automatic test packet generation. In Procee-
dings of the 8th International Conference on Emer-
ging Networking Experiments and Technologies, pa-
ges 241–252.

Zhang, Z., Yuan, D., and Hu, H. (2016). Multi-layer mo-
deling of OpenFlow based on EFSM. In 4th Interna-
tional Conference on Machinery, Materials and Infor-
mation Technology Applications, pages 524–529.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

446


