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Abstract: Cloud computing providers offer a variety of instance sizes, types, and configurations that have different pri-
ces but can interoperate. As many parallel applications have heterogeneous computational demands, these
different instance types can be exploited to reduce the cost of executing a parallel application while main-
taining an acceptable performance. In this paper, we perform an analysis of load imbalance patterns with
an intentionally-imbalanced artificial benchmark to discover which patterns can benefit from a heterogeneous
cloud system. Experiments with this artificial benchmark as well as applications from the NAS Parallel Ben-
chmark suite show that the price of executing an imbalanced application can be reduced substantially on a
heterogeneous cloud for a variety of imbalance patterns, while maintaining acceptable performance. By using
a heterogeneous cloud, cost efficiency was improved by up to 63%, while performance was reduced by less
than 7%.

1 INTRODUCTION

Executing large parallel applications in cloud envi-
ronments is becoming an important research focus in
cloud computing. Among the three service models of-
fered by the Cloud Computing model, the most suit-
able for High-Performance Computing (HPC) is the
IaaS model, since it provides instances that can be cu-
stomized according to the users’ needs and combined
to build a cluster system. Currently, many cloud pro-
viders offer a large number of instance types that tar-
get applications from the HPC domain. In contrast
to traditional cluster systems, which usually consist
of homogeneous cluster nodes, cloud systems offer
the possibility to flexibly allocate different types of
instances and interconnect them, thus creating large
heterogeneous platforms for distributed applications.
Normally the heterogeneity of the cloud is explored
near the hardware level (Dong et al., 2017) and is
most related to the provider side. However, there are
few studies that aim to explore the heterogeneity in
public clouds.

One way in which such a heterogeneous system
can be interesting is by matching the demands of the
application to the underlying hardware. In the context
of this paper, we focus on matching the load of the
different processes of a parallel application to diffe-
rent instance types, thus providing a way to mitigate
the load imbalance that is common in such applicati-

ons. Previous work (Roloff et al., 2017a; Roloff et al.,
2017b) has shown that such a matching can be bene-
ficial for the cost efficiency of an application, by exe-
cuting processes with a larger load on faster but more
expensive instances, while executing processes with
a lower load on slower but cheaper instances. In this
way, the overall cost of the execution can be reduced,
while maintaining the same performance. Due to the
principle of persistence (Kalé, 2002), which says that
load imbalance will stay the same during execution
and between several executions for most applications,
profiling and matching has to be done only once per
application.

In this paper, we study the benefits of heteroge-
neous clouds, focusing on which type of load imba-
lance is most suitable for these cloud systems. We
introduce an MPI-based benchmark, ImbBench, that
can simulate several types of load imbalance patterns
in parallel applications. With this benchmark, users
can profile cloud instances to choose the instances
that best meet their needs. We use the benchmark on
the Microsoft Azure Cloud provider to prove that is
it possible to save money while not reducing the per-
formance of an unbalanced application across a wide
range of imbalance patterns, using up to three diffe-
rent instance types. Furthermore, we also validate our
approach using the MPI version of the NAS Parallel
Benchmarks (NPB). All of our evaluations were done
using the IaaS service model.
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2 THE IMBBENCH BENCHMARK

The HPC field uses many benchmarks that focus on
specific performance aspects, such as the LINPACK
benchmark (Dongarra et al., 2003), which is used to
measure performance for the TOP500 list; the NAS
suite (Bailey et al., 1991), which consists of Compu-
tational Fluid Dynamics (CFD) benchmarks; and the
Rodinia suite (Che et al., 2009), which was designed
for benchmarking CPU+GPU systems, among others.
However, to the best of our knowledge, there is a lack
of benchmark suites designed for cloud computing.
Moreover, there are few tools that help the users to
exploit the heterogeneity of cloud computing instan-
ces, both in terms of price and performance.

In most cases, HPC applications are executed on
homogeneous clusters (or clouds), which are clusters
that consist of several nodes with the same configura-
tion, number of cores, memory, and disk. It is natural
that the available benchmarks were designed with a
homogeneous behavior. However, cloud computing
provides a large variety of heterogeneous resources,
in which users can build clusters of nodes with diffe-
rent characteristics (Chohan et al., 2010), thus crea-
ting a heterogeneous cluster.

To better evaluate heterogeneous systems, we
developed the Imbalance Benchmark (ImbBench),

which is a set of MPI-based applications that simu-
late several behaviors in terms of process loads. Imb-
Bench was designed with the heterogeneity of the
cloud in mind. Its goal is to help the user to choose the
most suitable configuration to execute an application
in the cloud. ImbBench distributes the load among all
the available processes according to a preselected im-
balance pattern. The patterns that can be simulated by
ImbBench are illustrated in Figure 1. In the figure, the
y-axis indicates the relative load of each rank (norma-
lized such that the maximum load equals 100), while
the x-axis shows the MPI ranks (there are 64 ranks in
total). These patterns were chosen as they represent
common types of imbalance in parallel applications.

In the Balanced pattern, all MPI ranks execute the
same load, simulating the most desirable behavior for
an HPC application. The Multi-level pattern shows
distinct load levels, between two and eight levels, si-
mulating an application with several different loads
among the processes. The Two-level pattern is a spe-
cial case of the Multi-level pattern. We include it be-
cause is a fairly common imbalance pattern of parallel
applications. The Amdahl pattern simulates an appli-
cation that has one process that executes much more
work than all the others processes, normally a beha-
vior where an application needs a central process to
distribute all the tasks and collect the results. Finally,

0 10 20 30 40 50 60
0

20

40

60

80

100

MPI rank

R
el

at
iv

e
lo

ad

Balanced

0 10 20 30 40 50 60
0

20

40

60

80

100

MPI rank

R
el

at
iv

e
lo

ad

Multi-level

0 10 20 30 40 50 60
0

20

40

60

80

100

MPI rank

R
el

at
iv

e
lo

ad

Two-level

0 10 20 30 40 50 60
0

20

40

60

80

100

MPI rank

R
el

at
iv

e
lo

ad

Amdahl

0 10 20 30 40 50 60
0

20

40

60

80

100

MPI rank

R
el

at
iv

e
lo

ad

Linear

Figure 1: Overview of the load imbalance patterns that ImbBench can create. The y-axis indicates the relative load of each
rank (0–100), while the x-axis contains the MPI ranks (0–63).
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the Linear pattern simulates an application where all
processes have a different load, starting from a low
load on rank 0 and linearly increasing up to rank n.

For the load simulation, ImbBench uses random
number generation. When a process needs to execute
a higher load than another, it simply generates more
random numbers. In a future version, we intend to
experiment with other load creation strategies, such as
other algorithms, or strategies that focus on floating
point calculations or the memory subsystem, among
others. ImbBench can create these patterns for any
number of MPI ranks. The current version scales up
to 512 ranks.

3 EXPLORING LOAD
IMBALANCE PATTERNS WITH
IMBBENCH

Public cloud providers offer a wide range of instance
configurations. Two of the main cloud providers,
Microsoft Azure and Amazon Web Services, pro-
vide several configurations to specific purposes. They
offer machines with a focus on Storage, Memory,
GPU/FPGA, among others. In terms of number of co-
res, they vary from an instance that shares a core with
other users, up to instances with 128 exclusive cores.
The price per hour varies from an instance that costs
less than a cent up to an instance that costs US$ 14.00
per hour. Microsoft Azure has more than 60 diffe-
rent instance configurations while Amazon AWS of-
fers more than 50 different configurations.

These large numbers of instance configurations in-
dicate that there are many possibilities to create a he-
terogeneous cloud, but it is necessary to compare in-
stances for their performance and cost efficiency in
order to find the most suitable combination for a gi-
ven application load imbalance. In this section, we
use ImbBench to analyze Azure instances and deter-
mine the benefits of heterogeneous environments for
different imbalance patterns.

3.1 Measuring Cost Efficiency with the
Cost-delay Product

An important aspect when evaluating cloud instance
types is comparing their price and performance trade-
off. Several basic metrics can be employed to mea-
sure this tradeoff. In our previous work (Roloff et al.,
2017a), we introduced a new metric, the cost-delay
product (CDP), that can be used to compare the cost
efficiency of an application being executed in a given

environment. As it will be used in the rest of the pa-
per, this section gives a brief overview of this metric.

The CDP metric is defined with the following
equation:

CDP = cost of execution× execution time (1)

The cost of execution represents the price of the
cloud environment used to execute the application.
Most public cloud providers base their price model
on hours of use, and the cost is then the price per hour
(in US$) of all allocated instances. The execution time
is the application’s execution time in the allocated en-
vironment. Lower values of the CDP metric indicate
a better cost efficiency for a certain application in a
cloud environment.

The CDP metric can be extended with a weighted
approach, depending on whether cost or performance
is more important to the user. These metrics, C2DP
and CD2P respectively, are defined as follows:

C2DP = (cost of execution)2× execution time (2)

CD2P = cost of execution× (execution time)2 (3)

Cloud users can calculate these metrics for their
target environments to compare the cost efficiency of
an application.

3.2 ImbBench Evaluation

In our experiments, we use Microsoft Azure for the
evaluation, which has shown a good performance for
HPC applications (Roloff et al., 2012).

3.2.1 Performance and Price of Azure Instance
Types

Among all the available instances in Azure, we se-
lected the instances with 16 cores, because this size
of instances has seven different configurations offe-
ring a multitude of heterogeneous choices. The in-
stances used in our evaluation were: D16, D5, E16,
F16, H16, G4, and L16. They are configurable with
different memory and disk sizes and processor types.

To profile the instances, we executed the High-
Performance Linpack benchmark (Dongarra et al.,
2003) to measure the processing capacity of each
instance in GigaFlops, the same methodology used
to create the TOP500 rank. With the Linpack re-
sults we can organize the instances into three diffe-
rent groups of processing power: High, Medium, and
Low. The High group contains only the H16 instance
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Table 1: Characteristics of the Azure Instance Types.

Name Price/hour Linpack (GFlops) GFlop/US$

D16 US$ 0.936 247.54 264.46
D5 US$ 1.117 280.04 250.71
E16 US$ 1.186 254.97 214.98
F16 US$ 0.997 263.51 264.31
G4 US$ 3.072 417.32 135.85
H16 US$ 1.941 657.64 338.81
L16 US$ 1.376 406.63 295.52

type, which achieved more than 650 GigaFlops and
was the most powerful machine in our experiments.
The Medium group consists of the L16 and G4 instan-
ces, both achieved slightly more than 400 GigaFlops.
The Low group is composed of the other four machi-
nes types: D16, D5, E16, and F16, with a Linpack
performance of about 250 GigaFlops.

The price of the instances can also be classified
into the same three groups. The G4 and H16 instances
are in the High and Medium groups, respectively, with
the G4 instance costing around three dollars per hour
and the H16 instance costing around two dollars. All
the other instances are in the Low cost group, with the
price near one US dollar per hour.

Another aspect is the cost efficiency of the instan-
ces, which helps the users understand how efficient
an instance is, in terms of processing power per dol-
lar. To compare this characteristic of the instances,
we calculate how many GigaFlops an instance deli-
vers per dollar. We can calculate this metric for the
Linpack benchmark as follows:

GigaFlop/US$ =
Linpack result
Priceper hour

(4)

Using Equation 4, we can determine that the in-
stance H16 presents the best relation between price
and performance. The L16 instance is slightly lower
than H16, but still presented a good relation. The G4
instance shows the worst price-performance relation,
because it has the highest price among all the instan-
ces in our evaluation. The other instances presented a
price-performance relation near the level of 250 Gig-
aFlops per US$. Table 1 summarizes the results of the
Linpack benchmark, the cost efficiency, as well as the
price of the profiled instances.

3.2.2 ImbBench Performance and Cost
Efficiency

After completing the profile of the instances, we exe-
cuted the ImbBench to evaluate if it is possible to
benefit from the heterogeneity presented in these in-
stances of Microsoft Azure. For the evaluation, we
built clusters with 64 cores, using four Azure in-
stances. The nodes are running with Ubuntu 16.04

(kernel 4.13), GCC version 5.4, and Open MPI ver-
sion 1.10.2. We executed each ImbBench pattern 30
times, the results are the average execution time of the
30 executions. As the baseline, we use the most po-
werful instance type, H16, which also presented the
best cost efficiency. We built a homogeneous cluster
with four H16 instances and compare the heterogene-
ous clusters against it. We created several heteroge-
neous configurations until we found the configuration
most similar to the baseline cluster in terms of total
execution time. Since we only identified three dif-
ferent performance levels of the Azure instances, we
executed only the Two-Level and Four-Level patterns
from the Multi-Level patterns of ImbBench. The Am-
dahl and Linear patterns were also used in the evalua-
tion.

The Amdahl Pattern. The first analyzed pattern is
the Amdahl pattern. Figure 2 shows the results of
Amdahl pattern of ImbBench using the cluster made
of four H16 instances. As can be seen in the figure,
rank 0 presented a significantly higher execution time
(approx. 5 seconds) than the other ranks (approx.
1 second), as expected.

With these results, we determined that a heteroge-
neous hardware environment can be beneficial for this
load imbalance pattern, by using a powerful instance
together with less powerful and less expensive instan-
ces. Thus, we build a cluster with one H16 instance
and three D16 instances. The reason to choose the
D16 instances was that the D16 instance is the chea-
pest instance among all the instances used in our eva-
luation. The results of the heterogeneous execution of
Amdahl pattern are shown in Figure 3.

As we can see in the figure, the total execution
time remains the same, because the process with the
highest demand was executed in the same instance as
before, and the other processes, even when executed
in D16 instances, do not reduce the total execution
time. It is possible to note that the processes from 0
to 15 executed faster than the processes 16 to 63. The
reason is that the processes 0 to 15 were executed on
the H16 instance, and took 1 second to finish, and the
processes 16 to 63 were executed in the D16 instan-
ces, and took approx. 3 seconds to finish. We can
conclude that, even with 3/4 of the processes execu-
ted on instances with less processing power, the total
execution time was not affected, because they execu-
ted faster than the process with the highest load.

In terms of price, the execution of an Amdahl-like
application in a heterogeneous environment is very
advantageous. The price per hour of the H16 cluster
is US$ 7.764 and the price per hour of the heteroge-
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Figure 2: Execution time of ImbBench using the Amdahl pattern executed in the homogeneous cluster of H16 instances.
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Figure 3: Execution time of ImbBench using the Amdahl pattern in the heterogeneous cluster of one H16 instance and three
D16 instances. Ranks 0-15 are running on the H16 instance, while 16-63 are running on the D16 instances.

neous cluster is US$ 4.749, a saving of US$ 3.015 per
hour, corresponding to a 38% total cost reduction.

The Two-level Pattern. The next pattern is the
Two-Level, where the application is divided into two
levels of demand. The higher level computes a certain
amount of work and the low level computes exactly
half of the high level. Figure 4 shows the results of
the Two-Level pattern of ImbBench using the cluster
made of four H16 instances. As seen in the figure, the
odd processes are the high demand processes and they
took around 5 seconds to perform their work. The
even numbers are the low demand processes and they
fulfilled their work in around 2.5 seconds.

Analyzing the results, we can conclude, as in the
Amdahl pattern, that a user of an application with
this behavior can take advantage of the heterogeneous
cloud computing instances by mixing two instance ty-
pes. Using an Instance with high processing power
to execute the processes with high demand and a in-
stance with less processing power to execute the pro-

cesses with less demand. We build a cluster with two
instance types and with two instances of each type.
We chose the H16 and D16 instances, the H16 be-
cause it is the baseline instance and the D16 because
it is the cheap instance in our chosen group. The re-
sults of the Two-Level pattern execution on the hete-
rogeneous cluster are shown in Figure 5.

As we can see in the figure, the total execution
time was slightly higher than the execution on the
H16 cluster. We can observe that the even processes,
which are processes with less demand, now took more
time to perform their work, because they were execu-
ted in D16 instances. We can conclude that, even with
half of the processes being executed in instances with
less processing power, the total execution time pre-
sented only a small increase.

In terms of price, the execution of such an ap-
plication in a heterogeneous environment is very ad-
vantageous. The price per hour of the H16 cluster is
US$ 7.764 and the price per hour of the heterogene-
ous cluster is US$ 5.754, a saving of US$ 2.01 per
hour or a 25% reduction of the total cost.
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Figure 4: Execution time of ImbBench using the two-level pattern for application load in the homogeneous H16 cluster.
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Figure 5: Execution time of ImbBench using the two-level pattern for application load in the heterogeneous cluster. Even
ranks are running on D16 instances, odd ranks on H16 instances.

The Four-level Pattern. In the Four-Level pattern,
the application load is divided into four levels of de-
mand. The difference between the levels is constant,
the lowest level computes X instructions, the next le-
vel computes 2X and so on. Figure 6 shows the results
of the Four-Level pattern of ImbBench using the ho-
mogeneous cluster of four H16 instances. The figure
shows that the processes’ demands are divided into
groups of four, where the fourth process in each group
is the one that made more computation than the ot-
hers. In practical terms, the time spent by every fourth
process is the time spent by the application, approxi-
mately 5 seconds.

By analyzing the results, we can see that the first,
second and third processes can be executed on machi-
nes with less power without increasing the total exe-
cution time. After a few simulations, we determined
that the most suitable configuration for this pattern
was to create a cluster with three different instance
types. The processes with less demand were executed
on two D16 instances, the processes with intermedi-
ate demand were executed on an L16 instance and the

processes with high demand were executed on an H16
instance. The results of the execution of the Four-
Level pattern on the heterogeneous cluster are shown
in Figure 7.

We can observe in the figure that the execution
time was slightly higher than the execution on the H16
cluster. The group of processes with less demand exe-
cuted in D16 instances increased their time, but do not
affect the total time. The group of processes that were
executed in L16 instance increased their time as well
and the processes executed in a H16 instance keep
their execution time. We can conclude that, even with
3/4 of the processes being executed on instances with
less processing power, the total execution time was
increased only slightly.

In terms of cost efficiency, the execution of an ap-
plication similar to the Four-level pattern is advan-
tageous. The price per hour of the H16 cluster is
US$ 7.764, and the price per hour of the heteroge-
neous cluster is US$ 5.189, a saving of US$ 2.575 per
hour or a 33% total execution cost.
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Figure 6: Execution time of ImbBench using the four-level pattern for application load in the homogeneous H16 cluster.
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Figure 7: Execution time of ImbBench using the four-level pattern for application load in the heterogeneous cluster. Ranks
0-1,4-5,8-9,... run on D16 instances, ranks 2,6,10,14,... run on an L16 instance , ranks 3,7,11,15,... run on an H16 instance.

The Linear Pattern. The last pattern is the Linear
pattern, where each process of the application has a
different load. The process with rank 0 has the lo-
west computational demand and the demand increa-
ses in a linear way when the rank increases. Figure 8
shows the results of the Linear pattern of ImbBench
using the cluster of four H16 instances. The figure
shows that the processes’ execution time increases as
expected when the process rank increases. The total
execution time of the application is the execution time
of the process with the highest rank, which is around
5 seconds.

To create a configuration with mixed instances
that does not affect the execution time, a few simula-
tions were made and the most suitable configuration
was the same as in the Four-Level pattern; a cluster
with two D16 instances, one L16 instance and one
H16 instance. The first 32 processes were executed
on the D16 instances, the processes from 32 up to 47
were executed on the L16 instance and the processes
from 48 up 63 were executed on the H16 instance.

The results of the execution of the Linear pattern in
the heterogeneous cluster are presented in Figure 9.

As seen in the figure, the first 32 processes incre-
ased their execution time, but this does not affect the
total execution time, because their execution time was
below the processes with high demand. The proces-
ses executed on the L16 instance, increased their time
as well, and were slightly higher than the execution
time on the H16 cluster. The processes that were exe-
cuted on the H16 instance kept their execution time.
The conclusion is the same as for the Four-Level pat-
tern, even with 3/4 of the processes being executed in
instances with less processing power, the total execu-
tion time presented an increase up less than 7%.

In terms of price, the execution of an application
with a linear behavior presents advantage in an he-
terogeneous environment. The price per hour of the
H16 cluster is US$ 7.764 and the price per hour of
the heterogeneous cluster is US$ 5.189, a saving of
US$ 2.575 per hour or a 33% reduction of the total
cost.
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Figure 8: Execution time of ImbBench using the Linear pattern for application load in the homogeneous H16 cluster.
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Figure 9: Execution time of ImbBench using the Linear pattern for application load in the heterogeneous cluster. Ranks 0-31
run on D16, ranks 32-47 on L16, ranks 48-63 on H16.

Summary of Results. Table 2 summarizes the re-
sults of ImbBench using both homogeneous and he-
terogeneous clusters. As we can see in the table, the
performance loss when using the heterogeneous con-
figuration was less than 7% for all the cases. The
only exception is the Amdahl Pattern, where we ob-
served a small performance gain. When analyzing
the cost efficiency, the CDP results are better with
the heterogeneous configurations, with a minimum
gain of 21.23%, which means that this configuration
is 21.23% more cost efficient than the homogeneous
one. If we use the C2DP to focus on the cost of exe-

cution, then the results are much more favorable for
the heterogeneous configurations, with cost efficiency
gains of up to 62.92% compared to the homogeneous
configuration. When the CD2P is used to focus on
execution performance, the results of the heteroge-
neous configurations presented results up to 39.92%
better than the homogeneous configuration. In terms
of costs, the heterogeneous configurations were bet-
ween 25% and 38% cheaper than the homogeneous
one, and in a cloud scale these results can have a huge
impact in the user’s budget.

Table 2: Summary of the ImbBench results.

Pattern Execution Time CDP C2DP CD2P

Hom. Het. gains Hom. Het. gains Hom. Het. Gains Hom. Het. gains

Two-Level 5.18s 5.51s -5.92% 1.12 0.88 21.23% 2.41 1.41 41.62% 5.79 4.85 16.27%
Four-Level 5.13s 5.49s -6.65% 1.11 0.79 28.40% 2.38 1.14 52.15% 5.67 4.35 23.29%
Amdahl 5.10s 5.05s 0.90% 1.10 0.67 39.38% 2.37 0.88 62.92% 5.61 3.37 39.92%
Linear 5.09s 5.43s -6.35% 1.10 0.73 33.60% 2.37 1.13 52.30% 5.58 4.26 23.78%
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Figure 10: Cost efficiency results of the NAS benchmarks. Lower values indicate higher cost efficiency.

4 EVALUATION OF THE NAS
PARALLEL BENCHMARKS

After evaluating heterogeneous clouds with Imb-
Bench, we tested whether the heterogeneous con-
figurations are suitable for real HPC applications.
We chose the MPI version of the NAS suite of pa-
rallel benchmarks (NPB) (Bailey et al., 1991), ver-
sion 3.3.1, which is a widely used workload in the
HPC community. Most applications of NAS show im-
balance patterns similar to the Amdahl and Two-level
patterns discussed in Section 2. From the NAS suite,
we selected the applications with the highest imba-
lance for our evaluation: EP, LU, MG, and SP. We
measure the cost efficiency of the execution on the
H16 homogeneous cluster and several mixed instan-
ces, using 64 cores and MPI ranks in all cases, as
before. All the NAS applications were executed 30
times, and we show the average values for the results.

Table 3: Summary of the NAS results.

Name Metric Gains Best het. configuration

EP CDP 17% 1-H16 3-F16
EP C2DP 47% 1-H16 3-F16
EP CD2P -7% 1-H16 3-F16

LU CDP -4% 1-H16 3-L16
LU C2DP 35% 1-H16 3-D16
LU CD2P -38% 1-H16 3-L16

MG CDP 7% 1-H16 3-L16
MG C2DP 27% 1-H16 3-D16
MG CD2P -9% 1-H16 3-L16

SP CDP 2% 1-H16 3-D16
SP C2DP 39% 1-H16 3-D16
SP CD2P -49% 2-H16 2-L16

The results of the four homogeneous H16 instan-
ces and the best heterogeneous configurations are
shown in Figure 10. As we can see in the figure, the
applications EP, MG and SP presented better CDP
in the heterogeneous execution than the homogene-
ous. This means that these applications executed in
an acceptable time with a lower cost. As expected the
C2DP was better in all the four heterogeneous executi-
ons, because its dominant factor is the cost.Regarding
to the CD2P, the homogeneous configurations were
slightly better in EP and MG and much better in LU
and SP.

The best heterogeneous configuration for LU re-
garding the three metrics was one H16 instance and
three F16 instances. LU performed better for CDP
with a cluster composed of one H16 instance and
three F16 instances. For the C2DP, the best result was
achieved using a configuration with one H16 instance
and three D16 instances, and for the CD2P the best re-
sult was achieved with one H16 and three F16 instan-
ces. The MG application performed better for both
CDP and CD2P using a configuration with one H16
instance and three L16 instances, and for the C2DP
metric the best result was achieved by using a confi-
guration with one H16 and three D16 instances.

SP performed better for the CDP and C2DP by
using a configuration with one H16 and three D16
instances. For the CD2P, the best result was achie-
ved with a configuration of one H16 and three L16
instances. Table 3 summarizes the results of CDP,
C2DP, and CD2P of NAS. We can conclude that it is
possible to benefit from the cloud heterogeneity and
mix of different instance types to create a more suita-
ble execution environment. As a side conclusion, we
performed several simulations mixing three and four
instance types, but the results were not better than the
ones with two instances for these benchmarks.
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5 RELATED WORK

The work of Yeo et al. (Yeo and Lee, 2011) focused
on the provider side. They analyzed how the con-
stant hardware upgrades, made by the providers, in-
troduce heterogeneity in the datacenter. They inves-
tigated how the providers could mitigate this impact
to not affect the cloud users, in terms of performance
and overall quality of service. However, their work
does not allow the cloud tenants to exploit the infor-
mation about the underlying infrastructure to improve
the cost/efficiency of their applications.

From the multiple sources of heterogeneity in the
cloud, Crago and Walters (Crago and Walters, 2015)
analyzed how the usage of accelerators such as GPUs
and Xeon Phi coprocessors could be challenging for
the service stack of a cloud datacenter. Their work
showed that heterogeneity may need to be exposed to
users to help them adapt their applications to it and to
improve the quality of service.

Mitigating the load imbalance of parallel and dis-
tributed applications is a well-studied topic (Pearce
et al., 2012). Most solutions focus on software-level
approaches in the application or runtime to distribute
and migrate work among the tasks of the applica-
tion (Blumofe and Leiserson, 1994; Min et al., 2011;
Zhuravlev et al., 2012; Diener et al., 2015a). Such
software approaches are however not possible for all
types of applications, and often incur a runtime over-
head during execution. In this paper, we use the oppo-
site approach to mitigate load imbalance, by adapting
the hardware environment to the imbalance present in
the application. Apart from load imbalance, another
common type of imbalance is the usage of memory
controllers (Dashti et al., 2013; Diener et al., 2015b).

Su et al. (Su et al., 2013) developed a cost-efficient
task scheduling algorithm for executing large pro-
grams in the cloud. Their strategy is to map tasks
to cost efficient VMs while preserving the expected
performance of the application. Their algorithm de-
cides which instance produces the best ratio, but it is
limited because it does not select heterogeneous VM
instances, rather only a single type offered by the pro-
vider. They were able to improve the scheduling time,
but validated their approach using only simulation.

Zhang et al. (Zhang et al., 2014; Zhang
et al., 2015) aim to find a deployment with better
cost/performance for MapReduce applications. To
achieve this, they explored the cloud heterogeneity.
They made their validation in Amazon AWS using
MapReduce jobs with no data dependencies between
them. The simulation was made using three different
instance sizes and they try to obtain the same perfor-
mance by reducing the cost of the allocations. Their

results presented a difference in cost when using ho-
mogeneous or heterogeneous deployments. In some
cases, the cost reduction was significantly high. Our
work differs, because it includes MPI applications,
and benchmarks with communication between instan-
ces.

Cheng et al. (Cheng et al., 2017) introduced Ant,
a mechanism that adapts MapReduce tasks in hetero-
geneous clusters. The main purpose of Ant is to cus-
tomize the MapReduce tasks with different configura-
tions to be more suitable for execution in heterogene-
ous nodes, according to their configuration. However,
the authors only took into account the performance
and not the different costs of heterogeneous instan-
ces. Also, their mechanism was developed to work
only with MapReduce tasks. Our work considers the
instance prices and is suitable for a wide range of ap-
plications.

Carreño et al. (Carreño et al., 2016) developed a
mechanism that maps the tasks of an application to
cloud instances, taking into account the communi-
cation between the tasks and the network speed be-
tween instances. When a system with several instan-
ces is allocated in the cloud, their mechanism per-
forms a profiling of all the instances, analyzing the
network latency among all of them. This information
is used to map the application processes that have a
larger amount of communication and execute them
on instances that have faster network interconnecti-
ons. However, their work used homogeneous clusters,
made of instances of the same type, for each execution
and they did not take computational performance into
account. In our work, we compare the performance
when mixing different types of VMs.

Our previous work (Roloff et al., 2017b; Roloff
et al., 2017a) introduced the concepts of heteroge-
neous clouds and the CDP metric, and showed their
benefits for several NAS applications. In this paper,
we extend this concept by performing an investiga-
tion of which types of imbalance patterns can benefit
from heterogeneous clouds by using an intentionally-
imbalanced benchmark. We also evaluate the advan-
tages of using more than two different instance types
in a single heterogeneous cloud system.

6 CONCLUSIONS AND FUTURE
WORK

When developing HPC applications, a goal is to dis-
tribute the work equally among the tasks. However,
this goal can not always be achieved and a certain
amount of imbalance can be observed in most parallel
applications. Heterogeneous clouds that are compo-
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sed of different instance types are an interesting way
to execute parallel, load imbalanced applications. In
such a heterogeneous system, tasks with lower com-
putational demands execute on slower but cheaper
machines, while tasks with higher demands execute
on faster but more expensive machines, thus increa-
sing the overall cost efficiency of the application.

In this paper, we introduced the Imbalance Ben-
chmark (ImbBench), whose main purpose is to help
users to profile their environment in terms of the he-
terogeneity of the instances, and to discover oppor-
tunities for heterogeneous clouds. During the eva-
luation of ImbBench we discovered that, depending
on the application imbalance pattern, it is possible to
improve the cost efficiency of the cloud environment
without or with only a small increase of the execution
time. Our results shown that were possible to incre-
ase the cost efficiency up to 63% with less than 7%
of performance reduction. Experiments with the NAS
Parallel Benchmarks showed that these gains can also
be observed with traditional distributed applications.
These results show us that it is possible for users to
take advantage of the heterogeneity offered by cloud
providers.

In the future, we will increase the capabilities of
ImbBench, adding more features, such as a measure-
ment capability of the network performance, memory
operations, and floating point operations, so that the
environmental profile will be more accurate. We will
extend our evaluation to cover a more diverse environ-
ment as well, by using other cloud providers, a private
cloud, and even the instances with variable costs, such
as the AWS Spot instances. Furthermore, we intend to
develop a mechanism feature to help users take advan-
tage of cloud heterogeneity in an automated way, by
analyzing instance options and application behavior
and providing a recommendation of the most suitable
environment for the users.
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