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Abstract: This paper proposes a multi-objective genetic algorithm to automate software refactoring and validates the 

approach using a tool, MultiRefactor, and a set of open source Java programs. The tool uses a metric function 

to measure quality in a software system and tests a second objective to measure the recentness of the code 

elements being refactored. Previous versions of the software project are analyzed and a recentness measure is 

then calculated with respect to previous versions of code. The multi-objective setup refactors the input 

program to improve its quality using the quality objective, while also focusing on the recentness of the code 

elements inspected. An experiment has been constructed to measure the multi-objective approach against an 

alternative mono-objective approach that does not use an objective to measure element recentness. The two 

approaches are validated using six different open source Java programs. The multi-objective approach is 

found to give significantly better recentness scores across all inputs in a similar time, while also generating 

improvements in the quality score. 

1 INTRODUCTION 

Search-Based Software Engineering (SBSE) has been 

used to automate various aspects of the software 

development cycle. Used successfully, SBSE can 

help to improve decision making throughout the 

development process and assist in enhancing 

resources and reducing cost and time, making the 

process more streamlined and efficient. Search-Based 

Software Maintenance (SBSM) is usually directed at 

minimizing the effort of maintaining a software 

product. An increasing proportion of SBSM research 

is making use of multi-objective optimization 

techniques. Many multi-objective search algorithms 

are built using genetic algorithms (GAs), due to their 

ability to generate multiple possible solutions. Instead 

of focusing on only one property, the multi-objective 

algorithm is concerned with a number of different 

objectives. This is handled through a fitness 

calculation and sorting of the solutions after they have 

been modified or added to. The main approach used 

to organize solutions in a multi-objective approach is 

Pareto. Pareto dominance organizes the possible 

solutions into different nondomination levels and 

further discerns between them by finding the 

objective distances between them in Euclidean space. 

In this paper, a multi-objective approach is created 

to improve software that combines a quality objective 

with one that incorporates the use of numerous 

previous versions of the software code. The element 

recentness objective uses previous versions of the 

target software to help discern between old and new 

areas of code. It will investigate the refactored areas of 

code to give a value representing how recently these 

code elements have been added, using the previous 

versions of the software supplied. To test the 

effectiveness of the element recentness objective, an 

experiment has been constructed to test a GA that uses 

it against one that does not. It may be argued that it is 

more relevant to refactor the older elements of the 

code (for instance, if the code has been around longer, 

it has had a better chance to build up technical debt 

and become incompatible with its surroundings). 

However, it is important to note that the purpose of 

this experiment is not to support either stance. The 

more important aspects of the code may be different 

depending on the circumstances and the developer’s 

opinion. The choice has been made in this paper to 

focus on more recent elements instead of older 

elements in order to test the effectiveness of the 

objective itself in doing what it aims, and the objective 
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can be tweaked to focus one way or the other 

depending on the developers needs. In order to judge 

the outcome of the experiment, the following research 

questions have been derived: 

RQ1: Does a multi-objective solution using an 

element recentness objective and a quality objective 

give an improvement in quality? 

RQ2: Does a multi-objective solution using an 

element recentness objective and a quality objective 

refactor more recent code elements than a solution 

that does not use the element recentness objective. 

In order to address the research questions, the 

experiment will run a set of tasks to compare a default 

mono-objective set up to refactor a solution towards 

quality with a multi-objective approach that uses a 

quality objective and the newly proposed element 

recentness objective. The following hypotheses have 

been constructed to measure success in the 

experiment. 

H1: The multi-objective solution gives an 

improvement in the quality objective value. 

H10: The multi-objective solution does not give 

an improvement in the quality objective value. 

H2: The multi-objective solution gives 

significantly higher element recentness objective 

values than the corresponding mono-objective 

solution. 

H20: There is no significant difference between 

the recentness objective value for the multi-objective 

and mono-objective approaches. 

The remainder of this paper is organized as 

follows. Section 2 discusses related work and gives 

an overview of the previous studies in SBSM that 

have incorporated the use of software history. Section 

3 describes the MultiRefactor tool used to conduct the 

experiment along with the searches, refactorings and 

metrics available in it. Section 4 explains the set up of 

the experiment used to test the element recentness 

objective. Section 5 analyses the results of the 

experiment, looking at the objective values and the 

times taken to run the tasks. Section 6 concludes the 

paper and discusses the significance of the findings. 

2 RELATED WORK 

A few other studies relating to SBSM have used 

version history of the target software to aid in 

refactoring. Pérez et al. (Pérez et al. 2013) proposed 

an approach that involved reusing complex 

refactorings that had previously been used. They 

aimed to mine the change history of the software 
 

1 https://github.com/mmohan01/MultiRefactor 

project to find the refactorings used to fix design 

smells. The position paper introduced a plan to gather 

and compile the reusable refactorings in a structured 

way, in order to reapply them in the future. For this, 

they aimed to extend the ChEOPSJ system (Soetens 

and Demeyer 2012) and build a refactoring and 

design smell detector on top of it. They aimed to 

extend this system to find design smells that have 

been resolved, trace them back to the refactorings 

performed and reconstruct the refactoring order. 

Ouni et al. (Ouni, Kessentini and Sahraoui 2013; 

Ouni et al. 2016) implemented an objective as part of 

a multi-objective solution to encourage refactorings 

that are similar to those already applied to similar 

code fragments in the past, by investigating previous 

versions of the code. They used the Ref-Finder tool 

(Kim et al. 2010) to find refactorings between 

versions of code. They also (Ouni, Kessentini, 

Sahraoui and Hamdi 2013) analyzed “co-change”, an 

attribute that identifies how often two objects in a 

project are refactored together at the same time, as 

well as the number of refactorings applied in the past 

to the code elements. They updated their objective 

function to provide a value relating to a set of 

elements as an average of these three measures using 

refactoring history. An extended study from 2015 

(Ouni et al. 2015) investigated the use of past 

refactorings from other projects to calculate the 

objective value when the change history for the 

applicable project is not available. Similarly, 

Tsantalis and Chatzigeorgiou (Tsantalis and 

Chatzigeorgiou 2011) have also used previous 

versions of software code to aid in the removal of 

design smells in the current code. They used the 

previous versions of the code to rank refactoring 

suggestions according to the number, proximity and 

extent of changes related with the corresponding code 

smells. 

3 MULTIREFACTOR 

The MultiRefactor approach1 uses the RECODER 

framework2 to modify source code in Java programs. 

RECODER extracts a model of the code that can be 

used to analyze and modify the code before the 

changes are applied. MultiRefactor makes available 

various different approaches to automated software 

maintenance in Java programs. It takes Java source 

code as input and will output the modified source 

code to a specified folder. The input must be fully 

compilable and must be accompanied by any 

2 http://sourceforge.net/projects/recoder 
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necessary library files as compressed jar files. The 

numerous searches available in the tool have various 

input configurations that can affect the execution of 

the search. The refactorings and metrics used can also 

be specified. As such, the tool can be configured in a 

number of different ways to specify the particular task 

that you want to run. If desired, multiple tasks can be 

set to run one after the other. 

A previous study (Mohan et al. 2016) used the A-

CMA (Koc et al. 2012) tool to experiment with 

different metric functions but that work was not 

extended to produce source code as an output 

(likewise, TrueRefactor (Griffith et al. 2011) only 

modifies UML and Ouni, Kessentini, Sahraoui and 

Boukadoum’s (Ouni, Kessentini, Sahraoui and 

Boukadoum 2013) approach only generates proposed 

lists of refactorings). MultiRefactor (Mohan and 

Greer 2017) was developed in order to be a fully-

automated search-based refactoring tool that 

produces compilable, usable source code. As well as 

the Java code artifacts, the tool will produce an output 

file that gives information on the execution of the task 

including data about the parameters of the search 

executed, the metric values at the beginning and end 

of the search, and details about each refactoring 

applied. The metric configurations can be modified to 

include different weights and the direction of 

improvement of the metrics can be changed 

depending on the desired outcome. 

MultiRefactor contains seven different search 

options for automated maintenance, with three 

distinct metaheuristic search techniques available. 

For each search type there is a selection of 

configurable properties to determine how the search 

will run. The refactorings used in the tool are mostly 

based on Fowler’s list (Fowler 1999), consisting of 26 

field-level, method-level and class-level refactorings, 

and are listed below. 

Field Level Refactorings: Increase/Decrease 

Field Visibility, Make Field Final/Non Final, Make 

Field Static/Non Static, Move Field Down/Up, 

Remove Field. 

Method Level Refactorings: Increase/Decrease 

Method Visibility, Make Method Final/Non Final, 

Make Method Static/Non Static, Remove Method. 

Class Level Refactorings: Make Class Final/Non 

Final, Make Class Abstract/Concrete, Extract 

Subclass/Collapse Hierarchy, Remove 

Class/Interface. 

The refactorings used will be checked for 

semantic coherence as a part of the search, and will 

be applied automatically, ensuring the process is fully 

automated. A number of the metrics available in the 

tool are adapted from the list of the metrics in the 

QMOOD (Bansiya and Davis 2002) and CK/MOOSE 

(Chidamber and Kemerer 1994) metrics suites. The 

23 metrics currently available in the tool are listed 

below. 

QMOOD Based: Class Design Size, Number Of 

Hierarchies, Average Number Of Ancestors, Data 

Access Metric, Direct Class Coupling, Cohesion 

Among Methods, Aggregation, Functional 

Abstraction, Number Of Polymorphic Methods, 

Class Interface Size, Number Of Methods. 

CK Based: Weighted Methods Per Class, 

Number Of Children. 

Others: Abstractness, Abstract Ratio, Static 

Ratio, Final Ratio, Constant Ratio, Inner Class Ratio, 

Referenced Methods Ratio, Visibility Ratio, Lines Of 

Code, Number Of Files. 

In order to implement the element recentness 

objective, extra information about the refactorings is 

stored in the refactoring sequence object used to 

represent a refactoring solution. For each solution, a 

hash table is used to store a list of affected elements 

in the solution and to attach to each a value that 

represents the number of times that particular element 

is refactored in the solution. During each refactoring, 

an element, considered to be most relevant to that 

refactoring, is chosen and the element name is stored. 

After the refactoring has executed, the hash table is 

inspected. If the element name already exists as a key 

in the hash table, the value corresponding to that key 

is incremented to represent another refactoring being 

applied to that element in the solution. Otherwise, the 

element name is added to the table and the 

corresponding value is set to 1. After the solution has 

been created, the hash table will have a list of all the 

elements affected and the number of times for each. 

This information is used to construct the element 

recentness score for the related solution. 

To improve the performance of the tool, the 

recentness scores are stored for each element as the 

search progresses in another hash table. This allows 

the tool to avoid the need to calculate the element 

recentness scores for each applicable element in the 

current solution at the beginning of the search task. 

Instead, the scores are calculated as the objective is 

calculated, for each element it comes across. If the 

element hasn’t previously been encountered in the 

search, its element recentness value will be calculated 

and stored in the hash table. Otherwise, the value will 

be found by looking for it in the table. This eliminates 

the need to calculate redundant element recentness 

values for elements that are not refactored in the 

search and spreads the calculations throughout the 

search in place of finding all the values in the 

beginning. 
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4 EXPERIMENTAL DESIGN 

In order to calculate the element recentness objective, 

the program will be supplied with the directories of all 

the previous versions of the code to use, in successive 

order. To calculate the element recentness value for a 

refactoring solution, each element that has been 

involved in the refactorings (be it a class, method or 

field) will be inspected individually. For each previous 

version of the code, the element will be searched for 

using its name. If it is not present, the search will 

terminate, and the element will be given a value 

related to how far back it can be found. An element 

that can be found all the way back through every 

previous version of code will be given a value of zero. 

An element that is only found in the current version of 

the code will be given the maximum element 

recentness value, which will be equal to the number of 

versions of code present. For each version the element 

is present in after the current version, the element 

recentness value will be decremented by one. Once 

this value is calculated for one element in the 

refactoring solution, the objective will move onto the 

next element until a value is derived for all of them. 

The overall element recentness value for a refactoring 

solution will be an accumulation of all the individual 

element values. 

In order to evaluate the effectiveness of the 

element recentness objective, a set of tasks were set 

up that used the priority objective to be compared 

against a set of tasks that didn’t. The control group is 

made up of a mono-objective approach that uses a 

function to represent quality in the software. The 

corresponding tasks use the multi-objective algorithm 

and have two objectives. The first objective is the 

same function for software quality used for the mono-

objective tasks. The second objective is the element 

recentness objective. The metrics used to construct 

the quality function and the configuration parameters 

used in the GAs are taken from previous 

experimentation on software quality. Each metric 

available in the tool was tested separately in a GA to 

deduce which were more successful, and the most 

successful were chosen for the quality function. The 

metrics used in the quality function are given in Table 

1. No weighting is applied for any of the metrics. The 

configuration parameters used for the mono-objective 

and multi-objective tasks were derived through trial 

and error and are outlined in Table 2. The hardware 

used to run the experiment is outlined in Table 3. 

For the tasks, six different open source programs 

are used as inputs to ensure a variety of different 

domains are tested. The programs range in size from 

relatively small to medium sized. 

These programs were chosen as they have all been used 

in previous SBSM studies and so comparison of results is 

possible. The source code and necessary libraries for all of 

the programs are available to download in the GitHub 

repository for the MultiRefactor tool.  

Table 1: Metrics used in the software quality objective. 

Metrics Direction 

Data Access Metric + 

Direct Class Coupling - 

Cohesion Among Methods + 

Aggregation + 

Functional Abstraction + 

Number Of Polymorphic Methods + 

Class Interface Size + 

Number Of Methods - 

Weighted Methods Per Class - 

Abstractness + 

Abstract Ratio + 

Static Ratio + 

Final Ratio + 

Constant Ratio + 

Inner Class Ratio + 

Referenced Methods Ratio + 

Visibility Ratio - 

Lines Of Code - 

Table 2: GA configuration settings. 
 

Configuration Parameter Value 

Crossover Probability 0.2 

Mutation Probability 0.8 

Generations 100 

Refactoring Range 50 

Population Size 50 

Each one is run five times for the mono-objective 

approach and five times for the multi-objective 

approach, resulting in 60 tasks overall.  

Table 3: Hardware details for the experiment. 
 

Operating 

System 

Microsoft Windows 7 Enterprise 

Service Pack 1 

System 

Type 
64-bit 

RAM 8.00GB 

Processor Intel Core i7-3770 CPU @ 3.40GHz 

The inputs used in the experiment as well as the 

number of classes and lines of code they contain are 

given in Table 4. Table 5 gives the previous versions 

of code used for each input, in order from the earliest 

version to the latest version used (up to the current 

version being read in for maintenance). For each input, 

five different versions of code were used overall. Not 

all sets of previous versions contain all the releases 

between the first and last version 
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Table 4: Java programs used in the experiment. 

Name LOC Classes 

Beaver 0.9.11 6,493 70 

Apache XML-RPC 3.1.1 14,241 185 

JRDF 0.3.4.3 18,786 116 

GanttProject 1.11.1 39,527 437 

JHotDraw 6.0b1 41,278 349 

XOM 1.2.1 45,136 224 

Table 5: Previous versions of Java programs used in 

experiment. 

Beaver 0.9.8 0.9.9 0.9.10 pre1.0 

demo 

Apache 

XML-RPC 

2.0 2.0.1 3.0 3.1 

JRDF 0.3.3 0.3.4 0.3.4.1 0.3.4.2 

Gantt 

Project 

1.7 1.8 1.9 1.10 

JHotDraw 5.2 5.3 5.4b1 5.4b2 

XOM 1.1 1.2b1 1.2b2 1.2 

In order to find the element recentness score for 

the mono-objective approach to compare against the 

multi-objective approach, the mono-objective GA has 

been modified to output the element recentness score 

after the task finishes. At the end of the search, after 

the results have been output and the refactored 

population has been written to Java code files, the 

recentness score for the top solution in the final 

population is calculated. Then, before the search 

terminates, this score is output at the end of the results 

file for that solution. This way the scores don’t need 

to be calculated manually and the element recentness 

scores for the mono-objective solutions can be 

compared against their multi-objective counterparts. 

For the quality function the metric changes are 

calculated using a normalization function. This 

function causes any greater influence of an individual 

metric in the objective to be minimized, as the impact 

of a change in the metric is influenced by how far it 

is from its initial value. The function finds the amount 

that a particular metric has changed in relation to its 

initial value at the beginning of the task. These values 

can then be accumulated depending on the direction 

of improvement of the metric (i.e. whether an 

increase or a decrease denotes an improvement in that 

metric) and the weights given to provide an overall 

value for the metric function or objective. A negative 

change in the metric will be reflected by a decrease in 

the overall function/objective value. In the case that 

an increase in the metric denotes a negative change, 

the overall value will still decrease, ensuring that a 

larger value represents a better metric value 

regardless of the direction of improvement. The 

directions of improvement used for the metrics in the 

experiment are given in Table 1. In the case that the 

initial value of a metric is 0, the initial value used is 

changed to 0.01 in order to avoid issues with dividing 

by 0. This way, the normalization function can still be 

used on the metric and its value still starts off low. 

Equation 1 defines the normalization function, where 

m represents the selected metric, Cm is the current 

metric value and Im
 is the initial metric value. Wm

 is the 

applied weighting for the metric (where 1 represents 

no weighting) and D is a binary constant (-1 or 1) that 

represents the direction of improvement of the metric. 

n represents the number of metrics used in the 

function. For the element recentness objective, this 

normalization function is not needed. The objective 

score depends on the relative age of the code elements 

refactored in a solution and will reflect that. 

 

 ∑ D.Wm
(

Cm

Im

- 1)

n

m=1

 (1)

 

The tool has been updated in order to use a 

heuristic to choose a suitable solution out of the final 

population with the multi-objective algorithm to 

inspect. The heuristic used is similar to the method 

used by Deb and Jain (Deb and Jain 2013) to construct 

a linear hyper-plane in the NSGA-III algorithm. 

Firstly, the solutions in the population from the top 

rank are isolated and written to a separate sub folder. 

It is from this subset that the best solution will be 

chosen from when the task is finished. Among these 

solutions, the tool inspects the individual objective 

values, and for each, the best objective value across 

the solutions is stored. This set of objective values is 

the ideal point 𝑧 = (𝑧1
𝑚𝑎𝑥), (𝑧2

𝑚𝑎𝑥), … , (𝑧𝑀
𝑚𝑎𝑥), 

where (𝑧𝑖
𝑚𝑎𝑥) represents the maximum value for an 

objective, and an objective i = 1, 2, ..., M. This is the 

best possible state that a solution in the top rank could 

have. After this is calculated, each objective score is 

compared with its corresponding ideal score. The 

distance of the objective score from its ideal value is 

found, i.e. (𝑧𝑖
𝑚𝑎𝑥) − 𝑓 (𝑥)𝑖

 , where 𝑓 (𝑥)𝑖
  represents 

the score for a single objective. For each solution, the 

largest objective distance (i.e. the distance for the 

objective that is furthest from its ideal point) is stored, 

i.e. 𝑓𝑚𝑎𝑥(𝑥) = 𝑚𝑎𝑥𝑖=1
𝑀 [(𝑧𝑖

𝑚𝑎𝑥) − 𝑓 (𝑥)𝑖
 ]. At this 

point each solution in the top rank has a value, 

𝑓𝑚𝑎𝑥(𝑥), to represent the furthest distance among its 

objectives from the ideal point. The smallest among 

these values, 𝑚𝑖𝑛𝑗=0
𝑁−1 𝑓𝑚𝑎𝑥(𝑥) (where N represents 

the number of solutions in the top rank), signifies the 
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solution that is closest to that ideal point, taking all of 

the objectives into consideration. This solution is then 

considered to be the most suitable solution and is 

marked as such when the population is written to file. 

On top of this, the results file for the corresponding 

solution is also updated to mark it as the most 

suitable. This is how solutions are chosen among the 

final population for the multi-objective tasks to 

compare against the top mono-objective solution. 

For the element recentness objective, the 

recentness value of each element refactoring is 

calculated and then added together to get an overall 

score. Accumulating the score instead of getting an 

average recentness value avoids the solution applying 

a minimal number of refactorings in order to keep a 

low average and thus possibly yielding inferior 

quality improvements. Accumulating the individual 

values will encourage the solution to refactor as many 

recent elements as possible, and it will prioritize these 

elements, but it will also allow for older elements to 

be used if they improve the quality of the solution. 

Equation 2 gives the formula used to calculate the 

element recentness score in a refactoring solution 

using the hash table structure. m represents the current 

element, A
m
 represents the number of times the 

element has been refactored in the solution and R
m
 

represents the recentness value for the element. n 

represents the number of elements refactored in the 

refactoring solution. 

 

 ∑ A
m
.R

m

n

m=1

 (2)

5 RESULTS 

Fig. 1 gives the average quality gain values for each 

input program used in the experiment with the mono-

objective and multi-objective approaches. In all of the 

inputs, the mono-objective approach gives a better 

quality improvement than the multi- objective 

approach. For the multi-objective approach all the 

runs of each input were able to give an improvement 

for the quality objective as well as look at the element 

recentness objective. For the mono-objective 

approach, the smallest improvement was given with 

GanttProject, and for the multi-objective approach, it 

was Apache XML-RPC. For both approaches, XOM 

was the input with the largest improvement. The 

mono-objective Beaver results were noticeable for 

having the most disparate range in comparison to the 

rest. 

 

Figure 1: Mean quality gain values for each input. 

Fig. 2 shows the average element recentness 

scores for each input with the mono-objective and 

multi-objective approaches. For all of the inputs, the 

multi-objective approach was able to yield better 

scores coupled with the recentness objective. The 

values were compared for significance using a one-

tailed Wilcoxon rank-sum test (for unpaired data sets) 

with a 95% confidence level (α = 5%). The element 

recentness scores for the multi-objective approach 

were found to be significantly higher than the mono-

objective approach. The scores tended to vary with 

both the mono-objective and multi-objective 

approaches. The exception to this in the XOM input 

which had a more refined set of results for both 

approaches. Also, for this input, in comparison to the 

others, the multi-objective approach didn’t give as 

much of an improvement in the element recentness 

score in relation to its mono-objective counterpart. 

For the mono-objective GanttProject scores, one of 

the tasks gave an anomalous result of 784 (the other 

values were between 212 and 400) that was greater 

even than the average multi-objective score for the 

input, at 764.8. 

Fig. 3 gives the average execution times for each 

input with the mono-objective and multi-objective 

searches. The times for the mono-objective and multi-

objective tasks mostly mirrored each other. For most 

input programs, the mono-objective approach was 

faster on average, with the exception being Beaver 

which takes slightly longer. The Wilcoxon rank-sum 

test (two-tailed) was used again and the values were 

found to not be significantly different. The times 

seemed to increase in relation to the number of classes 

in the project, although the mono-objective 

GanttProject time was slightly smaller than 

JHotDraw, an input with fewer classes. The multi-

objective GanttProject times stand out as taking the 

longest, with the longest task taking almost 71 

minutes to run. The average time for the multi-

objective GanttProject tasks was just under 64 
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minutes, whereas the average time for the next largest 

input, JHotDraw, was only 41 minutes. Whereas the 

inputs had similar times for the mono-objective and 

multi-objective approaches, for GanttProject the 

multi-objective tasks took quite a bit longer (over 28 

minutes longer on average). 

 

Figure 2: Mean element recentness scores for each input. 

 

Figure 3: Mean times taken for each input. 

6 CONCLUSION 

In order to test the aims of the experiment and derive 

conclusions from the results a set of research 

questions were constructed. Each research question 

and their corresponding set of hypotheses looked at 

one of two aspects of the experiment. RQ1 was 

concerned with the effectiveness of the quality 

objective in the multi-objective setup. To address it, 

the quality improvement results were inspected to 

ensure that each run of the search yielded an 

improvement in quality. In all 30 of the different runs 

of the multi-objective approach, there was an 

improvement in the quality objective score, therefore 

rejecting the null hypothesis. RQ2 looked at the 

effectiveness of the element recentness objective in 

comparison with a setup that did not use a function to 

measure element recentness. To address this, a non-

parametric statistical test was used to decide whether 

the mono-objective and multi-objective data sets 

were significantly different. The recentness scores 

were compared for the multi-objective approach 

against the basic approach and the multi-objective 

element recentness scores were found to be 

significantly higher than the mono-objective scores, 

rejecting the null hypothesis H20. Thus, the research 

questions addressed in this paper help to support the 

validity of the element recentness objective in helping 

to focus refactorings on recent elements in a software 

program with the MultiRefactor tool, while in 

conjunction with another objective. 
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