
Automated Refactoring of Software using Version History and a

Code Element Recentness Measure

Michael Mohan and Des Greer
Department of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast,

Northern Ireland, U.K.

Keywords: Search based Software Engineering, Maintenance, Refactoring, Software History, Multi-Objective

Optimization, Genetic Algorithms.

Abstract: This paper proposes a multi-objective genetic algorithm to automate software refactoring and validates the

approach using a tool, MultiRefactor, and a set of open source Java programs. The tool uses a metric function

to measure quality in a software system and tests a second objective to measure the recentness of the code

elements being refactored. Previous versions of the software project are analyzed and a recentness measure is

then calculated with respect to previous versions of code. The multi-objective setup refactors the input

program to improve its quality using the quality objective, while also focusing on the recentness of the code

elements inspected. An experiment has been constructed to measure the multi-objective approach against an

alternative mono-objective approach that does not use an objective to measure element recentness. The two

approaches are validated using six different open source Java programs. The multi-objective approach is

found to give significantly better recentness scores across all inputs in a similar time, while also generating

improvements in the quality score.

1 INTRODUCTION

Search-Based Software Engineering (SBSE) has been

used to automate various aspects of the software

development cycle. Used successfully, SBSE can

help to improve decision making throughout the

development process and assist in enhancing

resources and reducing cost and time, making the

process more streamlined and efficient. Search-Based

Software Maintenance (SBSM) is usually directed at

minimizing the effort of maintaining a software

product. An increasing proportion of SBSM research

is making use of multi-objective optimization

techniques. Many multi-objective search algorithms

are built using genetic algorithms (GAs), due to their

ability to generate multiple possible solutions. Instead

of focusing on only one property, the multi-objective

algorithm is concerned with a number of different

objectives. This is handled through a fitness

calculation and sorting of the solutions after they have

been modified or added to. The main approach used

to organize solutions in a multi-objective approach is

Pareto. Pareto dominance organizes the possible

solutions into different nondomination levels and

further discerns between them by finding the

objective distances between them in Euclidean space.

In this paper, a multi-objective approach is created

to improve software that combines a quality objective

with one that incorporates the use of numerous

previous versions of the software code. The element

recentness objective uses previous versions of the

target software to help discern between old and new

areas of code. It will investigate the refactored areas of

code to give a value representing how recently these

code elements have been added, using the previous

versions of the software supplied. To test the

effectiveness of the element recentness objective, an

experiment has been constructed to test a GA that uses

it against one that does not. It may be argued that it is

more relevant to refactor the older elements of the

code (for instance, if the code has been around longer,

it has had a better chance to build up technical debt

and become incompatible with its surroundings).

However, it is important to note that the purpose of

this experiment is not to support either stance. The

more important aspects of the code may be different

depending on the circumstances and the developer’s

opinion. The choice has been made in this paper to

focus on more recent elements instead of older

elements in order to test the effectiveness of the

objective itself in doing what it aims, and the objective

Mohan, M. and Greer, D.
Automated Refactoring of Software using Version History and a Code Element Recentness Measure.
DOI: 10.5220/0006815304550462
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 455-462
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

455

can be tweaked to focus one way or the other

depending on the developers needs. In order to judge

the outcome of the experiment, the following research

questions have been derived:

RQ1: Does a multi-objective solution using an

element recentness objective and a quality objective

give an improvement in quality?

RQ2: Does a multi-objective solution using an

element recentness objective and a quality objective

refactor more recent code elements than a solution

that does not use the element recentness objective.

In order to address the research questions, the

experiment will run a set of tasks to compare a default

mono-objective set up to refactor a solution towards

quality with a multi-objective approach that uses a

quality objective and the newly proposed element

recentness objective. The following hypotheses have

been constructed to measure success in the

experiment.

H1: The multi-objective solution gives an

improvement in the quality objective value.

H10: The multi-objective solution does not give

an improvement in the quality objective value.

H2: The multi-objective solution gives

significantly higher element recentness objective

values than the corresponding mono-objective

solution.

H20: There is no significant difference between

the recentness objective value for the multi-objective

and mono-objective approaches.

The remainder of this paper is organized as

follows. Section 2 discusses related work and gives

an overview of the previous studies in SBSM that

have incorporated the use of software history. Section

3 describes the MultiRefactor tool used to conduct the

experiment along with the searches, refactorings and

metrics available in it. Section 4 explains the set up of

the experiment used to test the element recentness

objective. Section 5 analyses the results of the

experiment, looking at the objective values and the

times taken to run the tasks. Section 6 concludes the

paper and discusses the significance of the findings.

2 RELATED WORK

A few other studies relating to SBSM have used

version history of the target software to aid in

refactoring. Pérez et al. (Pérez et al. 2013) proposed

an approach that involved reusing complex

refactorings that had previously been used. They

aimed to mine the change history of the software

1 https://github.com/mmohan01/MultiRefactor

project to find the refactorings used to fix design

smells. The position paper introduced a plan to gather

and compile the reusable refactorings in a structured

way, in order to reapply them in the future. For this,

they aimed to extend the ChEOPSJ system (Soetens

and Demeyer 2012) and build a refactoring and

design smell detector on top of it. They aimed to

extend this system to find design smells that have

been resolved, trace them back to the refactorings

performed and reconstruct the refactoring order.

Ouni et al. (Ouni, Kessentini and Sahraoui 2013;

Ouni et al. 2016) implemented an objective as part of

a multi-objective solution to encourage refactorings

that are similar to those already applied to similar

code fragments in the past, by investigating previous

versions of the code. They used the Ref-Finder tool

(Kim et al. 2010) to find refactorings between

versions of code. They also (Ouni, Kessentini,

Sahraoui and Hamdi 2013) analyzed “co-change”, an

attribute that identifies how often two objects in a

project are refactored together at the same time, as

well as the number of refactorings applied in the past

to the code elements. They updated their objective

function to provide a value relating to a set of

elements as an average of these three measures using

refactoring history. An extended study from 2015

(Ouni et al. 2015) investigated the use of past

refactorings from other projects to calculate the

objective value when the change history for the

applicable project is not available. Similarly,

Tsantalis and Chatzigeorgiou (Tsantalis and

Chatzigeorgiou 2011) have also used previous

versions of software code to aid in the removal of

design smells in the current code. They used the

previous versions of the code to rank refactoring

suggestions according to the number, proximity and

extent of changes related with the corresponding code

smells.

3 MULTIREFACTOR

The MultiRefactor approach1 uses the RECODER

framework2 to modify source code in Java programs.

RECODER extracts a model of the code that can be

used to analyze and modify the code before the

changes are applied. MultiRefactor makes available

various different approaches to automated software

maintenance in Java programs. It takes Java source

code as input and will output the modified source

code to a specified folder. The input must be fully

compilable and must be accompanied by any

2 http://sourceforge.net/projects/recoder

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

456

necessary library files as compressed jar files. The

numerous searches available in the tool have various

input configurations that can affect the execution of

the search. The refactorings and metrics used can also

be specified. As such, the tool can be configured in a

number of different ways to specify the particular task

that you want to run. If desired, multiple tasks can be

set to run one after the other.

A previous study (Mohan et al. 2016) used the A-

CMA (Koc et al. 2012) tool to experiment with

different metric functions but that work was not

extended to produce source code as an output

(likewise, TrueRefactor (Griffith et al. 2011) only

modifies UML and Ouni, Kessentini, Sahraoui and

Boukadoum’s (Ouni, Kessentini, Sahraoui and

Boukadoum 2013) approach only generates proposed

lists of refactorings). MultiRefactor (Mohan and

Greer 2017) was developed in order to be a fully-

automated search-based refactoring tool that

produces compilable, usable source code. As well as

the Java code artifacts, the tool will produce an output

file that gives information on the execution of the task

including data about the parameters of the search

executed, the metric values at the beginning and end

of the search, and details about each refactoring

applied. The metric configurations can be modified to

include different weights and the direction of

improvement of the metrics can be changed

depending on the desired outcome.

MultiRefactor contains seven different search

options for automated maintenance, with three

distinct metaheuristic search techniques available.

For each search type there is a selection of

configurable properties to determine how the search

will run. The refactorings used in the tool are mostly

based on Fowler’s list (Fowler 1999), consisting of 26

field-level, method-level and class-level refactorings,

and are listed below.

Field Level Refactorings: Increase/Decrease

Field Visibility, Make Field Final/Non Final, Make

Field Static/Non Static, Move Field Down/Up,

Remove Field.

Method Level Refactorings: Increase/Decrease

Method Visibility, Make Method Final/Non Final,

Make Method Static/Non Static, Remove Method.

Class Level Refactorings: Make Class Final/Non

Final, Make Class Abstract/Concrete, Extract

Subclass/Collapse Hierarchy, Remove

Class/Interface.

The refactorings used will be checked for

semantic coherence as a part of the search, and will

be applied automatically, ensuring the process is fully

automated. A number of the metrics available in the

tool are adapted from the list of the metrics in the

QMOOD (Bansiya and Davis 2002) and CK/MOOSE

(Chidamber and Kemerer 1994) metrics suites. The

23 metrics currently available in the tool are listed

below.

QMOOD Based: Class Design Size, Number Of

Hierarchies, Average Number Of Ancestors, Data

Access Metric, Direct Class Coupling, Cohesion

Among Methods, Aggregation, Functional

Abstraction, Number Of Polymorphic Methods,

Class Interface Size, Number Of Methods.

CK Based: Weighted Methods Per Class,

Number Of Children.

Others: Abstractness, Abstract Ratio, Static

Ratio, Final Ratio, Constant Ratio, Inner Class Ratio,

Referenced Methods Ratio, Visibility Ratio, Lines Of

Code, Number Of Files.

In order to implement the element recentness

objective, extra information about the refactorings is

stored in the refactoring sequence object used to

represent a refactoring solution. For each solution, a

hash table is used to store a list of affected elements

in the solution and to attach to each a value that

represents the number of times that particular element

is refactored in the solution. During each refactoring,

an element, considered to be most relevant to that

refactoring, is chosen and the element name is stored.

After the refactoring has executed, the hash table is

inspected. If the element name already exists as a key

in the hash table, the value corresponding to that key

is incremented to represent another refactoring being

applied to that element in the solution. Otherwise, the

element name is added to the table and the

corresponding value is set to 1. After the solution has

been created, the hash table will have a list of all the

elements affected and the number of times for each.

This information is used to construct the element

recentness score for the related solution.

To improve the performance of the tool, the

recentness scores are stored for each element as the

search progresses in another hash table. This allows

the tool to avoid the need to calculate the element

recentness scores for each applicable element in the

current solution at the beginning of the search task.

Instead, the scores are calculated as the objective is

calculated, for each element it comes across. If the

element hasn’t previously been encountered in the

search, its element recentness value will be calculated

and stored in the hash table. Otherwise, the value will

be found by looking for it in the table. This eliminates

the need to calculate redundant element recentness

values for elements that are not refactored in the

search and spreads the calculations throughout the

search in place of finding all the values in the

beginning.

Automated Refactoring of Software using Version History and a Code Element Recentness Measure

457

4 EXPERIMENTAL DESIGN

In order to calculate the element recentness objective,

the program will be supplied with the directories of all

the previous versions of the code to use, in successive

order. To calculate the element recentness value for a

refactoring solution, each element that has been

involved in the refactorings (be it a class, method or

field) will be inspected individually. For each previous

version of the code, the element will be searched for

using its name. If it is not present, the search will

terminate, and the element will be given a value

related to how far back it can be found. An element

that can be found all the way back through every

previous version of code will be given a value of zero.

An element that is only found in the current version of

the code will be given the maximum element

recentness value, which will be equal to the number of

versions of code present. For each version the element

is present in after the current version, the element

recentness value will be decremented by one. Once

this value is calculated for one element in the

refactoring solution, the objective will move onto the

next element until a value is derived for all of them.

The overall element recentness value for a refactoring

solution will be an accumulation of all the individual

element values.

In order to evaluate the effectiveness of the

element recentness objective, a set of tasks were set

up that used the priority objective to be compared

against a set of tasks that didn’t. The control group is

made up of a mono-objective approach that uses a

function to represent quality in the software. The

corresponding tasks use the multi-objective algorithm

and have two objectives. The first objective is the

same function for software quality used for the mono-

objective tasks. The second objective is the element

recentness objective. The metrics used to construct

the quality function and the configuration parameters

used in the GAs are taken from previous

experimentation on software quality. Each metric

available in the tool was tested separately in a GA to

deduce which were more successful, and the most

successful were chosen for the quality function. The

metrics used in the quality function are given in Table

1. No weighting is applied for any of the metrics. The

configuration parameters used for the mono-objective

and multi-objective tasks were derived through trial

and error and are outlined in Table 2. The hardware

used to run the experiment is outlined in Table 3.

For the tasks, six different open source programs

are used as inputs to ensure a variety of different

domains are tested. The programs range in size from

relatively small to medium sized.

These programs were chosen as they have all been used

in previous SBSM studies and so comparison of results is

possible. The source code and necessary libraries for all of

the programs are available to download in the GitHub

repository for the MultiRefactor tool.

Table 1: Metrics used in the software quality objective.

Metrics Direction

Data Access Metric +

Direct Class Coupling -

Cohesion Among Methods +

Aggregation +

Functional Abstraction +

Number Of Polymorphic Methods +

Class Interface Size +

Number Of Methods -

Weighted Methods Per Class -

Abstractness +

Abstract Ratio +

Static Ratio +

Final Ratio +

Constant Ratio +

Inner Class Ratio +

Referenced Methods Ratio +

Visibility Ratio -

Lines Of Code -

Table 2: GA configuration settings.

Configuration Parameter Value

Crossover Probability 0.2

Mutation Probability 0.8

Generations 100

Refactoring Range 50

Population Size 50

Each one is run five times for the mono-objective

approach and five times for the multi-objective

approach, resulting in 60 tasks overall.

Table 3: Hardware details for the experiment.

Operating

System

Microsoft Windows 7 Enterprise

Service Pack 1

System

Type
64-bit

RAM 8.00GB

Processor Intel Core i7-3770 CPU @ 3.40GHz

The inputs used in the experiment as well as the

number of classes and lines of code they contain are

given in Table 4. Table 5 gives the previous versions

of code used for each input, in order from the earliest

version to the latest version used (up to the current

version being read in for maintenance). For each input,

five different versions of code were used overall. Not

all sets of previous versions contain all the releases

between the first and last version

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

458

Table 4: Java programs used in the experiment.

Name LOC Classes

Beaver 0.9.11 6,493 70

Apache XML-RPC 3.1.1 14,241 185

JRDF 0.3.4.3 18,786 116

GanttProject 1.11.1 39,527 437

JHotDraw 6.0b1 41,278 349

XOM 1.2.1 45,136 224

Table 5: Previous versions of Java programs used in

experiment.

Beaver 0.9.8 0.9.9 0.9.10 pre1.0

demo

Apache

XML-RPC

2.0 2.0.1 3.0 3.1

JRDF 0.3.3 0.3.4 0.3.4.1 0.3.4.2

Gantt

Project

1.7 1.8 1.9 1.10

JHotDraw 5.2 5.3 5.4b1 5.4b2

XOM 1.1 1.2b1 1.2b2 1.2

In order to find the element recentness score for

the mono-objective approach to compare against the

multi-objective approach, the mono-objective GA has

been modified to output the element recentness score

after the task finishes. At the end of the search, after

the results have been output and the refactored

population has been written to Java code files, the

recentness score for the top solution in the final

population is calculated. Then, before the search

terminates, this score is output at the end of the results

file for that solution. This way the scores don’t need

to be calculated manually and the element recentness

scores for the mono-objective solutions can be

compared against their multi-objective counterparts.

For the quality function the metric changes are

calculated using a normalization function. This

function causes any greater influence of an individual

metric in the objective to be minimized, as the impact

of a change in the metric is influenced by how far it

is from its initial value. The function finds the amount

that a particular metric has changed in relation to its

initial value at the beginning of the task. These values

can then be accumulated depending on the direction

of improvement of the metric (i.e. whether an

increase or a decrease denotes an improvement in that

metric) and the weights given to provide an overall

value for the metric function or objective. A negative

change in the metric will be reflected by a decrease in

the overall function/objective value. In the case that

an increase in the metric denotes a negative change,

the overall value will still decrease, ensuring that a

larger value represents a better metric value

regardless of the direction of improvement. The

directions of improvement used for the metrics in the

experiment are given in Table 1. In the case that the

initial value of a metric is 0, the initial value used is

changed to 0.01 in order to avoid issues with dividing

by 0. This way, the normalization function can still be

used on the metric and its value still starts off low.

Equation 1 defines the normalization function, where

m represents the selected metric, Cm is the current

metric value and Im
 is the initial metric value. Wm

 is the

applied weighting for the metric (where 1 represents

no weighting) and D is a binary constant (-1 or 1) that

represents the direction of improvement of the metric.

n represents the number of metrics used in the

function. For the element recentness objective, this

normalization function is not needed. The objective

score depends on the relative age of the code elements

refactored in a solution and will reflect that.

 ∑ D.Wm
(

Cm

Im

- 1)

n

m=1

 (1)

The tool has been updated in order to use a

heuristic to choose a suitable solution out of the final

population with the multi-objective algorithm to

inspect. The heuristic used is similar to the method

used by Deb and Jain (Deb and Jain 2013) to construct

a linear hyper-plane in the NSGA-III algorithm.

Firstly, the solutions in the population from the top

rank are isolated and written to a separate sub folder.

It is from this subset that the best solution will be

chosen from when the task is finished. Among these

solutions, the tool inspects the individual objective

values, and for each, the best objective value across

the solutions is stored. This set of objective values is

the ideal point 𝑧 = (𝑧1
𝑚𝑎𝑥), (𝑧2

𝑚𝑎𝑥), … , (𝑧𝑀
𝑚𝑎𝑥),

where (𝑧𝑖
𝑚𝑎𝑥) represents the maximum value for an

objective, and an objective i = 1, 2, ..., M. This is the

best possible state that a solution in the top rank could

have. After this is calculated, each objective score is

compared with its corresponding ideal score. The

distance of the objective score from its ideal value is

found, i.e. (𝑧𝑖
𝑚𝑎𝑥) − 𝑓 (𝑥)𝑖

 , where 𝑓 (𝑥)𝑖
 represents

the score for a single objective. For each solution, the

largest objective distance (i.e. the distance for the

objective that is furthest from its ideal point) is stored,

i.e. 𝑓𝑚𝑎𝑥(𝑥) = 𝑚𝑎𝑥𝑖=1
𝑀 [(𝑧𝑖

𝑚𝑎𝑥) − 𝑓 (𝑥)𝑖
]. At this

point each solution in the top rank has a value,

𝑓𝑚𝑎𝑥(𝑥), to represent the furthest distance among its

objectives from the ideal point. The smallest among

these values, 𝑚𝑖𝑛𝑗=0
𝑁−1 𝑓𝑚𝑎𝑥(𝑥) (where N represents

the number of solutions in the top rank), signifies the

Automated Refactoring of Software using Version History and a Code Element Recentness Measure

459

solution that is closest to that ideal point, taking all of

the objectives into consideration. This solution is then

considered to be the most suitable solution and is

marked as such when the population is written to file.

On top of this, the results file for the corresponding

solution is also updated to mark it as the most

suitable. This is how solutions are chosen among the

final population for the multi-objective tasks to

compare against the top mono-objective solution.

For the element recentness objective, the

recentness value of each element refactoring is

calculated and then added together to get an overall

score. Accumulating the score instead of getting an

average recentness value avoids the solution applying

a minimal number of refactorings in order to keep a

low average and thus possibly yielding inferior

quality improvements. Accumulating the individual

values will encourage the solution to refactor as many

recent elements as possible, and it will prioritize these

elements, but it will also allow for older elements to

be used if they improve the quality of the solution.

Equation 2 gives the formula used to calculate the

element recentness score in a refactoring solution

using the hash table structure. m represents the current

element, A
m
 represents the number of times the

element has been refactored in the solution and R
m

represents the recentness value for the element. n

represents the number of elements refactored in the

refactoring solution.

 ∑ A
m
.R

m

n

m=1

 (2)

5 RESULTS

Fig. 1 gives the average quality gain values for each

input program used in the experiment with the mono-

objective and multi-objective approaches. In all of the

inputs, the mono-objective approach gives a better

quality improvement than the multi- objective

approach. For the multi-objective approach all the

runs of each input were able to give an improvement

for the quality objective as well as look at the element

recentness objective. For the mono-objective

approach, the smallest improvement was given with

GanttProject, and for the multi-objective approach, it

was Apache XML-RPC. For both approaches, XOM

was the input with the largest improvement. The

mono-objective Beaver results were noticeable for

having the most disparate range in comparison to the

rest.

Figure 1: Mean quality gain values for each input.

Fig. 2 shows the average element recentness

scores for each input with the mono-objective and

multi-objective approaches. For all of the inputs, the

multi-objective approach was able to yield better

scores coupled with the recentness objective. The

values were compared for significance using a one-

tailed Wilcoxon rank-sum test (for unpaired data sets)

with a 95% confidence level (α = 5%). The element

recentness scores for the multi-objective approach

were found to be significantly higher than the mono-

objective approach. The scores tended to vary with

both the mono-objective and multi-objective

approaches. The exception to this in the XOM input

which had a more refined set of results for both

approaches. Also, for this input, in comparison to the

others, the multi-objective approach didn’t give as

much of an improvement in the element recentness

score in relation to its mono-objective counterpart.

For the mono-objective GanttProject scores, one of

the tasks gave an anomalous result of 784 (the other

values were between 212 and 400) that was greater

even than the average multi-objective score for the

input, at 764.8.

Fig. 3 gives the average execution times for each

input with the mono-objective and multi-objective

searches. The times for the mono-objective and multi-

objective tasks mostly mirrored each other. For most

input programs, the mono-objective approach was

faster on average, with the exception being Beaver

which takes slightly longer. The Wilcoxon rank-sum

test (two-tailed) was used again and the values were

found to not be significantly different. The times

seemed to increase in relation to the number of classes

in the project, although the mono-objective

GanttProject time was slightly smaller than

JHotDraw, an input with fewer classes. The multi-

objective GanttProject times stand out as taking the

longest, with the longest task taking almost 71

minutes to run. The average time for the multi-

objective GanttProject tasks was just under 64

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

460

minutes, whereas the average time for the next largest

input, JHotDraw, was only 41 minutes. Whereas the

inputs had similar times for the mono-objective and

multi-objective approaches, for GanttProject the

multi-objective tasks took quite a bit longer (over 28

minutes longer on average).

Figure 2: Mean element recentness scores for each input.

Figure 3: Mean times taken for each input.

6 CONCLUSION

In order to test the aims of the experiment and derive

conclusions from the results a set of research

questions were constructed. Each research question

and their corresponding set of hypotheses looked at

one of two aspects of the experiment. RQ1 was

concerned with the effectiveness of the quality

objective in the multi-objective setup. To address it,

the quality improvement results were inspected to

ensure that each run of the search yielded an

improvement in quality. In all 30 of the different runs

of the multi-objective approach, there was an

improvement in the quality objective score, therefore

rejecting the null hypothesis. RQ2 looked at the

effectiveness of the element recentness objective in

comparison with a setup that did not use a function to

measure element recentness. To address this, a non-

parametric statistical test was used to decide whether

the mono-objective and multi-objective data sets

were significantly different. The recentness scores

were compared for the multi-objective approach

against the basic approach and the multi-objective

element recentness scores were found to be

significantly higher than the mono-objective scores,

rejecting the null hypothesis H20. Thus, the research

questions addressed in this paper help to support the

validity of the element recentness objective in helping

to focus refactorings on recent elements in a software

program with the MultiRefactor tool, while in

conjunction with another objective.

ACKNOWLEDGEMENTS

The research for this paper contributes to a PhD

project funded by the EPSRC grant EP/M506400/1.

REFERENCES

Bansiya, J. & Davis, C.G., 2002. A Hierarchical Model For

Object-Oriented Design Quality Assessment. IEEE

Transactions on Software Engineering., 28(1), pp.4–

17. Available at: http://ieeexplore.ieee.org/lpdocs

/epic03/wrapper.htm?arnumber=979986.

Chidamber, S.R. & Kemerer, C.F., 1994. A Metrics Suite

For Object Oriented Design. IEEE Transactions on

Software Engineering., 20(6), pp.476–493.

Deb, K. & Jain, H., 2013. An Evolutionary Many-Objective

Optimization Algorithm Using Reference-Point Based

Non-Dominated Sorting Approach, Part I: Solving

Problems With Box Constraints. IEEE Transactions on

Evolutionary Computation., 18(4), pp.1–23. Available

at: http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=6600851%5Cn

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6

600851.

Fowler, M., 1999. Refactoring: Improving The Design Of

Existing Code,

Griffith, I., Wahl, S. & Izurieta, C., 2011. TrueRefactor: An

Automated Refactoring Tool To Improve Legacy

System And Application Comprehensibility. In 24th

International Conference on Computer Applications in

Industry and Engineering, ISCA 2011.

Kim, M. et al., 2010. Ref-Finder: A Refactoring

Reconstruction Tool Based On Logic Query Templates.

In International Symposium on Foundations of

Software Engineering, FSE 2010. pp. 371–372.

Available at: http://dl.acm.org/citation.

cfm?id=1882291.1882353.

Koc, E. et al., 2012. An Empirical Study About Search-

Based Refactoring Using Alternative Multiple And

Population-Based Search Techniques. In E. Gelenbe, R.

Lent, & G. Sakellari, eds. Computer and Information

Sciences II. London: Springer London, pp. 59–66.

Available at: http://link.springer.com/ 10.1007/978-1-

4471-2155-8 [Accessed December 3, 2014].

Automated Refactoring of Software using Version History and a Code Element Recentness Measure

461

Mohan, M. & Greer, D., 2017. MultiRefactor: Automated

Refactoring To Improve Software Quality. In 1st

International Workshop on Managing Quality in Agile

and Rapid Software Development Processes, QuASD

2017. p. in press.

Mohan, M., Greer, D. & McMullan, P., 2016. Technical

Debt Reduction Using Search Based Automated

Refactoring. Journal Of Systems And Software., 120,

pp.183–194. Available at: http://dx.doi.org/

10.1016/j.jss.2016.05.019.

Ouni, A. et al., 2015. Improving Multi-Objective Code-

Smells Correction Using Development History.

Journal of Systems and Software., 105, pp.18–39.

Available at: http://www.sciencedirect.com/

science/article/pii/S0164121215000631.

Ouni, A., Kessentini, M., Sahraoui, H. & Boukadoum, M.,

2013. Maintainability Defects Detection And

Correction: A Multi-Objective Approach. Automated

Software Engineering., 20(1), pp.47–79.

Ouni, A. et al., 2016. Multi-Criteria Code Refactoring

Using Search-Based Software Engineering: An

Industrial Case Study. ACM Transactions on Software

Engineering and Methodology., 25(3).

Ouni, A., Kessentini, M., Sahraoui, H. & Hamdi, M.S.,

2013. The Use Of Development History In Software

Refactoring Using A Multi-Objective Evolutionary

Algorithm. In Genetic and Evolutionary Computation

Conference, GECCO 2013. pp. 1461–1468. Available

at: http://dl.acm.org/citation.cfm?doid=2463372.246

3554.

Ouni, A., Kessentini, M. & Sahraoui, H., 2013. Search-

Based Refactoring Using Recorded Code Changes. In

European Conference on Software Maintenance and

Reengineering, CSMR 2013. pp. 221–230.

Pérez, J., Murgia, A. & Demeyer, S., 2013. A Proposal For

Fixing Design Smells Using Software Refactoring

History. In International Workshop On Refactoring &

Testing, RefTest 2013. pp. 1–4.

Soetens, Q.D. & Demeyer, S., 2012. ChEOPSJ: Change-

Based Test Optimization. In European Conference on

Software Maintenance and Reengineering, CSMR

2012.

Tsantalis, N. & Chatzigeorgiou, A., 2011. Ranking

Refactoring Suggestions Based On Historical

Volatility. In 15th European Conference on Software

Maintenance and Reengineering, CSMR 2011. pp. 25–

34.

ENASE 2018 - 13th International Conference on Evaluation of Novel Approaches to Software Engineering

462

