
From Theory to Practice: The Challenges of a DevOps Infrastructure
as Code Implementation

Clauirton Siebra1, Rosberg Lacerda2, Italo Cerqueira2, Jonysberg P. Quintino2, Fabiana Florentin3,
Fabio Q. B. da Silva4 and Andre L. M. Santos4

1Informatics Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
2CIn/Samsung Project, Centro de Informática, Universidade Federal de Pernambuco, Recife-PE, Brazil

3SIDI/Samsung, Campinas-SP, Brazil
4Centro de Informática, Universidade Federal de Pernambuco, Recife-PE, Brazil

Keywords: DevOps, Infrastructure as Code, Automation, Software Delivery Management.

Abstract: DevOps is a recent approach that intends to improve the collaboration between development and IT
operations teams, in order to establish a continuous and efficient deployment process. Previous studies show
that DevOps is based on dimensions, such as culture of collaboration, automation and monitoring. However,
few studies discuss the current frameworks that support such dimensions, so that there is a lack in
information that could assist development teams in deciding for the most adequate framework according to
their needs. This work aims at presenting a practical DevOps implementation and analysing how the process
of software delivery and infrastructure changes was automated. Our approach follows the principles of
infrastructure as code, where a configuration platform – PowerShell DSC – was used to automatically
define reliable environments for continuous software delivery. Then, we compare this approach with other
alternative such as Chef and Puppet tools, stressing the features, advantages and challenges of each strategy.
The lessons learned from this work are then used to create a more concrete set of practices that could assist
the transition from traditional approaches to an automation process of continuous software delivery.

1 INTRODUCTION

The lifecycle of an application involves teams that
usually work in distinct areas and have incompatible
goals. For example, while development team wants
agility; the operation team is more focused on
stability issues. In such domains, applications are
manually handed over between these teams with
minimal communication. Such separation between
entities, which are in fact dependent, translates into
an increased time to market and negatively impacts
the software quality, decreasing the actual value of
the product (Humble and Farley, 2010).

The fundamental conflict in the software process
environment is between developers, which have to
produce changes at a rapid pace; and IT Operators,
which have to maintain infrastructure configuration
and availability along these changes. The term
DevOps, which is a blend of the Developers and
Operations words, is a concept that assists to
facilitate these changes (Claps et al., 2015). It builds
a living bridge between development and operations

and gives them an opportunity to work and
collaborate effectively and seamlessly. According to
Loukides (2012), DevOps is a culture, movement or
practice that emphasizes the collaboration and
communication of both software developers and
other information-technology (IT) professionals
while automating the process of software delivery
and infrastructure changes. It aims at establishing a
culture and environment where building, testing,
and releasing software, can happen rapidly,
frequently, and more reliably.

Previous works on DevOps (Lwakatare et al.,
2015; Hosono, 2012) are mainly focused on propose
conceptual frameworks, which intend to create a
consensus to the own DevOps definition and their
features. Some elements such as culture of
collaboration, automation and monitoring; emerged
from these works and seem to be the basis for the
implementation of DevOps environments. However,
while DevOps is becoming very popular between
software practitioners; there is still a lack in
discussions on frameworks that support its

Siebra, C., Lacerda, R., Cerqueira, I., Quintino, J., Florentin, F., Silva, F. and Santos, A.
From Theory to Practice: The Challenges of a DevOps Infrastructure as Code Implementation.
DOI: 10.5220/0006826104270436
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 427-436
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

427

implementation and reports of real experiences that
could assist development teams in adopting the
DevOps principles (Erich et al., 2014; Dyck et al.,
2015).

The main focus of this work is on the automation
dimension, where the definition of practices related
to infrastructure as code creates the basis for an
automated process of continuous integration and
delivery. Handling infrastructure as code, the
following benefits can be obtained (Punjabi and
Bajaj, 2016):

 Code can be thoroughly tested to reproduce
infrastructure consistently at scale;

 Developers could be provided with a
simulated production environment, which
increases testability and reliability;

 Infrastructure code can be versioned;
 Infrastructure can be provisioned and

configured on demand;
 Proactive recovering from failures can be

carried out by continuous monitoring of the
environment for violations, which can trigger
automatic execution of scripts for rollback or
recovery.

Our approach follows the principles of
infrastructure as code, where a configuration
platform, PowerShell DSC (Desired State
Configuration) is used to automatically define
reliable environments for continuous software
delivery. The implementation of this strategy in our
organization has generated a set of lessons learned
which form the basis for the definition of a more
concrete set of practices, which can extend current
conceptual models and facilitate the transition from
theoretical aspects to pragmatic uses.

The remainder of this paper is structured as
follows: Section 2 summarizes the studies on the
automation dimension of DevOps, where the focus
is on the infrastructure as code aspects and their
implementations. Section 3 presents how DevOps
concepts were implemented in our organization and
the lessons learned from this experience. Section 4
consolidates the lessons learned in our experience in
a set of practices that show how to integrate our
infrastructure as code strategy to the development
process. Furthermore, other approaches for
infrastructure as code are analysed and compared
with our approach. Finally, Section V concludes this
work, stressing the challenges of DevOps
implementation and future works that we intend to
carry out.

2 STRUCTURE AS CODE

The creation of a DevOps environment is based on
principles such as culture of collaboration (Bang et
al., 2013; DeGrandis, 2011; Wettinger et al., 2014;
Tessem and Iden, 2008; Walls, 2013), measurement
of development efforts (Liu et al., 2014; Shang,
2015; Bruneo et al., 2014) and monitoring of system
health (Bang et al., 2013; Shang, 2015; Bruneo et
al., 2014). However, according to Ebert et al (2016),
the most important shift over the adoption of
DevOps is to treat infrastructure as code, since
infrastructure can be shared, tested, and version
controlled. Furthermore, development and
production could share a homogenous infrastructure,
reducing problems and bugs due to different
infrastructure configurations. This section discusses
the main ideas of this approach and resources that
support it.

2.1 Basic Concepts

Infrastructure as Code (IaC) is a DevOps principle
used to address problems regarding the manual
process of configuration management by means of
automatic provision and configuration of
infrastructural resources. In this way, the IaC
concept is used to describe the idea that almost all
actions performed to the infrastructure can be
automated. As any code, developers could create
automation logic for different tasks such as to
deploy, configure and upgrade computational
systems and infrastructures. Patterns to use the
infrastructure as code were proposed in (Duvall,
2011) and they can be summarized as:

 Automate Provisioning: automate the process
of configuring environments to include
networks, external services, and infrastructure;

 Behavior-Driven Monitoring: automate tests
to verify the behavior of the infrastructure;

 Immune System: deploy software one instance
at a time while conducting behavior-driven
monitoring. If an error is detected during the
incremental deployment, a Rollback Release
must be initiated to revert changes;

 Lockdown Environments: lock down shared
environments from unauthorized external and
internal usage, including operations staff. All
changes must be versioned and applied
through automation;

 Production-Like Environments: development
and production environments must be as
similar as possible.

ICSOFT 2018 - 13th International Conference on Software Technologies

428

These patterns show that DevOps pushes
automation from the development to the
infrastructure. Compared with manual infrastructure
provisioning, for example, configuration
management tools can reduce production
provisioning and configuration maintenance
complexity while enabling recreation of the
production system on the development machines. As
discussed in (Ebert et al., 2012), tools are a major
DevOps enabler and they are mandatory in
automating these and other patterns and tasks. In
fact, DevOps considers deliveries with short cycle
time. This feature comes from one of the Lean/Agile
principles, which stands for “Build incrementally
with fast integrated learning cycles”. Thus, such
strategy requires a high degree of automation, so that
it is fundamental the appropriate choice of tools .See
a list of tools in (Ebert et al., 2012).

2.2 Tools for Configuration
Management

Configuration management tools are the main
resources to implement IaC strategies. Such tools
aim at replacing error-prone shell scripts, which are
employed to manage the state of machines or
environments where development codes are going to
execute. Shell scripts are potentially complex to
maintain and evolve, since they are neither modular
nor reusable. Thus, the aim of approaches for
configuration management was to provide languages
to specify configuration properties without the
limitations (low modularity and reusability) of shell
scripts. Three examples of these languages, which
follow different implementation strategies, are:

 Puppet: domain specific language
implemented in a common programming
language (originally Ruby, but with newer
versions in C++ and Clojure);

 Chef: uses an existing language (Ruby) for
writing system configuration "recipes";

 CFEngine: domain specific language also
implemented in a common programming
language (C).

These languages are often declarative. This
means, they describe the desired state of the system
rather than a way to achieve it. There are other
languages such as Nix, which is a purely functional
programming language with specific properties for
configuration; and IBM Tivoli System Automation
for Multiplatforms. These languages have similar
features but may present particular purposes. The
IBM approach, for example, facilitates the automatic

switching of users, applications and data from one
database system to another in a cluster.

Puppet, Chef and CFEngine are the most popular
configuration management alternatives. Therefore, it
is important to understand some slight differences
among them (Younge et al., 2011). Chef and Puppet
are very similar since they are based on Ruby.
However, Chef seems to present less security
vulnerabilities than Puppet. Both languages are more
“Ops-friendly” due to its model-driven approach.
They also present a relatively small learning curve.
Differently, CFEngine is more “Dev-friendly” and
its learning curve is steep. However, as advantage,
CFEngine has a dramatically smaller memory
footprint, runs faster and has far fewer dependencies
since it was developed with C. For configuration
information, CFEngine uses its own declarative
language to create "promises," or policy statements.
Puppet, on the other hand, uses a Ruby Domain-
Specific Language (DSL) to create its manifests. So
those with some Ruby experience may find
themselves in more familiar territory with Puppet.

A comparison among these and several other
open-source configuration management approaches
can be seen in (O'Connor et al., 2017).

2.3 Frameworks

As applications need to be developed and tested in
production like environments, some organizations
are using strategies such as virtualization and more
recently containerization (Scheepers, 2015) to make
such environments portable. However, these
approaches are also hard to use when they are
manually maintained. This scenario motivated the
creation of frameworks for setup of more complex
development environments.

Two popular examples of frameworks are
Vagrant and Docker. Vagrant (Peacock, 2015) is a
management and support framework to
virtualization of development environments. Instead
of running all projects locally on a unique computer,
having to rearrange the different requirements and
dependencies of each project, this framework allows
to run each project in its own dedicated virtual
environment. Docker (Miell and Sayers, 2016) is a
container-based approach that provides
virtualization at the operating system level and uses
the host kernel to run multiple virtual environments.

A difference between these approaches is
associated with their performances. As discussed in
the previous paragraph, Docker relies on
containerization, while Vagrant utilizes
virtualization. In this latter approach, each virtual

From Theory to Practice: The Challenges of a DevOps Infrastructure as Code Implementation

429

machine runs its own entire operating system inside
a simulated hardware environment provided by
special programs. Thus, each virtual machine needs
a dedicated amount of static resources (CPU, RAM,
storage), generating an overhead of such resources.
Approaches based on containerization present a
higher performance since containers simply use
whatever resources it needs. This means, there is not
overhead of resources. Based on this discussion,
Docker is lighter than Vangrant. A deeper study in
such approaches show that both have advantages and
disadvantages, so that the final decision must be
based on the particular features of each project.

There is another important difference between
these approaches. Vagrant cannot create virtual
machines or containers without virtualization
platforms (Younge et al., 2011) such as VirtualBox,
VMware or Docker. Differently, Docker can work
without Vagrant. In order, the main advantage of
vagrant is that it provides an easy mechanism to
reproduce environments. These frameworks can also
be used together with configuration management
tools/languages to implement more powerful IaC
environments. Some examples are given in the next
section.

2.4 Tools in Practice

The previous section showed that there are several
options regarding frameworks and configuration
management tools to support the implementation of
the infrastructure as code principles. However, the
literature presents few contributions regarding their
practical use and the focus of this literature is on the
specification of extensions that could improve the
limitations of current tools rather than descriptions
of real case studies. The work of Hüttermann (2012),
for example, integrates Vagrant and Puppet and uses
them to create a topology for IaC consisting of
Vagrant and Puppet artefacts that are continuously
built and stored in a version control system. While
Vagrant allows the building of lightweight and
portable virtual environments, based on a simple
textual description; Puppet uses a declarative syntax
to describe the desired state of a target environment
and allows this description to be executed to create
that state on a target machine. Hummer et al (2013)
propose and evaluate a model-based testing
framework for IaC, where an abstracted system
model is used to derive state transition graphs. The
resulting graph is then used to derive test cases.
Their prototype extends the Chef IaC tool. However
the authors comment that their approach is general
and could be applied to other tools, such as Puppet.

The work of Artac et al (2017) discusses several
technologies involved in supporting IaC. Its main
focus is on the OASIS TOSCA, which is an
industrial practice language for automated
deployment of technology independent and multi-
cloud compliant applications.

In order, the majority of examples regarding IaC
are focused on Cloud environment and they are
related to specific features of such domain. For
example, Zhu et al (2014) report results from
experiments on reliability issues of cloud
infrastructure and trade-offs between using heavily-
baked and lightly-baked images. Their experiments
were based on Amazon Web Service (AWS)
OpsWorks APIs (Application Programming
Interfaces) and they also used the Chef configuration
management tool. Several other works regarding IaC
in the Cloud domain are discussed in the literature,
such as in (Bruneo et al., 2014; Scheuner et al.,
2014).

The work of Spinellis (2012) is another example
of study that discusses popular tools in the DevOps
domain, which include CFEngine, Puppet and Chef.
This work stresses the main function of such tools,
which is to automate a system’s configuration so
that users write rules expressing how an IT system is
to be configured and the tool will set up the system
accordingly. Wettinger et al (2014) also shows that
the DevOps community focuses on providing
pragmatic solutions for the automation of
application deployment. Then, the communities
affiliated with some of the DevOps tools, such as
Chef or Puppet, to provide artefacts to build
deployment plans for certain application tasks. Thus,
these two previous works (Spinellis, 2012;
Wettinger et al., 2014) confirm the trend to some
specific tools (Chef and Puppet) and their relation to
aspects of automation. Unfortunately, the scientific
literature does not discuss the use and evaluation of
such tools in a DevOps context, considering real
development cases. This is the major contribution of
our work, as detailed in the next sections.

3 DEVOPS IMPLEMENTATION:
A CASE STUDY

This section is divided into four parts. We first
describe the object of this case study, which is a real
application that we call Xsolution (pseudo name due
to commercial issues). Next we describe the original
strategy to deploy this application and the metrics
that characterize the problems of such strategy.

ICSOFT 2018 - 13th International Conference on Software Technologies

430

Then, we present the implementation of our
infrastructure as code approach, which is based on
the PowerShell DCS, and how this new strategy
significantly improved our deployment process.
Finally, we stress the advantages of this approach
when it is compared to other ways to implement
infrastructure as code solutions, such as Chef and
Puppet.

3.1 The Object of Study

Xsolution is a client-server solution that requires the
deployment of a server and mobile modules to
execute. The abstract architecture of this application
is illustrated in Figure 1.

Figure 1: High level architecture of Xsolution.

Each of the components in this figure (Smartphone,
Web server, Internet Information Service – IIS, App
Server, API Server, DB Server and SQL Server)
requires a specific configuration before the
deployment of the application. This configuration
used to be manually carried out by the IT team by
means of an internal home-made deployment guide
that describes all the process (step-by-step), as better
detailed in Section 3.2.

In order, to prepare the required resources that
will support Xsolution, or any other application with
this architecture (Figure 1), the next actions must be
carried out: (1) Installation of packages; (2)
Database installation; (3) Installation of Web
application requirements; (4) Installation of Web
application; (5) Configuration of the Admin Web
Applications; (6) Configuration of the log of errors;
and (7) Mobile Web site configuration. Each of
these actions has multiple steps and the traditional
approach to carry out this process is to follow guides

that describe these steps. This approach is described
in the next section.

3.2 Manual Deployment Process

The manual deployment of Xsolution and other
applications of our company, used to be manually
carried out by a group of IT collaborators. In this
strategy, each application had an associated
deployment guide, which describes all the details to
prepare the resources and environment to run this
application. The internal deployment guide of
Xsolution, for example, is a document with about 60
pages. It is important to understand how this manual
process used to be carried out, so that we could have
an idea about its complexity and the reasons it is a so
time-consuming and error-prone activity.

The first step in this manual process is the
installation of packages. Basically the idea is to
create the directory structure, which will contain the
admin front-end Web build files (related to user
interface configuration), admin back-end Web build
files, mobile android application, back-end mobile
build files, database structure creation scripts,
database initial seed script, and mobile user front-
end Web build files. The second step is the database
installation. Xsolution, for example, supports both
Active Directory users (through Windows
authentication) and SQL Server users (with custom
login and password). The deployment team must
also configure the IIS (Internet Information Service)
to delegate the anonymous authentication
configuration to Xsolution. However the main aim of
this step is the creation of the database structure,
which involves several details. For example, the
structure must only be created in the first application
deployment and the database scripts depend on the
country where the application will be host. In fact
there are a significant number of details that must be
observed in this process. These details are descripted
in the guide, such as:

“if you update the database adding more values
for some Enumeration, you must perform the
Recycle of the Application Pools related to the
App Server and API Server. This is necessary
because the Enumerations present in this table
are cached in memory when the application
starts, rather than updated if changes were made
in the database.”

This type of conditional actions increases the
complexity of the configuration and they are usually
common source of errors since they are not part of
the normal configuration flow. The use of further
support tools, such as the SQL Server management

From Theory to Practice: The Challenges of a DevOps Infrastructure as Code Implementation

431

studio to support the database backup procedures, is
also described in the guide. In addition, there are
also issues when databases are updated. For
example:

“If you are upgrading the version of the
database, you must sequentially run all scripts of
the current version to the version you want. If
just a script is ignored, the next scripts after that
may not run correctly.”

The third step is the installation of the Web
application requirements. This step generally
involves the installation of several third party
resources, which act as the Front-end Admin Web,
Back-end Admin Web and Mobile User Web. For
example, the Xsolution requires the installation of
the next components: (1) Windows Server 2008 R2
Service Pack 1 or Windows Server 2016; (2) NET
Framework 4.5; (3) Internet Information Services
7.5 or 10; (4) ASP.NET; (5) Windows Management
Framework 3.0; and (6) IIS URL Rewrite 2.0
module. Each of these components also has their
own installation details, which must be observed by
the deployment team. For example, the IIS module
has its own manual (24 pages) with instructions
about the reverse proxy configuration using an IIS
server. One of the functions of the IIS is to capture
the application log. This task is customized and also
presents a set of configurations to properly work
according to the features of each Web application.

The version of components is another point to
observe. Xsolution, for example, allows the use of
Windows Server 2008 R2 Service Pack 1 or
Windows Server 2016. Depending on the choice,
particular details must be observed along the
configuration process. The configuration process
also has influence of local laws. For example, due to
the new national legislation for Internet (Law No.
12,965 - Internet Civil Landmark) (Tomasevicius
Filho, 2016), information about the user access to
the application needs to be stored for a period of six
months. The information required is the IP, the user
name, the date and time of login. Thus, the
components must be configured to maintain such
information.

The fourth step is the installation of the own
Web application, which involves the creation of the
application pool, the choice of Website locations and
the assignment of each site to a specific application
pool. In order, application pools are processing
groups based on specific administrative preferences
that isolate Website processes from other website
processes on the server, offering strong performance
and security benefits. Again, there are several details

in this configuration. For example, the Admin Front-
end Web and Admin Back-end Web applications
could be in the same application pool, but it is
strongly recommend that the Back-end Mobile
application stay in a separate application pool. Thus,
the configuration of two Web servers is required.

The fifth step is the configuration of the Admin
Web application. There are several technical details
in this step, which are related to authentication
options, configuration of mobile responses and
database access permissions. In fact, there are a
significant number of parameters (about 50) that
must be set and the deployment team must
understand these parameters and know the best way
to set them.

Finally, the sixth and seventh steps are
respectively related to the configuration of the error
log and mobile Website. Similarly to the other steps,
the guide brings several details and customization
options.

This description illustrates just part of the tasks
and details regarding the manual deployment
process. We can easily observe that this process is
prone to errors, since it is long and has several
details. Furthermore, it is hard to identify which
configuration was not properly performed when an
error occurs.

To demonstrate these problems and characterise
this process in terms of software engineering
metrics, we carried out a simple quantitative analysis
of this process using Xsolution as our object of
study. According to the schedule and documents
from the Xsolution project, the deployment stage of
each Xsolution release took about 16 hours in the
best case. This means, when the process was
performed without errors. Then, if we had 3 sprints
per month, a collaborator should be allocated to this
task over 6 days (8 hours/day) to each new version.

At each new sprint, all the guide items were
executed, starting from the first step; while the own
guide was also reviewed or updated along each
sprint. This ensures a current and future process free
of failures. If any error was identified, all the process
was again started from the initial configuration.
Thus, the final deployment could spend much more
than 16 hours.

3.3 Infrastructure as Code Deployment

The infrastructure as code to support the deployment
was implemented in our organization as a form to
avoid the limitations of the previous manual
approach (Section 3.2). Furthermore, this approach
allows that solutions can be deployed in any

ICSOFT 2018 - 13th International Conference on Software Technologies

432

environment without the expertise required by the
manual approach.

Our strategy is based on the PowerShell DSC
(Desired State Configuration), which is a script
language that enables the definition of a set of
deployment actions. Our experiments showed that
several of the previous deployment actions could be
automated with this language, such as: (1) install or
remove server roles and features; (2) manage
registry settings; (3) manage files and directories; (4)
start, stop, and manage processes and services; (5)
manage local groups and user accounts; (6) install
and manage packages such as .msi and .exe; (7)
manage environment variables; (8) fix a
configuration that has drifted away from the desired
state; and (8) discover the actual configuration state
on a given node. Furthermore, DSC is a platform
build into Windows, so that it is a natural choice to
development projects in such platform.

The use of PowerShell DSC involved three
phases in our experiments. In the first phase
(authoring phase), the DSC configuration was
created by means of the PowerShell Integrated
Scripting Environment (ISE), which is an authoring
tool for DSC configurations. These configurations
are translated to one or more MOF files, which
contain the necessary information for the
configuration of the nodes. MOF (Managed Object
Format) is a schema description language used for
specifying the interface of managed resources, such
as storage, networking, etc.). The MOF files are
basically made up of a series of class and instance
declarations, such as the next example (Figure 2):

Figure 2: MOF file example to a storage resource. Source:
[http://www.informit.com/articles/article.aspx?p=30482&s
eqNum=10].

Next example (Figure 3) shows part of a MOF
file used in the Xsolution deployment, which
accounts for the configuration of roles and service
roles during the installation of the Web application
requirements (step 3 discussed in Section 3.2). A
server role is a set of software programs that, when
installed and properly configured, allows a computer
to perform a specific function for multiple users or
other computers within a network. Role services are
software programs that provide the functionality of a
role. In the manual way, the deployment team must
access different configuration pages and check a set
of options indicated by the manual. The next code
automatically identifies the parameter to be
configured and apply the indicated configuration.

Figure 3: DSC script to configure the current state of a
role and its service roles.

This script is simple and powerful at the same
time since we do not need to indicate any path for
the system variables. The own DSC framework
already identifies such variables and set them. This
process is completely transparent to human
operators. However this configuration was simple
because the DSC framework has the
“WindowsFeature” as one of its 12 built-in
configuration resources. In order, a DSC resource is
a Windows PowerShell module, which contains both
the schema (the definition of the configurable
properties) and the implementation (the code that
does the actual work specified by a configuration)
for the resource. A DSC resource schema can be
defined in a MOF file, and the implementation is
performed by a script module. Other examples of
built-in resources that were used in our study are:

 DSC File Resource: provides a mechanism to
manage files and folders on the target node;

 DSC Package Resource: provides a
mechanism to install or uninstall packages,
such as Windows Installer and setup.exe
packages, on a target node;

 DSC Service Resource: provides a mechanism
to manage services on the target node.

From Theory to Practice: The Challenges of a DevOps Infrastructure as Code Implementation

433

Some of our required configurations were not
provided as a built-in resource. However, the DSC
framework supports the extension of such resources
by means of classes, which defines a schema and its
implementation. To evaluate this feature, we decided
to implement a resource to configure the dynamic
compression on mobile responses. Figure 4 shows
the initial part of this implementation.

Figure 4: Part of the implementation for a customized
DSC resource to configure the http compression feature.

The first part of this resource (param) specifies
the resource schema, which defines the parameters
of the resource and its possible values. The second
part defines the resource script, which implements
the logic of the resource. After the resource creation,
it was used in several parts of the configuration
process by means of a simple resource call, such as
in Figure 5. Again, the script avoids the search for
the correct attributes in several configuration tabs
and ensures that the desirable values are in fact set in
the system.

The use of the infrastructure as code had a huge
impact in our deployment efficiency. The
deployment time for each release was decreased to
30 minutes. Thus, if we had 3 sprints per month, just
90 minutes will be spent in this process for each new
version. Furthermore, all the process is automatic, so
that it can be quickly executed from the beginning
and the deployment team abandoned both the use of
the guide (Section 3.2) and its update. Modifications

are now carried out in the own scripts and
maintained by version control programs.

Figure 5: Call of the WebConfig Http Compression
resource.

3.4 Comparison to Other Approaches

The question that we intend to answer here is “why
to use PowerShell DSC rather than other more
popular approaches such as Chef and Puppet?”.
PowerShell DSC comes with the Windows OS by
default, so that it is a good choice for managing
Windows environments. While PowerShell DSC is
able to directly access the Windows resources;
Puppet and Chef requires an extra layer to access
such resources. Chef, for example, started its support
for Microsoft Windows from 2011 when it released
the knife-windows plugin, which plays the role of
this additional layer. Furthermore, Ruby must also
be installed on Windows.

The use of Puppet is similar since it does not also
have direct access to the Windows resources.
Messages from Puppet users in specialised forums
corroborate this affirmation. For example, “We use
Puppet in Windows. It works, but feels like a second-
class platform” (www.reddit.com). This means, the
integration Puppet-Windows is not natural. Thus
additional tools, such as Chocolatey, are available to
facilitate this integration.

Even considering these tools, the deployment
team commonly needs to implement additional
recipes to improve this integration and access the
Windows resources. Thus, the use of PowerShell
DSC, considering the deployment to the Windows
Platform, tends to be an easier and faster process.

There are some works that discuss the mutual use
of Chef, or Puppet, and PowerShell DSC. The idea
is to take advantage of the best features of each
approach. The investigation of this hybrid strategy is
one of the subjects for our future investigations.

4 LESSONS LEARNED

Some lessons were learned along our experience
with DSC and some of them support previous finds
from the literature.

ICSOFT 2018 - 13th International Conference on Software Technologies

434

DSC enables IT teams in deploying several time
their configuration without risks of breaking the
infrastructure. Thus, DSC in fact supports the
DevOps principle of continuous deployment. We
observed two important DSC features that optimize
this process of continuous deployment:

 Only settings that do not match will be
modified when the configuration is applied.
The remainder configurations are skipped so
that we obtain a faster deployment time;

 The definition of the configuration data and
configuration logic are separated and well-
defined. This strategy supports the reuse of
configuration data for different resources,
nodes and configurations.

A useful DSC strategy is to record errors and
events in logs that can be viewed in the Event
Viewer application. This function was important
mainly at initial phases of the development, since the
composition of configuration scripts was challenging
for members of our team. Thus, the use of logs has
facilitated the identification and solving of issues.

DSC provides a declarative syntax to express
configurations for infrastructure and information
systems. This DSC feature accounts for creating a
transparent process, where the IT team do not
necessarily have to know how DSC will provide a
specific feature or software installation because the
declarative syntax is similar to an INI type
expression, specifying what should be present on the
node, as discussed in (O'Connor, 2017).

DSC has two modes of operation: push and pull.
The pull mode has its scalability as primary
advantage and it seems to be the most used DSC
mode. In fact, a single pull server can provide DSC
configurations to many connected nodes with the
additional benefit of specifying how often the LCM
(Local Configuration Manager) on each node should
check back with the pull server enforcing a
configuration. However, as our task is focused on
deployment, whose configuration is applied once for
a long period, the push mode was chosen since we
do not need periodic configuration checks.

Finally, we used the ability of DSC to create new
resources to configurations that are not provided as a
built-in resource. This process was straightforward
and the resultant resources could be reused in
several parts of the deployment script. Thus, this
feature was very useful to a complete automation of
our deployment process.

5 CONCLUSIONS

To the best of our knowledge, this work is the first
to provide an initial analysis on the use and
advantages of applying an infrastructure as code
strategy to deployment, based on the PowerShell
DSC. In fact, specialised forums and the software
engineering community comment this lack. We
could find comments such as “I've never seen
anyone with a robust production environment using
DSC exclusively yet, however there are plenty of
examples of Puppet/Chef environments”. Thus, this
paper is a first contribution in this direction.

Our analysis was based on a case study, which
used a real market application as object. The
quantitative analysis of the efficiency of the
approaches shows that the use of PowerShell DSC
offers the appropriate resources to the automation of
deployment process. However, our conclusions were
based on solutions that run on the Windows
platform. There are a few informal reports on the use
of PowerShell DSC in Linux. However we cannot
extend our conclusions to the Linux platform, since
the particularities of this environment may bring a
new set of challenges that must be analysed.

Our future researches intend to carry out a better
quantitative analysis since the infrastructure as code
is in fact being implemented in our organization.
Thus, several quantitative and qualitative data is
going to be generated regarding the real advantages
of this deployment approach.

REFERENCES

Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M.,
Tamburri, D., 2017. DevOps: Introducing
Infrastructure-as-Code. Proceedigns of the 39th IEEE
International Conference on Software Engineering
Companion, pp. 497-498.

Bang, S. K., Chung, S., Choh, Y., Dupuis, M., 2013. A
grounded theory analysis of modern Web applications:
knowledge, skills, and abilities for DevOps.
Proceedings of the 2nd annual conference on
Research in information technology (RIIT '13). ACM,
New York, NY, USA, pp. 61-62.

Bruneo, D., Fritz, T., Keidar-Barner, S., Leitner, P.,
Longo, F., Marquezan, C., Metzger, A., Pohl, K.,
Puliafito, A., Raz, D., Roth, A., Salant, E., Segall, I.,
Villari, M., Wolfsthal, Y., Woods, C., 2014.
CloudWave: Where Adaptive Cloud Management
Meets DevOps. Proceedings of the IEEE Symposium
on Computers and Communications, pp.1–6. IEEE
Press, New York.

Claps, G. G., Svensson, R. B., Aurum, A., 2015. On the
Journey to Continuous Deployment: Technical and

From Theory to Practice: The Challenges of a DevOps Infrastructure as Code Implementation

435

Social Challenges Along the Way. Information and
Software Technology, 57(1):21-31.

DeGrandis, D., 2011. Devops: So you say you want a
revolution? Cutter Business Technology Journal, 24.8,
pp. 34-39.

Duvall, M. P., 2011. Continuous Delivery Patterns and
AntiPatterns in the Software LifeCycle.

Dyck, A., Penners, R., Lichter, H., 2015. Towards
Definitions for Release Engineering and
DevOps. Proceedings of the IEEE/ACM 3rd
International Workshop on Release Engineering.

Ebert, C., Gallardo, G., Hernantes, J., Serrano, N., 2016.
DevOps. IEEE Software, vol. 33, no. 3, pp. 94-100.

Erich, F., Amrit, C., Daneva, M., 2014. Report: Devops
literature review. University of Twente, Tech. Rep.

Hosono, S., 2012. A DevOps framework to shorten
delivery time for cloud applications. International
Journal of Computational Science and Engineering
7(4): 329–344.

Humble, J,. Farley, D., 2010. Continuous delivery:
reliable software releases through build, test, and
deployment automation, Addison-Wesley
Professional.

Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T., 2013.
Testing Idempotence for Infrastructure as Code. Eyers,
D., Schwan, K (eds.) Middleware. pp. 368-388.
LNCS, vol. 8275, Springer Berlin Heidelberg.

Hüttermann, M., 2012. Infrastructure as Code. In:
DevOps for Developers. Apress, Berkeley, CA.

Jones, D., Siddaway, R., Hicks, J., 2013. PowerShell in
depth: An administrator's guide. Shelter Island, NY:
Manning Publications.

Liu, Y., Li, C., Liu, W., 2014. Integrated Solution for
Timely Delivery of Customer Change Requests: A
Case Study of Using DevOps Approach. International
Journal of U-& E-Service, Science & Technology, 7,
41–50, 2014.

Loukides, M., 2012. What is DevOps? Infrastructure as
Code, O´Reilly Media, 2012.

Lwakatare, L. E., Kuvaja, P., Oivo, M., 2015. Dimensions
of DevOps. Lassenius C., Dingsøyr T., Paasivaara M.
(eds) Agile Processes in Software Engineering and
Extreme Programming. Lecture Notes in Business
Information Processing, pp. 212-217.

Miell, I., Sayers, A. H., 2016. Docker in Practice.
Manning Publications Co.

O'Connor, R., Elger, P., Clarke, P., 2017. Continuous
software engineering – a microservices architecture
perspective. Journal of Software: Evolution and
Process, 29 (11).

Peacock, M., 2015. Creating Development Environments
with Vagrant. Packt Publishing Ltd.

Punjabi, R., Bajaj, R., 2016. User stories to user reality: A
DevOps approach for the cloud. IEEE International
Conference on Recent Trends in Electronics,
Information & Communication Technology (RTEICT),
Bangalore, pp. 658-662.

Scheuner, J., Leitner, P., Cito, J., Gall, H., 2014. Cloud
Work Bench--Infrastructure-as-Code Based Cloud
Benchmarking. Proceedings of the IEEE 6th

International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 246-253.

Scheepers, M. J., 2014. Virtualization and containerization
of application infrastructure: A comparison.
Proceedings of the 21st Twente Student Conference on
IT, pp. 1-7.

Shang, W., 2012. Bridging the Divide between Software
Developers and Operators using Logs. Proceedings of
the 34th International Conference on Software
Engineering, pp. 1583–1586. IEEE Press, New York.

Spinellis, D., 2012. Don't install software by hand. IEEE
Software, 29(4), 86-87.

Tessem B., Iden, J., 2008. Cooperation between
developers and operations in software engineering
projects. Proceedings of the 2008 International
Workshop on Cooperative and Human Aspects of
Software Engineering, pp. 105-108.

Tomasevicius Filho, E., 2016. Marco Civil da Internet:
uma lei sem conteúdo normativo. Estudos
Avançados, 30(86): 269-285. (in Portuguese)

Walls. M., 2013. Building a DevOps Culture. Sebastopol,
CA: O'Reilly Media.

Wettinger, J., Andrikopoulos, V., Strauch, S., Leymann,
F., 2014. Characterizing and Evaluating Different
Deployment Approaches for Cloud Applications.
IEEE International Conference on Cloud Engineering,
pp. 205–214. IEEE Press, New York.

Wettinger, J., Breitenbücher, U., Leymann, F., 2014.
DevOpSlang – Bridging the Gap between
Development and Operations. Villari M.,
Zimmermann W., Lau KK. (eds) Service-Oriented and
Cloud Computing. ESOCC 2014. Lecture Notes in
Computer Science, vol 8745. Springer, Berlin,
Heidelberg.

Younge, A. J., Henschel, R., Brown, J. T., Von Laszewski,
G., Qiu J., Fox, G. C., 2011. Analysis of virtualization
technologies for high performance computing
environments. IEEE International Conference on
Cloud Computing, pp. 9-16.

Zhu, L., Xu, D., Xu, X., Tran, A. B., Weber, I., Bass, L.,
2014. Challenges in Practicing High Frequency
Releases in Cloud Environments. Proceedings of the
2nd International Workshop on Release Engineering,
pp. 21–24, Mountain View, USA.

ICSOFT 2018 - 13th International Conference on Software Technologies

436

