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Abstract: OSPF may well be the most popular routing protocol within Autonomous Systems, being used in all kind of 
networks around the world. In this paper, we first design a basic model by focusing on the main tasks of a 
router running OSPF, hence being neighbour discovery and a simplified route management, by means of 
algebraic derivations using Algebra of Communicating Processes (ACP). Taking this model as a base case 
scenario, we extend it by adding up some timing behaviour present in real OSPF implementations and by 
detailing the packet exchanges involved in route management. 

1 INTRODUCTION 

We are living in an ever increasingly networked 
world and routing protocols are key players in 
supporting network communications. Focusing on 
the OSI model (X200, 1994), communication among 
network devices are mainly performed at layer 3, 
namely, network layer. 

As far as network communication is concerned, 
layer 3 protocols are run in all interconnection 
devices that belong to any network, providing an end 
to end communication. Network communication 
tasks are usually performed by routers, although it 
might also be done by any layer 3 device with the 
proper software package, such as switches, firewalls 
or devices with multiple network adapters. 

Those layer 3 devices communicate with each 
other through routing protocols in order to exchange 
their routing updates and build up and maintain their 
own routing tables, which contain the best routes to 
any attainable network according to common 
criteria. 

Routing protocols may be classified as Interior 
Gateway Protocols (IGP) and Exterior Gateway 
Protocols (EGP). A protocol belonging to the former 
is implemented within an Autonomous System (AS), 
thus among devices being managed by a common 
administration, whereas the latter is reserved for 
routing among different AS, like BGP. 

Within IGP, protocols may be distinguished 
between Distance Vector and Link State, the former 
ones being like a route post, hence dealing with the 

cost to get to a destination and pointing to the next 
hop in the way there and the latter ones being like a 
route map, thus having the aforesaid features and 
also a topology map. 

Among Link State protocols, there are two 
protocols involved, being Intermediate System to 
Intermediate System (IS-IS) and Open Shortest Path 
First (OSPF), both standardized by IETF. The 
former is mainly used in ISP environments and the 
latter is the most widespreadly used, both in IPv4 
(RFC 2328, 1998) and in IPv6 (RFC 5340, 2008) 
domains. The aim of this paper is to get a realistic 
approach model to OSPF behaviour. 

The organization of this paper will be as follows: 
first, Section 2 introduces formal description 
techniques, then, Section 3 shows an OSPF informal 
specification, next, Section 4 presents some Algebra 
of Communicating Processes (ACP) fundamentals, 
after that, Section 5 will get a basic router modelling 
in an OSPF environment, afterwards, Section 6 will 
render some examples of the basic modelling, later, 
Section 7 will perform a detailed router modelling in 
an OSPF environment, right after that, Section 8 will 
perform a model verification and finally, Section 9 
will draw the final conclusions. 

2 FORMAL DESCRIPTION 
TECHNIQUES 

The use of Formal Description Techniques (FDT) in 
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order to study the ever growing complexity of 
concurrent communication protocols is increasing as 
it provides unambiguous descriptions in a more 
precise way than any description made in natural 
languages. 

Because of that degree of complexity, there is 
not a universal FDT to be employed in all cases but 
it is necessary to deal with some of them, such that 
one might better fit in some case scenario whereas 
another one might do it in another situation. 

Among all FDT, some of the tools most 
commonly used tools are ESTELLE, LOTOS and 
SDL (Turner, 1993). Otherwise, Petri Nets (Petri, 
1966) are also widely used, as well as FSM and 
Promela. 

Eventually, Process Algebras may also be used 
for that purpose, and among them, ACP (Bergstra 
and Klop, 1985) might be one of the best suited for 
dealing with distributed and concurrent systems, as 
it abstracts away from the real nature of a system, 
thus presenting it as a set of equations according to 
its behaviour. The aforesaid equations are related to 
the ACP axioms and processes are the solutions of 
such systems of equations (Padua, 2011). 

All Process Algebras share the concept of 
Labelled Transition Systems (LTS) in order to 
specify behaviour equivalence. Such systems are 
formed by states whose transitions among them are 
labelled with the proper associated actions. This 
makes possible to model concepts regarding 
distributed processing systems, such as OSI services 
and protocols. 

ACP is going to be used in order to get a formal 
specification of OSPF, but before proceeding with it, 
an OSPF informal specification will be presented so 
as to later model those relevant features using ACP. 
This work is going to extend a previous study on 
formal description of OSPF by means of ACP (Roig 
et al., 2018). 

3 OSPF INFORMAL 
SPECIFICATION 

All routing protocols perform three basic functions, 
such as identifying their neighbours on the network, 
managing the route paths to all possible destinations 
and making dynamic decisions as to where to 
forward user traffic coming in. Those three actions 
are necessary to build up and maintain the routing 
table, thus forming control plane operations. Once 
the routing table is completed, data plane will take 
advantage of it in order to forward user traffic. 

The first function may be known as neighbour 

discovery and all OSPF routers exchange hello 
messages through all their OSPF interfaces in order 
to identify all their OSPF neighbours. All devices 
within the same OSPF area must have the same hello 
and dead timers, the same type of authentication, if 
any, and the logical addressing of each interface 
must be coherent with that of their link neighbours. 
If this is the case, an OSPF neighbour relationship 
will be established. 

The second function may be known as route 
management and all OSPF routers exchange routing 
update messages in order to keep track of all 
possible destinations available within the OSPF 
environment. 

In order to implement both functions, OSPF does 
not use any transport protocol, such as TCP or UDP, 
but it carries the data directly through an IP packet, 
using protocol number 89 as the IP protocol field in 
the IP header. 

OSPF has five different types of packets, carried 
inside an IP packet, whose functions are described in 
Table 1. 

Table 1: OSPF packet types. 

Type Packet name Function 

1 Hello 
Discovering and maintaining 

neighbors 

2 
Database 

Description
Exchanging Data Base route 

headers 

3 
Link State 
Request

Requesting Data Base route 
updates 

4 Link State Update 
Sending Data Base route 

updates 

5 Link State ACK 
Sending Acknowledgments to 

route updates 
 

Therefore, each local router running OSPF 
implements the neighbour discovery function by 
exchanging OSPF type 1 packets with all its OSPF 
neighbouring routers, whereas the route 
management function is performed by exchanging 
the rest of OSPF packets types in the proper way. 

As OSPF is a link state routing protocol, it holds 
a Link State Data Base (LSDB) containing all routes 
to all networks within the OSPF domain. 
Furthermore, it implies all routers must have their 
LSDB synchronised, meaning that all of them must 
share the same information about the network 
topology after the necessary route exchange, before 
achieving the state of convergence. OSPF is a fast-
converging routing protocol, such as a network 
composed by a few routers may converge just in a 
few seconds. 

Regarding router management, when a local 
router has knowledge of any new route or a route 
update, it sends an OSPF type 2 packet to its proper 
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OSPF neighbouring routers. Those packets are also 
known as Data Base Description (DBD) and they 
contain a set of the route headers regarding those 
routes. Upon receipt of a DBD, those OSPF 
neighbouring routers check whether each route 
header present within a DBD is also present within 
their LSDB. 

LSDB keeps not only the route headers but full 
data about routes, allowing the buildup of a network 
topology. Each LSDB entry belongs to a single route 
and it is called Link State Advertisement (LSA). 
Therefore, DBD packets contain summaries of the 
LSA. Actually, the sending and receiving DBD is 
called DataBase Exchange Process, where each LSA 
has a sequence number and is acknowledged by 
echoing it. 

Each LSA header present in a DBD contains 
some fields to identify in a unique way an LSA, such 
as LS ID, LS type and Advertising Router, but in 
order to determine which instance is more recent, 
this is, the one inside the incoming DBD or the one 
already stored within the LSDB, the fields to be 
examined are LS Sequence Number, LS Age and LS 
Checksum. 

When a local router detects an LSA more recent 
than its own database copy, then it sends an OSPF 
type 3 packet to the OSPF neighbouring router 
which sent that particular OSPF type 2 packet, so as 
to request an update and in turn an OSPF type 4 
packet will be deliver from that neighbour. 
Eventually, each OSPF type 4 packet will be 
acknowledged by an OSPF type 5 packet. 

In addition to it, OSPF type 4 packets will be 
sent from every local router to all of its proper OSPF 
neighbours every 30 minutes by default, this is 1800 
seconds, in order for them to refresh their LSA, 
although some manufacturers might set different 
values varying from 5 to 59 minutes. If such a 
refreshment is not produced, the LSA will be flushed 
from LSDB if its timer reaches its maximum aging 
time, which is 1 hour, this is, 3600 seconds. 

Special attention must be paid to OSPF type 4 
packets, as those packets implement the flooding of 
LSA, containing information about routing, metric 
and topology regarding a particular section of the 
OSPF network, thus being the relevant stuff about 
routing updates. One particular OSPF type 4 packet 
may contain a single LSA or multiple LSA. 

LSA are used to fill and update LSDB, although 
there is not only one sort of LSA but a few of them, 
each one being employed for advertising different 
OSPF networks. The mostly used LSA types are 1 to 
5, although there are defined up to eleven types. 

It must be taken into consideration that OSPF is 

a highly scalable routing protocol because of the 
concept of area, which permits the division of the 
whole OSPF domain in different areas, hence routers 
belonging to one particular area must have their 
LSDB synchronised. 

The connection among two or more areas is 
performed by an Area Border Router (ABR) which 
is a router that has interfaces in more than one area, 
thus being able to propagate routes through all of 
them. In addition to it, an Autonomous System 
Boundary Router (ASBR) is a router being the edge 
router with another routing domain, which also 
might propagate some external routes inside. Those 
OSPF multiarea concepts are depicted in Figure 1. 

 

Figure 1: Multiarea OSPF routing domain. 

Regarding LSA types, there are LSA types 1 and 
2 that carry routes within the same OSPF area, thus 
they are referred to as intra-area LSA. There are also 
LSA types 3 and 4 that carry routes from one area to 
another one, thus they are known as inter-area LSA. 
Finally, there are LSA type 5 that carries external 
routes redistributed into OSPF domain. 

The mostly used LSA types are described in 
Table 2, where the acronym DR will be described in 
due course. 

Table 2: OSPF LSA main types. 

Type LSA name Function 

1 Router LSA 
Each router advertises all its 
directly connected links

2 Network LSA 
Each DR in a multi-access 
network advertises all the 
routers connected 

3 Summary LSA 
Each ABR advertises routes 
from one area into other 
connected areas 

4 Summary ASBR LSA
Each ABR advertises routes 
coming from an ASBR to show 
where it is 

5 AS external LSA 
Each ABR advertises external 
routes being redistributed into 
OSPF domain 

 

Apart from that, it is important that all 
neighbours within a particular network segment 
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share the same OSPF network type. There are four 
main types according to the standards, each of them 
having particular characteristics. This fact makes 
each of those network types a different case 
scenario, as they might be exhibited in the following 
points: 

A. Broadcast (BRC) 

There might be more than two neighbours within a 
single network segment and then a Designated 
Router (DR) and a Backup Designated Router 
(BDR) must be assigned. The first one will be in 
charge of receiving an LSA containing the routing 
updates from a given neighbour and sending it back 
to the rest of the neighbours, whereas the second one 
will keep track of all receiving LSA but will not be 
sending anything. With respect of the rest of 
neighbours, they will be considered DROthers and 
will not share LSA directly with any other 
neighbour. The typical example of this network type 
is an Ethernet environment, like in Figure 2. 

 

Figure 2: OSPF Broadcast network. 

B. Point to Point (P2P) 

There are just two neighbours, so there is no need to 
appoint a DR or a BDR as they both will be 
exchanging LSA. A typical example of this network 
type is a Serial link between two pairs, working with 
layer two protocols PPP or HDLC, as in Figure 3. 

 

Figure 3: OSPF Point to Point network. 

A. Non Broadcast MultiAccess (NBMA) 

It is found on non broadcast environments, such as 
Frame Relay or ATM, and a multi-access topology 
is needed, such as Full Mesh or Partial Mesh. There 
might be present more than two neighbours, 
therefore a DR and a BDR must be appointed, such 
as in Figure 4. 

 

Figure 4: OSPF Non Broadcast MultiAccess network. 

B. Point to MultiPoint (P2MP) 

It is present on non broadcast environments, such as 
Frame Relay or ATM, and a Hub-and-Spoke 
topology is implemented. In such a case, that 
topology might be considered as a string of point to 
point links, as all spokes routers must first 
communicate with the hub in order to do it with 
another spoke router, so there is pointless to assign a 
DR and a BDR, as shown in Figure 5. 

 

Figure 5: OSPF Point to MultiPoint network. 

As stated before, neighbour discovery function 
implies that all link neighbours share the same 
values of hello timers and dead timers. There is a 
timer set for each interface. The hello interval is 
used to maintain neighbour relationships, thus being 
reset upon each sending, whereas the dead interval is 
used to delete such neighbour relationship after 4 
silent hello intervals and it is reset upon receiving a 
hello packet from a neighbour. 

The hello interval defines how often a hello 
packet is sent over whereas the dead interval sets the 
waiting time for a hello packet before the neighbour 
is declared dead. The default values of both timers 
depend on the network type and they are described 
in Table 3. 

Table 3: Hello and Dead Timers –vs– Timer Types (TT). 

Network Type Hello Timer Dead Timer Value
BRC 10 sec. 40 sec. TT = 0
P2P 10 sec. 40 sec. TT = 0

NBMA 30 sec. 120 sec. TT = 1
P2MP 30 sec. 120 sec. TT = 1
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In case any two neighbours are exchanging LSA, 
an OSPF adjacency relationship will be established. 
At that point they will start exchanging a full copy 
of their LSDB and in turn they will be sending each 
other any given routing update in order to keep their 
LSDB synchronised. 

Once LSDB belonging to all routers within a 
given area are in synchronisation, then the Shortest 
Path First (SPF) algorithm, also known as Dijkstra 
algorithm (Dijkstra, 1959), will be run in each 
router, taking itself as the root of the tree, in order to 
get the shortest path tree from each router to all 
networks present in the OSPF domain. 

The SPF algorithm takes interface bandwidth in 
order to calculate its cost, also known as metric. It 
must be taken into account that the standard OSPF 
v1 was released in the early 90s, so by that time a 
FastEthernet link was the fastest and the original 
expression to calculate it was the integer part of a 
fraction where the numerator was 108 and the 
denominator was the link bandwidth in bps, being 1 
the least possible cost. 

Therefore, a FastEthernet 100 Mbps link would 
have an OSPF cost of 1 and also any faster link, 
whereas a Serial 1.544 Mbps T1 link will have 64. 
Later on, that formula was adjusted accordingly but 
nowadays it is still considered as the default 
implementation for backward compatibility 
purposes. 

On completion of the Dijkstra algorithm in each 
router, the routes with the least cost from a particular 
router to all those OSPF domain networks will be 
selected and in turn they will be written into the 
routing table. 

At that stage, the third function exposed above 
for any routing protocol will be fulfilled. Therefore, 
the routing table will be built up, meaning that the 
router will be ready to forward data packets to any 
destination within the OSPF domain. 

This is an OSPF informal specification, but we 
are looking forward to achieving an OSPF formal 
specification that captures the protocol behaviour. 

4 ACP FUNDAMENTALS 

The FDT chosen to model OSPF is going to be ACP, 
which is a kind of process algebra that allows to 
describe concurrent communication processes in an 
abstract way, in a similar fashion as abstract algebras 
do. 

This is done by getting some ACP process terms 
being behaviourally equivalent as the process to be 
modelled, hence being OSPF, without caring about 

other implementation details of that process being 
described. 

In order to achieve this, the concept of 
bisimulation equivalence is used, also known as 
bisimilarity, meaning that two processes may 
execute the same string of actions and also have the 
same branching structure (Fokkink, 2007). 
Therefore, two bisimilar processes are considered to 
behave in an equivalent manner. 

ACP has its own set of axioms so as to prove that 
two process terms have an equivalent behaviour. 
Those axioms make use of the syntax and semantics 
of ACP operators (Lockefeer et al., 2016). 

The basic signature of a framework for ACP 
consists of atomic actions, such as sending and 
receiving data, which represent actions whose 
behaviour may not be further divided, as well as 
alternative operators, defined as sums, and 
sequential operators, defined as products. 

That may be extended with the use of concurrent 
operators (||), whose behaviour may be described by 
the left merge operator (||_) and the communication 
merge operator (|) by means of the Expansion 
Theorem, presented by Bergstra and Klop (Bergstra 
and Klopp, 1984), where }{}..{ 1 in

i XXXX   and 

},{}..{ 1
,

jin
ji XXXXX  : 

  ji
ji

i
in XXXXXXX ,

1 _||)|(_||)||...||( (1)

Therefore, depending on the number of concurrent 
processes, the expression goes this way: 

21122121 |_||_||)||(2 XXXXXXXXn   

132

231321

213312

321321
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The behaviour of the left merge and the 
communication merge operators is the following: 

)||(_||)( yxvyxv   (2)

zyzxzyx _||_||_||)(   (3)
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)||()|()(|)( yxwvywxv   (4)

zyzxzyx |||)(   (5)

In addition to it, the encapsulation operator )( iH X  

forces internal actions into communication. Joining 
it with the concurrent operator shown above, the 
outcome will only depend on whether the first factor 
of each term belongs to set H  or otherwise, where 
constant   represents a deadlock and the set H  
represents all internal actions related to sending and 
receiving messages. 

HvvvH  ,)(  (6)

HvvH  ,)(   (7)

  )(H  (8)

)()()( yxyx HHH   (9)

)()()( yxyx HHH   (10)

For a communication to take place in a channel, a 
sending action is needed at one end whereas a 
receiving action is needed at the other one, otherwise 
deadlock )(  will happen. 

Therefore, communication is going to be 
considered herein as unidirectional, hence, regarding 
the channel where its sending point is i  and its 
receiving point is j : 

jijiji crs ,,, |   (11)

ijji rs ,, |  (12)

lkji rs ,, |  (13)

In summary, when applying the encapsulation 
operator to the Expansion Theorem in order to 
derive concurrent processes, only terms starting with 
a communication merge operator having both the 
same initial end and the same final end will prevail, 
whereas all of the other terms will be discarded. 

Furthermore, a conditional operation is declared 
in order to distinguish whether a condition has been 
accomplished or otherwise. This way, data can 
influence process behaviour. As per its syntax, the 
condition offers a Boolean data type and goes in the 
middle of the expression, surrounded by two 
triangles pointing outwards, whereas the True 
condition goes ahead and the False condition goes 
behind. 

FalseConditionTrue ||  (14)

Those are the necessary ACP operators in order 
to undertake the modelling of OSPF through 
algebraic derivations. According to that, two 
different models are presented: 
 a basic model, making some assumptions over 

the OSPF packet exchange in order to keep it as 
simple as possible 

a detailed model, following the actual OSPF packet 
exchange in order to make it as close to real as 
possible 

5 BASIC ROUTER MODELLING 
IN OSPF 

The aim of this basic model is to get the big picture 
of OSPF dynamics and a couple of assumptions are 
to be made for that purpose. 

The first one is to take the LSA exchange 
process as a whole, thus considering the exchange of 
OSPF packet types 2, 3, 4 and 5, as a single process 
so as to keep things simple. 

It is worth noting that the LSA exchange process 
gets the synchronisation of LSDB belonging to all 
OSPF routers within the same area so as to 
eventually have the same contents within their 
respective LSDB. That is why OSPF is considered a 
link state routing protocol. At that point, the OSPF 
routers are fully adjacent, thus making LSDB 
synchronisation process possible in a predictable 
time interval. 

The second one is to ignore all the timers 
involved in OSPF, namely, on one hand, hello timer 
and dead timer in order to keep the neighbour 
relationships and, on the other hand, the LSA refresh 
timer and the max age LSA timer in order to keep 
the each LSA entry in LSDB updated. 

Keeping those assumptions in mind, a basic 
OSPF model will be built up and for that purpose, 
we have to deal with the three basic functions 
describe in Section 3. 

The first function was Neighbour Discovery, 
where messages flow in all directions from all OSPF 
routers looking for their OSPF neighbouring routers. 

Using ACP syntax and semantics, it may be said 
that a local OSPF router i  exchanges hello 
messages )(h  through all its OSPF interfaces, 

facing its j  neighbouring OSPF routers, regardless 

of the network type or which area they are located 
in. 

Therefore, Neighbour Discovery is modelled by 
the following expression: 
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))()(( ,,1_ hrhsR ij
ij

jii  


 (15)

 

When the sending and receiving actions from 
neighbouring routers flow through the same channel 
in the same direction (the same routers i  and j , in 

the same order), hello communication will occur, 
therefore: 

)()(|)( ,,, hchrhs jijiji   (16)

On the contrary, if both actions do not meet the 
aforesaid requirements, it will yield deadlock ( ). 

This will get the expected result, such as 
communication will take place between any router 
and any of its neighbours, always in a unidirectional 
fashion, hence all OSPF neighbours will be engaged 
in a neighbour relationship. 

The second function was Route Management and 
the main difference with the previous one is that 
network type is crucial, as LSA will be exchanged 
by the routers having an adjacency relationship. It 
must be taking into consideration that this basic 
model assumes that the aforesaid function is 
modelled as a single process. 

According to the behaviour of DR and BDR 
routers exposed above, the following table shows 
whether LSA communication will take place 
between a sender and a receiver. The role of each 
sender will be shown as rows whereas the role of 
each receiver will be seen as columns. 

If a cell being the crossing point between a row 
represented by a sender and a column represented by 
a receiver shows 1, then LSA communication will be 
held and LSA will be exchanged. Otherwise, if a cell 
shows 0, then LSA communication will not be 
produced between that sender and that receiver. 
Needless to say that communication between a 
single router being both sender and receiver is not 
allowed. It all may be appreciated in Table 4. 

Table 4: Valid Communication Channels. 

 rDR rBDR rDRO1 rDRO2 rDRO3 rDRO4

sDR - 1 1 1 1 1
sBDR 1 - 0 0 0 0
sDRO1 1 1 - 0 0 0
sDRO2 1 1 0 - 0 0
sDRO3 1 1 0 0 - 0
sDRO4 1 1 0 0 0 -

 

In addition to it, it is also necessary to assign 
different values to the four different network types 
previously defined, depending whether DR and BDR 
are appointed or otherwise, as seen in Table 5. 

Table 5: Values assigned to network types (NT). 

Network Type Nomenclature Value
Broadcast BRC NT = 0

Point to Point P2P NT = 1
Non Broadcast 
MultiAccess

NMBA NT = 0 

Point to MultiPoint P2MP NT = 0
 

In order to implement Table 4 in an equation, it 
is first necessary to assign different values to the 
different router roles and also keeping in mind the 
values given by Table 5. This is shown in Table 6. 

Table 6: Values assigned to router roles. 

Network 
Type

Router  
Role

Naming Value 

NT = 0 Designated Router DR 3

NT = 0 
Backup Designated 

Router
BDR 2 

NT = 0 DR Other DRO 1
NT = 1 Point to Point Routers - 0

 

Putting it all together, coefficients jik ,  will be 

implemented in order to capture the behavior 
exhibited in the previous tables. Those coefficients 
have binary values, thus 1 or 0, depending on 
whether communication exists in the channel 
starting in a router i  and ending in a router j . 

Therefore, the coefficients will permit 
communication between peers in a unidirectional 
way or otherwise. 

The role corresponding to the local router i  will 
be carried by variable x  whereas the role 
corresponding to its neighbouring router j  will be 

carried by variable y . 

Those coefficients take their values from the next 
equation, taking the integer part of a fraction 
containing the role of both ends of the channel and 
the network type: 

NT
yx

k ji 





 


5

2
int,  (17)

In order to get the roles for each router within each 
network type, which will provide x  and y  values, 

it is necessary to implement an algorithm having all 
of the routers within a network segment )(n  and its 

network type )(NT  as arguments, such as 

Algorithm 1. 
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RouterRole(n,NT){ 
 If (NT == 1) 
 Then  
  For (z = 0; z < count(n); z++) 
  Do 
   z.Role = 0; 
  Done 
 Else  
  If (NT == 0) 
  Then 
   DR.priority = 0; 
   DR.router-id = 0; 
   BDR.priority = 0; 
   BDR.router-id = 0; 
   Flag = 0; 
   For (z = 0; z < count(n); z++) 
   Do 
    If (z.priority > DR.priority) 
    Then 
     DR.priority = z.priority; 
     DR.router-id = z.router-id; 
     Flag = 1; 
     z.Role = 3;           
    Else  
     If (z.priority == DR.priority) 
     Then 
      If (z.router-id > DR.router-id) 
      Then 
       DR.router-id = z.router-id; 
       Flag = 1; 
       z.Role = 3; 
      EndIf 
     EndIf 
    EndIf 
    If (Flag == 0) 
    Then 
     If (z.priority > BDR.priority) 
    Then 
     BDR.priority = z.priority; 
     BDR.router-id = z.router-id; 
   Flag = 1; 
     z.Role = 2; 
    Else  
     If (z.priority == BDR.priority) 
     Then 
      If (z.router-id > BDR.router-id) 
      Then 
       BDR.router-id = z.router-id; 
       Flag = 1; 
       z.Role 2; 
      EndIf 
     EndIf 
    EndIf 
    If (Flag == 0) 
    Then 
     z.Role = 1; 
    EndIf 
   Done 
  EndIf 
 EndIf 
} 

Algorithm 1: RouterRole(n,NT). 

Using ACP syntax and semantics, it may be said 
that a router i  exchanges LSA messages )(d  

through its proper OSPF interfaces, this is, facing its 
j  neighbours where the coefficients given by (17) 

are 1 no matter the network type. 

Therefore, Route Management is modelled by 
the following expression: 

))()(( ,,,,2_ drkdskR ijij
ij

jijii  


 (18)

Analogously as the previous function, 
communication will only take place in a 
unidirectional fashion between a given sender and a 
particular receiver, yielding deadlock ( ) in the rest 
of the cases. 

)()(|)( ,,, dcdrds jijiji   (19)

The third function was Path Determination and 
consists in making decisions about where to forward 
each network message coming in, in other words, 
filling up the routing table according to the Shortest 
Path First (SPF) algorithm, also known as Dijkstra 
algorithm. 

Two actions need to be performed in order to 
achieve that. The first action is running the Dijkstra 
algorithm, considering the OSPF metric as the cost 
to be minimised. It solves the problem of finding the 
shortest paths from a source node to the rest of the 
nodes within a network, providing all edges do have 
non-negative weights. 

 

 

Algorithm 2: Dijkstra(i,G). 

A pseudocode algorithm implementing this 
action, starting with router i  as the root of the 
shortest path tree for the weighted graph 

),( VEG   representing the OSPF domain, 

composed by all vertices Vv  with edges acting 

as the weight function REw :  among those 

Dijkstra(i,G){   
 dist[i] ← 0  
 for all v ∈  V–{i} 
  do dist[v] ← ∞  
 done 
 S ← ∅	
 Q ← V 
 while Q ≠ ∅	
 do 
  u ← mindistance(Q,dist) 
  S ← S ∪ {u}  
  for all v ∈  neighbors[u] 
  do 
   if dist[v] > dist[u] + weight(u,v) 
    then dist[v] ← dist[u] + weight(u,v) 
   endif 
  done 
 done 
 return dist 
} 
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vertices, would give a vector named dist. That array 
contains the least path costs from the source router i  
to all destinations. The aforesaid algorithm is 
Algorithm 2. 

Regarding the second action, it is the election of 
the least path cost from a local router to any other 
destination. This action is performed right after the 
Dijkstra algorithm has been executed and it just 
takes its result as the outgoing interface and the path 
cost to reach each network being part of the OSPF 
domain and passes it on to the routing table. 

In short, Path Determination would be modelled 
by the following string of algorithms: 

)(),(3_ iBestRoutesGiDijkstraRi   (20)

But ACP does just deal with processes and that 
implies that it does not deal with neither data nor 
time (Fokkink, 2016), so this third function may not 
be implemented. There are some ACP extensions 
like mCRL2 (Groote and Mousavi, 2014) providing 
data and time capabilities that might make possible 
to implement Path Determination as described 
above. 

Hence, to wrap it all up, the modelling of an 
OSPF router in this basic case scenario using ACP 
syntax and semantics will take both neighbour 
discovery and route management functions. 
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6 SOME EXAMPLES OF OSPF 
BASIC MODELLING  

In order to show the outcome of (21), we are going 
to render some examples so as to prove that the 
basic router model for OSPF using ACP mirrors the 
real OSPF behaviour. 

In those examples, n  will represent the number 
of routers within the same network segment and 
NT  will carry whether that network segment needs 

to appoint a BDRDR /  or otherwise. 

A. n=2; NT=1; so there is no need of DR/BDR 

))(1)(1())()(( 1,22,11,22,11 drdshrhsR   

))(1)(1())()(( 2,11,22,11,22 drdshrhsR   
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
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B. n=2; NT=0; it yields the same result as A. 
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C. n=3; NT=0; it is supposed that R1 is DR, R2 is 
BDR and R3 is DROther. 
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D. n=4; NT=0; it is supposed that R1 is DR, R2 is 
BDR, R3 and R4 are DROther. 
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7 DETAILED ROUTER 
MODELLING IN OSPF 

The aim of this detailed model is to get a more 
realistic approach of OSPF dynamics and both 
assumptions made in the previous basic model are to 
be reverted for that purpose. 

Regarding LSA exchange process, it must first 
be considered the proper sequence of events. As 
exposed in Section 3, it involves OSPF packet types 
2 to 5, in a way that a local router sends a type 2 
packet to each of its adjacent routers and then it 
waits for receiving the acknowledgements in the 
form of an echoing type 2 packet for each sending 
one. 

Alternatively, a local router waits for receiving a 
type 2 packet from each of its adjacent routers and 
after echoing that packet to the sender, then it runs 
the Update algorithm in order to check whether any 
of the LSA announced are more up to date that the 
ones already stored in its LSDB. 

If this is the case, a type 3 packet will be sent 
back in order to ask for the more recent instance of 
that particular LSA. Then, it will wait for receiving a 
type 4 packet with the updated LSA and it will in 
turn send a type 5 packet, meaning acknowledge 
receipt of that LSA. 

On the contrary, if this is not the case, it means 
that it is an acknowledge receipt of a type 2 packet 
previously sent to that adjacent router. This situation 
implies that the local router will not be sending 
further packets in response to it. 

Regarding the Update algorithm, it is shown in 
Algorithm 3. It takes the incoming OSPF type 2 
packet and it checks each LSA header inside it 
against those of the local LSDB corresponding to the 
each proper LSA. 

 

 

Algorithm 3: Update(i). 

In order to keep the algorithm simple, the LSA is 
uniquely identified by its LS ID field and the most 
recent instance is considered to be the one with the 
higher sequence number. Regarding the outcome of 
that algorithm, if it gives 1, it means that LSA must 
be updated but if it gives 0, it must not. Furthermore, 
if an LSA does not exist in LSDB, it must also be 
updated, so the algorithm gives 1 as well. 

In summary, the LSA exchange process may be 
described this way using ACP syntax and semantics. 
The diverse OSPF Packet Types are expressed 
herein as PTtypenumber. 
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(22)

Regarding the use of timers, there are four timers 
involved in OSPF operations, as exposed in Section 
III. The hello timer and dead timer values depend on 
the network type, expressed by the variable TT, and 
they have already been stated in Table III. However, 
the LSA refresh timer and the maxAge LSA are 
considered invariant of network type and they may 
be expressed as per their default values. 

As stated before, ACP rules do not show a way 
to deal with time, as ACP represents LTS. 
Nonetheless, LTS might be turned into Timed 
Transition Systems (TTS) by making explicit at 
which time an action takes place and that extension 
would allow the introduction of timers into the 
OSPF model. Actually, there are some ACP 
extensions including time, such as mCRL2. 

We herein consider that there are four constants 
expressing the maximum amounts of seconds before 
an action gets triggered. Those four maximum 
values for the timers might be expressed in seconds 
in an algebraic way. 

 

TTT MAXhello  2010_  (23)

)2010(4_ TTT MAXdead   (24)

1800_ MAXrefreshLSAT  (25)

3600_max MAXAgeLSAT  (26)

Furthermore, the four timers may be decreased and 
evaluated as the time goes by, this  is, at every 
second. This action will be modelled for every router 

i  by a function called Time(i), where it  is life time 

in OSPF, shown as Algorithm 4. 
 

Update(i,DBD){ 
 For Each LSID in DBD 
 Do 
  If (DBD.LSID == i.LSDB.LSA.LSID) 
  Then 
   If (DBD.seqNo > i.LSDB.LSA.seqNo) 
   Then 
    Return 1; 
   Else 
    Return 0; 
   EndIf 
  Else             
   Return 1; 
  EndIf 
 Done 
} 
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Algorithm 4: Time(i). 

Therefore, the use of timers might be modelled 
as four synchronous processes being constantly 
evaluated by means of the proper conditional 
operators, whereas the function Time(i) represents 
the time passing by, expressed as one second at each 
execution of that function. 

It is worth noting that hello packets will be 
expressed as OSPF type 1 packets, to be coherent 
with the naming convention used in the LSA 
exchange process previously stated for this detailed 
model. 

Furthermore, the Init(i) function represents the 
connection of a router i  to the OSPF domain, so 

0it  when a router has just joined. On the 

contrary, the Kill(i) function represents the 

disconnection of that router i  , so it . Also, 

ResetX(i) functions just assign the maximum value 
to timers given by (23)-(26), where X represents the 
initial letter of the proper timer in capital letters. 
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In summary, the modelling of an OSPF router in this 
detailed case scenario using ACP syntax and 
semantics will take some asynchronous terms and 
some other synchronous terms. The former terms do 

not depend on time and they are expressed by aR  as 

shown in (22) and the latter do depend on time and 

they are expressed by sR  as shown in (27). 
 

  )(|0|)( iInittRRiR isa   (28)

8 MODEL VERIFICATION 

In order to perform a model verification, it is to be 
taken into account that ACP is a process algebra, 
that being part of the abstract algebras family. 
Therefore, a commonly used technique for 
verification on those kinds of algebra may well be 
used herein, such as proof by contradiction. 

This technique states an initial proposition and 
then some reasoning takes place in order to verify if 
that proposition proves right, or otherwise, if a 
contradiction appears, that will mean that the initial 
proposition must be wrong. 

It has been previously said that OSPF might be 
broken into three components, such as Neighbour 
Discovery, Route Management and Path 
Determination. Hence, all of them will be assessed, 
and if all three prove right, the model will be then 
verified, as it will behave as stated on the OSPF 
protocol standards. 

First, neighbour discovery is done thanks to the 
hello packets exchange, thus bringing up neighbour 
relationships. In case they were not successfully 
exchanged, those relationships could not take place, 
so the model would not work as expected. But this is 
not the case, as the model allows communication 
from a particular sender to a particular receiver of 
packets carrying such hello messages (h). 

Second, route management is achieved due to the 
LSA exchange, thus bringing up adjacent 
relationships. In case those were not properly 
exchanged, those relationships could not happen, so 
the model would not meet the specifications. But 
that is not the case, as the model allows 
communication from a sender to its authorised 
receiver of packets carrying such data (d). 

Eventually, path determination is undertaken by 
the layer 3 devices, in a way that the best possible 
route from a particular device to any destination is 
calculated thanks to the Dijsktra algorithm, which 
gets feed from the LSA exchange. As such exchange 
has just been proved right, so must be shortest path 
tree obtained from the Dijkstra algorithm. 

Therefore, this OSPF model has been verified. 

9 CONCLUSIONS 

In this paper we have been working on achieving a 
formal modelling of OSPF through algebraic 
derivations using ACP syntax and semantics. Two 
models have been presented, hence a basic one and a 
detailed one, both meeting the requirements. 

Time(i){  
 thello,i = thello,i – 1; 
 tdead,i = tdead,i – 1; 
 trefreshLSA,i = trefreshLSA,i – 1; 
 tmaxAgeLSA,i = tmaxAgeLSA,i -1; 
 ti = ti + 1; 
 return 1; 
} 

OSPF Algebraic Formal Modelling using ACP - A Formal Description on OSPF Routing Protocol

65



 

On one hand, the basic model makes 
assumptions about taking the LSA exchanging 
process as a single action and also about not 
considering any timing constraints. 

On the other hand, the detailed model reverts 
those assumptions, thus making it closer to real 
OSPF. 

REFERENCES 

X200, 1994. Information technology - Open Systems 
Interconnection - Basic Reference Model: The basic 
model. ITU. 

RFC 2328, 1998. OSPF version 2. IETF. 
RFC 5340, 2008. OSPF for IPv6. IETF. 
Turner, K. J., 1993. Using Formal Description 

Techniques: An Introduction to Estelle, Lotos and 
SDL. Ed. John Wiley and Sons Ltd. 

Petri, C. A., 1966. Communication with Automata. 
RADC-TR-65-377, Volume 1. 

Bergstra, J. A., Klopp, J. W., 1985. Algebra of 
communicating processes with abstraction. 
Theoretical Comp. Science, Vol. 37, pp. 77-121. 

Padua, D. A., 2011. Encyclopedia of Parallel Computing. 
Ed. Springer, 1st edition. 

Roig, P. J., Alcaraz, S., Gilly, K., Juiz C., 2018. Study on 
OSPF Algebraic Formal Modelling using ACP. 
Elektronika ir Elektrotechnika 2018 (accepted for 
publication). 

Dijkstra, E. W., 1959. A note on two problems in 
connexion with graphs. Numerische Mathematik, 
Volume 1, pp 269-271. 

Fokkink, W., 2007, Introduction to Process Algebra. Ed. 
Springer, 2nd edition. 

Lockefeer, L., Williams, D. M., Fokkink, W,. 2016. 
Formal specification and verification of TCP extended 
with the Window Scale Option. Science of Computer 
Programming, Vol. 118, pages 3-23. 

Bergstra, J. A., Klopp, J. W., 1984. Verification of an 
Alternating Bit Protocol by Means of Process Algebra. 
LNCS, Vol. 215, pp. 9-23. 

Fokkink, W., 2016. Modelling Distributed Systems. Ed. 
Springer, 2nd edition. 

Groote, J. F., Mousavi, M. R., 2014. Modelling and 
Analysis of Communicating Systems. Ed. MIT Press, 
1st edition. 

DCNET 2018 - International Conference on Data Communication Networking

66


