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Abstract: This paper presents a fault-tolerant sensor reconciliation scheme for systems equipped with a redundant num-
ber of possibly faulty ”physical” sensors. The reconciliator is in charge to discover on-line, at each time
instant, the faulty physical sensors, if any, and exclude their measures from the generation of the ”virtual”
sensors, which, on the contrary, are supposed to be always healthy and suitably usable for control purposes
without requiring the reconfiguration of the nominal control law. Amongst many, the solution proposed here
is based on the use of a Linear Parameter Varying Luenberger Observers (LPV-LU) able to estimate both
state, bias fault and loss of effectiveness fault. Such information is used to self adapting the parameters of the
LPV representation. For simplicity, the sensor faults here considered are limited to variation of sensors’ gain
and offset values. The scheme is fully described and all of its properties investigated and proved. Finally, a
simulation example is reported in details to show the effectiveness of the scheme.

1 INTRODUCTION

The capability of control systems to detect faulty sen-
sors and recover in turn uncorrupted data has progres-
sively gained more relevance in the last two decades.
Traditional control schemes are usually designed by
assuming perfect working conditions of the sensors
to be used. However, in practice, sensors are subject
to faults and, in that case, may provide wrong infor-
mation about the system state, possibly degrading the
system performance or even causing instability (Mer-
rill et al., 1988; Samara et al., 2008). Therefore,
Fault-Tolerant Control (FTC) is an important area of
research in the safety critical systems domain.

One strategy to cope with this situation is to find
a controller that assigns to the reconfigured closed-
loop system a similar behaviour with respect to the
nominal closed-loop system. A different strategy re-
lies on the fault hiding approach that tries to hide the
fault to the controller. In the latter approach the nom-
inal controller remains in the loop while the reconfig-
uration block re-routes the output signals around the
faulty component (Lunze and Richter, 2008). Such
an approach has been dealt with in (Steffen, 2005)
where a virtual sensor strategy has been proposed for

fault accommodation purposes. The disadvantage of
that method is that it is assumed that the sensor faults
have already been detected and estimated correctly.
The virtual sensors contribution to Active Fault Toler-
ant Control (AFTC) has been investigated in (Ponsart
et al., 2010). There, the case of multiplicative sen-
sor faults has not received any consideration. The vir-
tual sensor approach has been investigated in (Behzad
et al., 2016), for Sensor Reconciliation(SR) purposes.

This paper aims at presenting a general SR method
for discrete-time linear systems with redundant phys-
ical sensors possibly subject to loss of effectiveness
(gain) and offset (bias) faults. To this end, the pro-
posed scheme consists of two interconnected mod-
ules: (i) a polytopic Luenberger Observer (LU) ((Bara
et al., 2001)) in charge of estimating the current gain
sensor faults, the state of the system and possible bias
fault occurrences; (ii) a sensor reconciliation unit used
to reconcile sensor measures. The key idea used in
the proposed scheme is to consider the current gain
and bias sensor faults with the system states, as an
auxiliary state and consequently to design a polytopic
LPV-UIO observer capable to estimate the faults via
a specific Linear Matrix Inequality (LMI) procedure.
Differently from (Behzad et al., 2016), where the con-
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vergence of the scheme was based on a persistence of
excitation assumption, here we propose a Luenberger
observer to jointly estimate the system state and fault
parameters in a single step in order to guarantee the
convergence of the whole scheme. Moreover, unlike
the approach of (Steffen, 2005), our setup is capable
of fault estimation along with fault accommodation.
The key difference of our approach with respect to
(Ponsart et al., 2010) is that both the multiplicative
and additive faults may be taken into consideration.
Properties of the proposed LPV-LU scheme are for-
mally proved and discussed. A final numerical exam-
ple is reported to show the effectiveness of the pro-
posed strategy.

NOTATION

Let R denote the set of real numbers. A generic ball
in an Euclidean n-space Rn is defined as Bδ := {x ∈
Rn : |x|2 ≤ δ}. Finally, let ‖x(·)‖ denote the `2-norm
of a discrete-time signal {x(t)}∞

−∞ (i.e. ‖x(·)‖ =√
∑∞

t=−∞ |x(t)|22 ).

Definition 1.1. (Cartesian Product) - For P ∈Rp and
Q ∈ Rq being two polytopes of dimension p and q
respectively, their Cartesian Product is defined as

P ×Q = {(x,y) : x ∈ P ,y ∈ Q }
Definition 1.2. (Unit Simplex) - The Polytope Sk :=
{ξ ∈ Rl |ξi ≥ 0, i = 1, ..., l,∑l

i=1 ξi = 1} is a k-
dimensional Unit Simplex.

Definition 1.3. (Convex hull) - For l matrices
Mi ∈ Rn×m, i = 1, ..., l, their Convex Hull, de-
noted by Co{Mi}, i = 1, ..., l, is the polytope aris-
ing by all convex combinations of matrices Mi i.e
{∑l

i=1 ρiMi, [ρ1, ...,ρl ]
T ∈ Sl} with Sl being a l-

dimensional unit simplex.

Definition 1.4. (Pontryagin Set Difference) - For
given sets A ,E ⊂Rn, the set determined as A∼E :=
{a : a+ e ∈ A ,∀e ∈ E} is the Pontryagin Set Differ-
ence of A with respect to E .

2 PROBLEM FORMULATION

Let us consider a plant whose dynamics is described
by the following discrete-time state-space representa-
tion

xp(t +1) = Axp(t)+Bu(t)+Ev(t) (1)

y(t) = ∆
(
γ(t)
)
Cyxp(t)+Fb(t) (2)

z(t) = HzCyxp(t) (3)

where A∈Rn×n, B∈Rn×nu , E ∈Rn×nv , Cy ∈Rm×n and
F ∈ Rm×q are constant matrices. Moreover, xp(t) ∈
Rn is the state vector assumed to be confined in the
following set

Xp := {xp : xp ≤ xp ≤ xp} (4)

Notice that the upper and lower bounds are re-
quired to describe the polytopic representation of the
output. This representation will be used to design a
LPV observer.

Moreover u(t)∈Rnu is a known input while v(t)∈
Rnv is an unknown input. y(t) ∈ Rm represents the
plant output provided by physical redundant sensors
possibly effected by both bias b(t)∈Rq and loss of ef-
fectiveness faults, the latter being modeled by the gain
matrix ∆(γ) ∈ Rm×m that, for simplicity, we assume
hereafter to have the following elementary structure:

∆(γ(t)) =




γ1(t) 0 0

0
. . . 0

0 0 γm(t)


 (5)

Finally, z(t) ∈ Rr, with r ≤ m, is defined as the
virtual output of the system and represents the healthy
information we need to get from the plant for control
purposes regardless of any fault possibly occurring on
the physical sensors.

It is clear that in the absence of faults one would
have ∆(γ) = Im and b(t) = 0q. However, in the more
general case b(t) 6= 0q and ∆(γ) 6= Im, with γ confined
in the generic polytope

Γ⊆ {γ : 0m ≤ γ≤ 1m} (6)

For this reason, it is not convenient to evaluate
the signal z(t) as z(t) = Hzy(t) because it would be
affected by possibly corrupted information brought
by y(t). However, because the state xp(t) is assumed
not directly measurable, z(t) cannot be evaluated as
simply as in (3), but a more sophisticated machinery
is required. This aspect motivates the design of the
Sensor Reconciliator unit before mentioned which
basically aims at addressing the following problem:

Sensor Reconciliaton Design Problem (SRDP-
Problem):
Given the system (1)-(3), compute, at each time
t ≥ 0 on the basis of the real output y(t) mea-
sures, a suitable estimate ẑ(t) of the virtual output
z(t) := HzCyxp(t), despite of the presence of both
fault occurrences, corrupting the vectory(t), and
disturbances v(t).
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Figure 1: Virtual Sensor Architecture.

3 VIRTUAL SENSOR
ARCHITECTURE

The SRDP-Problem solution here proposed is based
on the evaluation of an estimate x̂p(t) of the state xp(t)
that is exploited to compute the corresponding ap-
proximation ẑ(t) of z(t) through the following equa-
tion

ẑ(t) = HzCyx̂p(t) (7)

Such an approach requires to face two crucial is-
sues: 1) How to estimate the fault occurrences cor-
rupting y(t)? 2) How to get a good estimation x̂p(t)
in the presence of an unknown input v(t) and time-
varying sensor gains and bias?

The above mentioned questions are dealt with by
introducing the virtual sensor architecture depicted in
Fig. 1 that consists of two modules: a Luenberger
Observer (LO) unit which is the core of this scheme
and is designed to jointly compute current estimates
of the state xp(t) , the bias term b(t) and the effective-
ness matrix (5) parameters; a Reconciliator Unit that
simply performs the computation indicated in (7).

4 SENSOR FAULT AUGMENTED
MODEL

In order to design the Luenberger observer, the fol-
lowing augmented state is considered that includes
the bias fault b(t) and multiplicative fault γ(t) vector
among its components

x(t) =




xp(t)
b(t)
γ1(t)

...
γm(t)




(8)

Notice that in order to describe the augmented
model, one has to assume that the multiplicative sen-
sor fault term γ(t), the bias term b(t) and the parame-
ters ∆γ(t) and ∆b(t) are bounded in the l2 norm sense,
where

∆b(t) := b(t +1)−b(t)

∆γ(t) := γ(t +1)− γ(t)
In this way, the related augmented model can be de-
scribed as

x(t +1) = Āx(t)+ B̄u(t)+ Ēv(t)
+ F̄∆b(t)+ D̄∆γ(t)

ȳ(t) = C̄γ(t),xp(t)x(t) (9)

where

Ā =




A 0 0
0 I 0
0 0 I


 , B̄ =




B
0
0


 , Ē =




E
0
0


 , F̄ =




0
I
0




C̄{γ(t),xp(t)}=
[
4(γ(t))Cy F 0

0 F diag(Cyxp(t))

]
, D̄ =




0
0
I




(10)

5 LUENBERGER OBSERVER

In this section we describe the basic ingredients of the
proposed observer. Let us assume to be provided with
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estimates γ̂(t) of γ(t) and x̂p(t) of xp(t) at each time
t. Then, a possible structure for an observer for the
model (9) is given by

x̂(t +1) = Āx̂(t)+ B̄u(t) +L
(

ȳ(t)− ŷ(t)
)

ŷ(t) = C̄{γ̂(t),x̂p(t)}x̂(t) (11)

As a consequence, the one-step ahead evolution of
the state estimation error

e(t) := x(t)− x̂(t) (12)

would take the following form

e(t +1) =
(

Ā−Lγ̂(t),x̂p(t)C̄{γ̂(t),x̂p(t)}
)

e(t)+ Ēv(t)

+ F̄∆b(t)+ D̄∆γ(t)−Lγ̂(t),x̂p(t)d(t) (13)

with

d(t) :=
(
C̄{γ(t),xp(t))}−C̄{γ̂(t),x̂p(t)}

)
x(t)

If
(

Ā−L{γ̂(t),x̂p(t)}C̄{γ̂(t),x̂p(t)}
)

were chosen as a sta-
ble matrix ∀γ ∈ Γ and ∀xp ∈ Xp, the state estimation
error would remain bounded whenever ∆b(t) and
∆γ(t) remain bounded as well. Hence, the state x(t)
of the system can be estimated.

Moving from these considerations, in order to de-
sign the Luenberger observer (11), it is is sufficient
to determine a parameter varying gain Lγ,xp that ro-
bustly stabilizes the system (13) against all possible
occurrences of ∆b(t), ∆γ(t) and d(t). Such a problem
has been addressed in a significant amount of works
in different contexts by exploiting well-known results
on robust control theory and LMI formalism. Specif-
ically, among many observer design approaches, it is
interesting to mention here (Heemels et al., 2010),
where the LPV gain is determined in the case of con-
stant output matrix. A similar approach has been con-
sidered in (Zhou et al., 2013), where a LMI based pro-
cedure has been proposed to compute a constant gain.

Here we design a discrete-time self-tuning LPV
observer where the time-varying parameter γ and the
state xp are not perfectly known. In particular, the
approach considers systems (13) characterized by a
structured uncertainty related to γ , xp and attempts to
determine a LPV gain that can be tuned on-line by ex-
ploiting an estimate γ̂(t) and x̂(t) of the true γ(t) and
x(t). In this respect, it is worth pointing out that we
assume hereafter to be provided by a polytopic em-
bedding approximation for matrix C̄{γ̂(t),x̂p(t)} given
by

C̄ρ =
l

∑
i=1

ρi(γ,xp)C̃i, (14)

for a certain continuous functions ρi : Γ×Xp ∼ Bδ→
R of γ and xp and matrices C̃i, i = 1, ..., l.

Now, we have all the ingredients to design a LPV
gain Lρ̂ defined as follows

Lρ̂ =
l

∑
i=1

ρ̂i(γ,x)Li (15)

where the gains Li, i = 1, ..., l are properly chosen to
stabilize the observer with the estimation error subject
to

e(t +1) = Nρ̂(t)e(t)+Fρ̂(t)w(t) (16)

with
Nρ :=

(
Ā−LρC̄ρ

)

Fρ :=
[
Ē F̄ TρD̄ −Lρ

]
, w(t) :=




v(t)
∆b(t)
∆γ(t)
d(t)


 (17)

In addition, those gains have to guarantee that for each
estimate γ̂, x̂p, C̃ρ lies in the convex hull Co{C̃i}, i =
1, ..., l. Moreover it is assumed that the signal w(t)
belong to `2 space with a known bound w̄ on its `2-
norm, i.e.

‖w(·)‖ ≤ w̄ (18)

Then the problem just stated translates into finding a
parameter-dependent gain such that difference equa-
tion (16) is stable for any arbitrary time variation of
the parameters ρ̂(t) ∈ Sl and such that, for any input
w(t) satisfying (18), the error e(t) is bounded as

||e(·)||< σ||w(·)||, (19)

A convex optimization methodology to solve the
above stated design problem is provided in the next
Theorem 1.

Theorem 1. Assume a symmetric strictly positive def-
inite matrices Pi and matrices Gi and Yi, i = 1, ..., l
exist such that the optimization problem

min
Pi,Gi,Yi,µ

µ

subject to

Ξi j :=




Gi +GT
i −Pj Q12 GiFi
? Pi− I 0
? ? µI


> 0, µ < δ2

w̄2

i = 1, ..., l, j = 1, ..., l
Q12 := GiT̃iÃ−YiC̃i

(20)
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Ξi jk :=




R11 R12 R13
∗ Pi +Pk− I 0
∗ ∗ µI


> 0

i = 1, ..., l−1, j = 1, ..., l,k = i+1, ..., l
R11 := Gi +GT

i +Gk +GT
k +Pj

R12 := GiT̃kĀ+GkT̃iĀ−YiC̃k−YkC̃i

R13 := GiFk +GkFi

(21)

has a solution. Then, the convergence of the observer
estimation error dynamically characterized by equa-
tion (16) is ensured, the guaranteed H∞ performance
gain (19) given by

σ =
√

µ? <
δ
w̄
, µ? = minµ (22)

is achieved and ρ̂(t) is ensured to vary into Sl . More-
over, the observer gain vertices defined in (15) are
given by

Li = G−1
i Yi, i = 1, ..., l (23)

and stabilize the observer for any arbitrary time vari-
ation of the parameter ρ̂(t) in the polytope Sl .

Proof : Consider the parameter-dependent Lya-
punov function

V
(
e(t)
)
= eT (t)Pρ̂(t)e(t) (24)

with

Pρ̂(t) =
l

∑
i=1

ρ̂i(t)Pi,Pi = PT
i , i = 1, ..., l (25)

The related one-step ahead evolution of the Lyapunov
function on the observer error trajectory is given by

V
(
e(t +1)

)
= eT (t +1)Pρ̂(t+1)e(t +1) (26)

where Pρ̂(t+1) can be written as

Pρ(t) =
l

∑
j=1

ρ j(t)Pj ,Pj = PT
j , j = 1, ..., l (27)

Using (27), one can recast (26) into

V
(
e(t +1)

)
=

(
Nρ̂(t)e(t)+Fρ̂(t)w(t)

)T

Pρ(t)

(
Nρ̂(t)e(t)+Fρ̂(t)w(t)

)

(28)
Then, the Lyapunov function increment derived

by (24) and (28) results to be given by

∆V (e(t)) =V (e(t +1))−V (e(t))

= eT (t)
(

NT
ρ̂(t)Pρ(t)Nρ̂(t)−Pρ̂(t)

)
e(t)

+2eT (t)NT
ρ̂(t)Pρ(t)Fρ̂(t)w(t)

+wT (t)FT
ρ̂(t)Pρ(t)Fρ̂(t)w(t) (29)

It is well-known that the stability of system with H∞
guaranteed performance (19) is ensured if

∆V (e(t))<−eT (t)e(t)+µwT (t)w(t), ∀t (30)

By replacing ∆V (e(t)) with the expression (29), one
is able to rewrite (30) as ΓT (t)UΓ(t)< 0 with Γ(t) :=[
eT (t) wT (t)

]T and

U :=
[
U11 U12
? U22

]
(31)

U11 := NT
ρ̂(t)Pρ(t)Nρ̂(t)−P(ρ(t))+ I

U12 := NT
ρ̂(t)Pρ(t)Fρ̂(t), U22 := FT

ρ̂(t)Pρ(t)Fρ̂(t)−µI

Clearly, by imposing U < 0 it is possible to guarantee
(30) for all e(t) 6= 0 and w(t) 6= 0 by satisfying the
following inequality
[

NT
ρ̂(t)Pρ(t)

FT
ρ̂(t)(ρ(t))Pρ(t)

]
P−1

ρ(t)
[
Pρ(t)Nρ̂(t) Pρ(t)Fρ̂(t)

]

−
[

Pρ̂(t)− I 0
0 µI

]
< 0

(32)

The latter, thanks to the use of a Schur’s comple-
ment argument, is equivalent to

U ′ :=




Pρ(t) Pρ(t)Nρ̂(t) Pρ(t)Fρ̂(t)
? Pρ̂(t)− I 0
? ? µI


> 0 (33)

that can be recast into

MU ′MT > 0 with M :=




Gρ̂(t)P
−1
ρ(t) 0 0

0 I 0
0 0 I


 (34)

and, in turn, into



Gρ̂(t)P
−1
ρ(t)G

T
ρ̂(t) Gρ̂(t)Nρ̂(t) Gρ̂(t)Fρ̂(t)

? Pρ̂(t)− I 0
? ? µI


> 0 (35)

Using previously defined matrices and considering
that ρ ∈ Sl and ρ̂ ∈ Sl , inequality (35) can be written
as

l

∑
i=1

ρ̂2
i (t)

l

∑
j=1

ρ j(t)Ξi j+
l−1

∑
i=1

l

∑
k=i+1

ρ̂i(t)ρ̂k(t)
l

∑
j=1

ρ j(t)Ξi jk > 0

(36)

with Ξi j defined in (20) and Ξi jk defined in (21). For
more details please refer to (Heemels et al., 2010). �
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Figure 2: Known Input (up) and Unknown Input (down).

6 ILLUSTRATIVE EXAMPLE

In this section, the effectiveness of the proposed UIO-
SR scheme is investigated by considering the follow-
ing linear stable model

xp(t +1) = Axp(t)+Bu(t)+Ev(t)
y(t) = ∆(γ(t))Cyxp(t)+Fb(t) (37)

where

A =

[
0.98806 0.0096049
−0.32754 0.93033

]
,B =

[
−0.0001
−0.0921

]
,

Cy =

[
1 0
1 0
1 1

]
,E = 0.01×

[
1
1

]
F =

[
1
1
1

]

with γ assumed to be confined within the polytope
Γ :=

{
γ : [γ

1
,γ

2
,γ

3
]T ≤ γ≤ [γ1,γ2,γ3]

T
}
,γ

1
= γ

2
=

0, γ
3
= 0.1,γi = 1, i = 1,2,3.

The goal of this simulation is to verify the capa-
bility of the proposed method to correctly estimate
the first component of xp(t) in (37) under faults that is
used as virtual output z(t)=HzCyxp(t) for the system.
Correspondingly, the following sensor reconciliation
matrix

Hz =
[
0.5 0.5 0

]
(38)

results with the known input u(t) depicted in Figure
2 (up) and the unknown input v(t) supposed to be a
white noise with standard deviations equal to 10 (de-
picted in Figure 2 (down)). Moreover, the bias profile
on the three available physical sensors is assumed to
change along the simulation time according to the
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Figure 3: Loss of effectiveness parameters.
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Figure 4: Bias fault and its estimation.

following profile

b(t) = 1+100sind(0.3t) (39)

and faults on the matrix effectiveness gain will affect
the first two sensors as depicted in Figure 3.

In this scenario, without any sensor reconciliator
block the virtual output would result falsified, as de-
picted in Figure 5 (blue dashed line), because of faults
occurrences on the physical sensors.
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Figure 5: Virtual Output and its estimation.
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By defining the auxiliary state

x(t) :=
[
xp(t) b(t) γ1(t) γ2(t) γ3(t)

]T

the augmented model (9) is derived where

Ā =




A 0 0
0 1 0
0 0 I3×3


 , B̄ =




B
01×1
03×1


 , Ē =




E
01×1
03×1


 ,

F̄ =




02×1
1

03×1




C̄{γ(t),xp(t)} = (40)



γ1(t) 0 1 0 0 0
γ2(t) 0 1 0 0 0
γ3(t) γ3(t) 1 0 0 0

0 0 1 xp1(t) 0 0
0 0 1 0 xp2(t) 0
0 0 1 0 0 xp1(t)+ xp2(t)




D̄ =




02×3
01×3
I3×3


 (41)

In order to exploit a polytopic Luenberger observer
for (9), an embedding polytopic representation of the
form (14) has been derived. To this end, the matrix
C̄γ,x can be embedded in PC := Co{C1, ...,C32} with
related vertices computed by evaluating matrix C̄γ,x
on the extremum points of Γ and xp. Then, a suit-
able polytopic representation (14) can be achieved by
first deriving the LPV scheduling parameter ρ(p), that
in this example is composed by 32 components, each
one having the following structure

ρ1 := ∏
i, j
(1− p1

i )(1− p2
j)

...

ρ32 := ∏
i, j

p1
i p2

j (42)

where the measurable parameters p1
i and p2

j obtained
by normalizing and centering the physical signals γ(t)
and xp(t)

p1
i (t) =

γi(t)− γ
i

γi− γ
i

, i = 1, ..,3

p2
j(t) =

xp j(t)− xp j

xp j − xp j

, j = 1,2 (43)

Finally, it is possible to get a polytopic embedding
approximation for C̄γ,x as follows

C̄ρ =
l

∑
i=1

ρi(p)Ci (44)

A simulative comparison has been attempted between
the presented LPV-LU-SR scheme and the Sensor
Reconciliating approach of (Behzad et al., 2016), here
referred to as LPV-UIO-SR and endowed with a LPV
polytopic observer. In order to compute the observer’s
gain, the same embedding polytopic representation
used in (Behzad et al., 2016) has been here considered
for the matrix C̄ρ, that consists in a polytope charac-
terized by 64 vertices.

In Figures 3-6 these schemes have been com-
pared. Although both observers achieve good perfor-
mance in getting an estimate of x(1)p , as expected, the
LPV-LU-SR scheme exhibits a slight better behav-
ior with respect to LPV-UIO-SR, both in estimating
the state and the bias. This is mostly due to the fact
the observer exploits the knowledge on the input v(t)
supposed unknown in the case of the LPV-UIO-SR
scheme. Such an aspect translates in a better effec-
tiveness parameter (gain matrix) estimation (Figure 4)
and in a more accurate virtual output generation (Fig-
ure 6).

However, beyond the numerical results, it is worth
discussing some practical aspects of the considered
strategies. Unlikely the LPV-UIO-SR, the LPV-LU-
SR does not require any persistent excitation of the
state estimate that is needed to ensure parameter es-
timation convergence. Unfortunately, such an expe-
dient is not enough in general to guarantee conver-
gence on the state estimation. On the other hand, the
LPV-UIO-SR presents two advantages with respect
to LPV-LU-SR: it does not require neither the input
knowledge nor any pre-specified bounds on the state
xp.

7 CONCLUSIONS

In this paper, LPV Luenberger observers have been
proposed to solve fault-tolerant sensor reconciliation
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design problems for linear discrete-time systems sub-
ject to possible faults on sensor gain and bias. The
role of the observer relies on the estimation of both
the state of the system and the current fault of the
physical sensors. The resulting design procedure is
quite simple and guarantees bounded errors on the es-
timation of both the plant state and fault parameters.
The scheme has been fully described, its properties
rigorously proved and, in the final simulation exam-
ple, it has been shown to achieve good performance
in recovering useful data from the pool of redundant
sensors.
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