
In Situ Mutation for Active Things in the IoT Context

Noura Faci1, Zakaria Maamar2, Thar Baker3, Emir Ugljanin4 and Mohamed Sellami5

1Université Lyon 1, Lyon, France
2Zayed University, Dubai, U.A.E.

3Liverpool John Moores University, Liverpool, U.K.
4State University of Novi Pazar, Novi Pazar, Serbia

5ISEP Paris, Paris, France

Keywords: IoT, Lua, Mutation, NodeMCU, and Policy.

Abstract: This paper discusses mutation as a new way for making things, in the context of Internet-of-Things (IoT),

active instead of being passive as reported in the ICT literature. IoT is gaining momentum among ICT practi-

tioners who see a lot of benefits in using things to support users have access to and control over their surroun-

dings. However, things are still confined into the limited role of data suppliers. The approach proposed in this

paper advocates for 2 types of mutation, active and passive, along with a set of policies that either back or deny

mutation based on specific “stopovers” referred to as permission, prohibition, dispensation, and obligation. A

testbed and a set of experiments demonstrating the technical feasibility of the mutation approach, are also

presented in the paper. The testbed uses NodeMCU firmware and Lua script interpreter.

1 INTRODUCTION

Internet of Things (IoT) is gaining momentum among
ICT practitioners who see a lot of benefits in the role
that things could play in allowing users to have access
to and control over their surroundings. Different figu-
res and reports back this momentum. For instance, a
Gartner report states that 6.4 billion connected things
were in use in 2016, up 3% from 2015, and will re-
ach 20.8 billion by 20201. Moreover, McKinsey men-
tions that “The market for Internet of Things devi-

ces, products, and services appears to be accelera-

ting in view of four critical indicators: supplier at-

tention, technological advances, increasing demand,

and emerging standards” (Bauer et al., 2017). Despite
the bright side of IoT (sometimes mixed with a lot
of hype), IoT raises many concerns that could refrain
its expansion and adoption in the future. A concern,
that we deem worth addressing, is that things are
still passive being restricted to sensing the surroun-
dings and sharing the outcomes of this sensing (so-
metimes after processing/actuating) with third parties.
A DZone group’s 2017 report (DZone, 2017) along
with Mzahm et al. (Mzahm et al., 2013) highlight the
passive nature of things, which does not help develop
a dynamic ecosystem of active things.

In this paper, we propose ways of making things

1www.gartner.com/newsroom/id/3165317.

active. The first way is about agentifying things whose
details are given in (Maamar et al., 2017). The second
way, which is this work’s aim, is about thing muta-

tion in the sense that things will bind and/or unbind
capabilities on the fly (and as they see fit). To ens-
ure a successful mutation, we consider first, the con-
text (i.e., surrounding) in which things operate and se-
cond, the policies that impact the decisions of things
to bind/unbind capabilities. For the sake of setting-
up a dynamic ecosystem of active things, we motivate
mutation decisions with 3 reasons: performance so,
that, a thing remains competitive/attractive, adapta-

tion so, that, a thing remains responsive, and surviva-

bility so, that, a thing remains in business.

In support of the aforementioned reasons, we de-
velop policies that will “steer” the mutation through
specific “stopovers”: permission for a thing to mu-
tate when all necessary and sufficient contextual con-
ditions are satisfied, prohibition for a thing to mutate
when all necessary and sufficient contextual conditi-
ons are unsatisfied, dispensation for a thing to muta-
te/not to mutate (despite the permission/prohibition)
due to changes that made certain necessary and suffi-
cient contextual conditions unsatisfied/satisfied, and
obligation for a thing to mutate (despite either the
no-permission or the prohibition) due to changes that
made certain necessary and sufficient contextual con-
ditions satisfied. Contextual conditions, that reflect
changes in a thing’s surrounding, result from (i) acti-

Faci, N., Maamar, Z., Baker, T., Ugljanin, E. and Sellami, M.
In Situ Mutation for Active Things in the IoT Context.
DOI: 10.5220/0006840607250732
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 725-732
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

725

ons that a thing (itself) takes, (ii) actions that an ow-
ner makes her thing take, (iii) actions that other things
take, and (iv) interactions that a thing has with users.
The first 2 points fall into a thing’s inner-control and
the last 2 fall into a thing’s outer-control.

Our contributions include (i) definition of muta-
tion in an IoT context, (ii) identification of reasons that
support thing mutation, (iii) specification of policies
for approving/denying thing mutation, (iv) tracking of
the mutation process’s approval/denial through “sto-
povers”, and (v) a testbed for thing mutation. The
rest of this paper is organized as follows. Section 2
is an overview of thing mutation in the literature.
Section 3 presents our thing mutation approach in
terms of thing’s lifecycle and policies that either ap-
prove or deny thing mutation. Section 4 presents
the mutation testbed along with some experiments.
Concluding remarks and future work are presented in
Section 5.

2 RELATED WORK

Despite the growing interest in IoT, our literature re-
view revealed, to the best of our knowledge, the limi-
ted number of references that tackle the challenge of
thing mutation. Prior to proceeding with the literature
review, we begin with some definitions from the field
of genetics. In (NLM,), a gene mutation is a perma-
nent alteration in the DeoxyriboNucleic Acid (DNA)
sequence that makes up a gene. Moreover, mutation
can affect anything from a single DNA building block
to a large segment of a chromosome that includes
multiple genes.

Back to ICT field, Bölöni and Marinescu propose
a formal description of mutability in multiagent sys-
tems (Bölöni and Marinescu, 2005). This description
is about a strategy that consists of planes (each re-
ferring to as a set of intended actions) that deal with
different parts of the world. The planes are schedu-
led in a way that only one would be active at once. To
model the agent’s behavior, the authors use finite state
machines where a state corresponds to a multi-plane
strategy and a transition refers to some multi-plane
strategy change. The authors formally define a set of
mutation operators (e.g., add a state to the agent be-
havior and add a transition between 2 states) on the
multi-plane state machines.

Raner (Raner, 2006) discusses the mutator pat-
tern as a simple way of applying a series of succes-
sive changes to a mutable object instead of successi-
vely creating new object instances that would cater to
these changes. Though Raner does not explicitly de-
fine what a mutable object is, he recommends a set

of cases where the mutator pattern would be appro-
priate such as applying an algorithm on a sequence
of complex objects whose individual creation is rat-
her expensive and creating objects, who do not ex-
ist yet, on-the-fly. Benefits of the mutator pattern in-
clude saving time by eliminating the repetitive crea-
tion of objects and saving memory by using a single
mutable object. Contrarily, drawbacks of the pattern
include the necessity of having mutable objects that
could be complex to handle compared to immutable
objects and the necessity of satisfying a good number
of prerequisites that could limit its applicability.

Yun et al. (Yun et al., 2017) analyze mutation in
the context of testing policies in a system of systems.
This latter is a set of constituent systems that are for-
ced, thanks to policies (predefined rules), to collabo-
rate when goals cannot be achieved individually. Ob-
stacles called faults by Yun et al. could arise at the
system of systems level but not at the system consti-
tuent level calling for a mutation analysis that would
tackle these obstacles. This analysis is a systematic
way of evaluating test cases using artificial faults cal-
led mutants and is demonstrated with a traffic mana-
gement case-study. According to Yun et al., “muta-

tion testing is a fault-based testing technique propo-

sed in 1970s by Lipton (Lipton, 1971) and develo-

ped by DeMillo (Lipton et al., 1978). It originated

from the idea that if a test case can detect an artifici-

ally seeded fault, the test case also can detect a real

fault”. The program that receives a seeded fault is
called mutant and the rules for injecting this fault into
the program are called mutation operators. Finally, if
the outcome of executing a mutant is different from
that of the original program for a test case, it is said
that the mutant is killed by the test case.

In line with Yun et al. (Yun et al., 2017), Polo Usa-
ola et al. (Polo Usaola et al., 2017) analyze software
testing using mutation operators. This software is
about context-aware, mobile applications that feature
errors/faults. Mutation operators insert faults into a
system like those that programmers would intentio-
nally introduce in their system.

Similar to mutation, Terdjimi et al. use adaptation
to discuss the changes that affect behaviors of avatars
in the Web of things (Terdjimi et al., 2017). They
consider avatar as a virtual extension of a thing that
relies on a semantic architecture so, that, it proces-
ses and reasons about semantically-annotated infor-
mation. Triggers of changes are due to non-functional
concerns like quality of service, energy efficiency, and
security related to natural conditions, computing re-
sources, and user preferences. To ensure a successful
adaptation, Terdjimi et al. raise a couple of questions
that they address in their work, for instance, “which

ICSOFT 2018 - 13th International Conference on Software Technologies

726

protocols should the application use to communicate

with things, which thing capability should be involved

in a given terminal functionality”, and “which functi-

onality should be exposed to clients and other ava-

tars?” The adaptation is exemplified with watering a
vineyard in which drones acting as avatars take pho-
tos of the field to identify the parts that are dry, for
example, and hence, need to be watered. Weather fo-
recast details are, also, taken into account during the
watering decision.

As stated in the first paragraph, thing mutation in
the context of IoT remains “undiscovered” and hence,
many questions are unaddressed from different per-
spectives such as technical, legal, and “ethical”.

3 OUR MUTATION APPROACH

Some argue that things are not prepared, yet, to
take the mutation leap due to multiple technical con-
straints. Contrarily, Taivalsaari and Mikkonen men-
tion that “hardware advances and the availability of

powerful but inexpensive integrated chips will make

it possible to embed connectivity and fully edged vir-

tual machines and dynamic language run-times ever-

ywhere” (Taivalsaari and Mikkonen, 2017).

3.1 Mutation Process as a Lifecycle

Prior to defining the lifecycle of a mutable thing,
we deem necessary discussing mutation in terms of
type (weak versus strong), mode (active versus pas-

sive), impact (on thing itself versus on capability),
and initiator (thing itself versus thing’s owner ver-

sus thing’s peers). Because of the simplicity of last
2 points, we only explain the first 2.

1. Weak mutation means that the thing still complies
with the owner’s original specification after muta-
tion. Contrarily, strong mutation means that the
thing’s specification radically changes. Simply
put, weak mutation leads to a similar thing while
strong mutation leads to a new thing.

2. Active mutation means that the thing/capabilities
continue to operate/be used while mutation is ta-
king place. Contrarily, passive mutation requires
putting on standby/suspending the thing/ongoing
capabilities and then activating/resuming it/them
after mutation.

To concretize mutation, many actions could be ta-
ken reflecting the impact of mutation on a thing’s ca-
pability and/or thing itself. These actions are, but not
limited to, as follows:

• Unbind/bind a capability means unloading/loading
the capability. An example is to upload an existing
capability following the disposal of a peer from
the ecosystem that used to offer this capability.

• Split a thing means decomposing the thing into
different things. An example is to create more
things that will be assigned (some) separate ca-
pabilities initially linked to an existing thing (will
retain some capabilities). The creation could be
due to the arrival of extra requests.

• Merge things means composing things along with
their respective capabilities into a single thing. An
example is to group things into one due to scarcity
of resources.

Fig. 1 represents the lifecycle of a mutable thing
represented as a statechart. On the one hand, states in-
clude not-activated (ı.e., the mutant waits for certain
conditions to be satisfied), activated (i.e., the mutant
enables necessary capabilities), done (i.e., the mu-
tant successfully completes the enabled capabilities2),
and mutated passively (i.e., the mutant performs some
mutation action). On the other hand, transitions bet-
ween states include initial operation (i.e., handling re-
quests), suspension (i.e., suspending ongoing capabi-
lities in preparation of mutation), resumption (i.e., re-
suming ongoing capabilities after mutation), active

mutation (i.e., performing some mutation action),
completion (i.e., finalizing the enabled capabilities),
extra-operation (i.e., performing some additional mu-
tation action), and final completion (i.e., confirming
the release of capabilities). Note that mutated pas-

sively along with suspension and resumption corre-
spond to the passive mutation and that activated al-
ong with active mutation correspond to the active mu-
tation.

su
sp

en
sio

n

Not activated

extra operation

initial

operation
Activated Done

Mutated

passively

re
su

m
p

ti
o

n

completion

fin
al

co
m

p
letio

n

Active

mutation

Figure 1: Lifecycle of a mutable thing as a statechart.

After an initial opera-

tion (not activated
initial operation−−−−−−−−−→ activated)

and a regular completion of capabilities

(activated
completion−−−−−−→ done

f inal completion−−−−−−−−−→ end),
3 cases could arise illustrating mutation:

2For the sake of simplicity, capability failure is not hand-
led.

In Situ Mutation for Active Things in the IoT Context

727

- The mutant puts on hold the enabled capabilities

in preparation of mutation: activated
suspension−−−−−−→

mutated passively
resumption−−−−−−→ activated.

- The mutant proceeds with the enabled capabilities

during mutation: activated
active mutation−−−−−−−−→ activated

- The mutant successfully completes the enabled
capabilities and decides on new an extra mutation:

done
extra operation−−−−−−−−→ activated.

The 3 cases could be connected together leading to a
chain of mutation actions in response to certain de-
tected events and/or received requests. We back this
chain of mutation with policies that oversee the mu-
tation progress from one state to another in the muta-
tion’s lifecycle.

3.2 Mutation Decisions as Policies

We rely on policies to “steer” the decision making
process that would lead to either approve or deny
thing mutation. For a proper “steering”, we associate
the progress of this process with 5 stopovers (Fig. 2):
permission (pe) to mutate, prohibition (pr) to mutate,
dispensation (d) (specialized into dispensation to-not-
mutate despite permission (dpe; e.g., too risky and
too costly) and dispensation to-mutate despite prohi-
bition (dpr, e.g., too rewarding)), and obligation (ob)
to mutate. Moving from one stopover to another
depends on assessing the sufficient and/or necessary
contextual conditions that could change due to things’
actions, owners’ decisions, peers’ actions, and things’
interactions with users.

Below is the connection between the stopovers
that would lead to mutation approval (where y/n
stands for yes/no; not all connections are shown due
to lack of space):

1. pe(y)→ dpe(n)→ pr(n). The sufficient and neces-
sary contextual conditions that led to approving
the mutation did not change over time so there
was neither a dispensation from mutating nor a
prohibition to mutate.

Below is the connection between the stopovers that
would lead to mutation denial (not all connections are
shown due to lack of space):

1. pe(n) → ob(n). The sufficient and necessary con-
textual conditions that led to denying the mutation
did not change over time so there was no obliga-
tion to mutate.

2. pe(y) → dpe(y) → ob(n). Some sufficient and ne-
cessary contextual conditions that led to appro-
ving the mutation have become unsatisfied lea-
ding to dispensing the mutation. In addition, this

Obligation
(ob)

Dispensation
(d

pr
)

Mutation(+)

no yes

Permission
(pe)

Dispensation
(d

pe
)

no

no

yes

Mutation(+)

Prohibition
(pr)

noyes

yesno

yes

Mutation(+)Mutation(-)

Figure 2: Approval(+) versus Denial(-) of thing mutation.

dispensation was supported by an obligation of to-
not-mutate due to changes in these and may be ot-
her sufficient and necessary conditions.

4 MUTATION TESTBED

This section presents the testbed demonstrating the
technical feasibility of thing mutation and discusses,
afterwards, some experiments in support of this feasi-
bility.

4.1 Testbed Architecture

Building upon an open-source project3 for OTA Web
management & esp8266 Lua client for Over-the-
Air (OTA)4 script update, our testbed corresponds to
a mutation control application for managing things
that could mutate according to the different actions
listed in Table 1. For the time being, only “reconfi-
gure thing” and “reconfigure capability” actions are
implemented and tested. This testbed’s architecture is
represented in Fig. 3 where the numbers correspond
to the chronology of operations.

The control application consists of the following
in-house developed components:

3github.com/kovi44/NODEMCU-LUA-OTA-ESP8266.
4en.wikipedia.org/wiki/Over-the-air-programming.

ICSOFT 2018 - 13th International Conference on Software Technologies

728

Table 1: Examples of trigger-action per mutation pattern.

Actions to take (X for applicable)

On thing On thing’s capability

Triggers split merge reconfigure bind/unbind reconfigure

G
ro

u
p

1

Handling of “unseen” demands (e.g., request to sense
body temperature on top of ambient temperature)

X X

Increase in workload (e.g., reception of extra requests) X X
Adjusting quality of service (e.g., changes in ecosystem
conditions)

X X X X

G
ro

u
p

2

Unexpected arrival of new things (e.g., forming ad-hoc
partnerships)

X X X X

Disposing existing things (e.g., contacting partners of dis-
posed things)

X X X X

Securing more marketshare (e.g., changes in ecosystem
conditions)

X X

Figure 3: Architecture of thing-mutation testbed.

1. Dashboard that allows the engineer to register
things (referred to as devices in the below) in
the testbed so, that, she can access and confi-
gure them. The dashboard also enables the en-
gineer to develop mutation actions (referred to as
scripts in the below) such as reconfigure, split, and
merge (Table 1).

2. Mutation-code repository that stores the develo-
ped scripts along with their identifiers.

3. Thing repository that stores details on devices
such as manufacturer unique-chipID, active muta-
tionID that refers to the current mutation action’s
identifier in the mutation-code repository, and up-
date flag that lets a device know if it has been
approved for mutation by the engineer (in com-
pliance with the outer-control mutation decision,
Section 3.2).

4. Controller that supports the interactions between
devices and the mutation application. These in-

In Situ Mutation for Active Things in the IoT Context

729

teractions take place wirelessly, i.e., OTA using
REST.

In preparation for thing mutation, some work
needs to be completed as per the following 2 steps:

1. First, the engineer installs from scratch (and so-
metimes customizes5), using certain tools such as
ESPlorer6 for uploading scripts and esptool.py7

for flashing firmware, some required software on
devices (1.1). This software includes a firm-
ware (NodeMCU8 in our testbed) and a standalone
script interpreter (Lua9 in our testbed). On the
one hand, NodeMCU firmware supports commu-
nication protocols (e.g., MQTT (Message Queuing
Telemetry Transport), HTTP (Hyper Text Trans-
fer Protocol), and COAP (Constrained Applica-
tion Protocol)) with third parties and includes
some built-in functions (e.g., file management,
GPIO (General Purpose Input/Output) usage, and
SJSON (Simplified JSON parser)). The engineer
selects the appropriate modules (e.g., MQTT) for
implementing the mutation scripts when building
the firmware. On the other hand, Lua script in-
terpreter is used for synchronizing devices with
the controller prior to hot-plugging10 (Baker et al.,
2013) scripts, and interprets the new scripts after
being fully downloaded to the things. More de-
tails on NodeMCU firmware’s modules are availa-
ble at nodemcu-build.com..

2. Second, the engineer configures each device (1.2)
separately so, that, it communicates with the con-
trol application. After uploading the necessary
software onto the device as per the previous step,
the device is rebooted in the HTTP server mode
and proceeds with broadcasting its WiFi access
point. When the engineer connects to the same
access point, she accesses the device’s configura-
tion panel so, that, necessary parameters are set-
up such as wireless network name/password, pa-
nel access details (e.g., server IP, domain name,
and script path), and synchronization time. Upon
completing the configuration, the device restarts
and synchronizes with the controller checking if

5In the case of customization, the engineer must flash
the device with fresh firmware containing the desired mo-
dules that are downloaded from NodeMCU cloud build tool.

6esp8266.ru/esplorer.
7nodemcu.readthedocs.io/en/master/en/flash.
8github.com/nodemcu/nodemcu-firmware.
9NodeMCU firmware is based on Lua. But, other opti-

ons, such as PJON (github.com/gioblu/PJON.) and Modu-
leInterface (github.com/fredilarsen/ModuleInterface.), are
available subject to the used firmware.

10Hot-plugging means download, interpret, and re-
boot (MicroTCA and Specification,).

it is subject to any mutation specified by the engi-
neer (using a flag).

4.2 Testbed Operation

The mutation control application is a Web application,
hosted on a Linux Apache server, developed in PHP,
JavaScript, HTML, and CSS, and uses MySQL data-
base. The application allows the engineer to add/drop
devices to/from the testbed whenever necessary using
add/delete buttons, describe existing and/or new devi-
ces (i.e., adding a new name, narration/commentary,
and chipID, which acts as an identifier) using the edit
button, and to develop scripts (2.1) that will be linked
to devices.

To run the testbed, the engineer registers the devi-
ces (2.2) in the thing repository using the dashboard
and proceeds with developing the necessary scripts in
Lua. The devices that exemplify things in our testbed
are equipped with an ESP8266 chip and have at le-
ast 4MB flash. This minimum flash requirement gua-
rantees 1MB space for the NodeMCU firmware. The
remaining space permits to store the interpreted mu-
tation scripts that are available for execution.

The tested devices include WemosD1, Wem-

osD1 mini, and NodeMCU. These are microcontrollers
equipped with wireless modules for communicating
with third parties like sensors and computers utilizing
protocols included in their firmwares. The engineer
also manages (2.2) the devices that will be subject to
mutation in compliance with the outer-control muta-
tion decision. In term of managing devices (2.2), the
engineer could consider different devices for mutation
and different mutation scripts, as she sees fit. After-
wards, the devices periodically send requests to the
controller to check whether there is some update. As a
result of these periodic requests, the controller screens
the thing repository to verify whether the device is lis-
ted/known and its corresponding mutation flag (true/-
false) is raised. If this is the case, the controller looks
for the corresponding script in the mutation-code re-
pository so the appropriate script is sent to the device.
This one hot-plugs the script after uploading 4 files:
init.lua (a file loaded every time the device boots it-
self and makes a decision should it boot in HTTP ser-
ver mode (via server.lua) or with mutation script (via
client.lua)), server.lua (for starting up the HTTP ser-
ver when the device is booted for first time), client.lua

(for synchronization with the control application and
interpreting new scripts), and config.htm (html con-
figuration form for storing parameters, where these
parameters are stored in a separate file hosted by the
device).

To further elaborate the mutation procedure, Al-

ICSOFT 2018 - 13th International Conference on Software Technologies

730

gorithm 1 is the pseudocode for init.lua file, at the
thing/device end, as/when the device reboots. It starts
by creating an object s and loading configuration pa-
rameters’ values (e.g., id, pwd, and boot) from the
device configuration file (lines 1 & 2, respectively). It
should be noted that if the device was booted for the
first time, the configuration file would have not been
created yet; consequently the value of s.host parame-
ter would have been empty as in (line 2). In this case,
the device loads server.lua file (line 14), which is in
charge for booting the device in a HTTP server mode,
where it acts as an access point and allows the engi-
neer to configure it. Otherwise, if the s.host parame-
ter holds a value, it implies that the device has already
been configured by the engineer and it is ready to get
connected to WiFi (line 4). The device, then, checks if
there is an update waiting in a defined time interval, as
in (line 5 and 6) via calling checkForUpdate function.
The later triggers the server to check the update flag,
for that particular device, at the server side (Listing 1).
The server identifies the requesting device along with
its corresponding flag and associated mutation code
(if exist) via using the device id (i.e., id=chipid, Lis-
ting 1). If update = true for that device, it implies
new mutation code exist, hence the server will release
the update, and hand the control back to the device.
Back to the thing side, if a new mutation script is do-
wnloaded and compiled, s.boot parameter will not be
empty (line 8) and the device will boot the compiled
script, as per (line 9). Contrarily, if s.boot parameter
is empty, it will load client.lua file, which will do-
wnload a new mutation code, compile it, alter s.boot

parameter and reboot device.

Algorithm 1: Runtime thing mutation via init.lua.

1: s = {ssid=“ ”, pwd=“ ”, host=“ ”, path=“ ”,
boot=“ ”, update = 0};

2: s = ReadConfiguration();
3: if (s.host 6= “ ”) then

4: connectToWiFi();
5: if (s.update) ≥ 1 then

6: timer (s.update, function()
checkForUpdate()
end);

7: end if

8: if (s.boot 6= “ ”) then

9: dofile(s.boot);
10: else

11: dofile(“client.lua”);
12: end if

13: else

14: dofile(“server.lua”);
15: end if

Listing 1: Checking update at server side.

<?php

$ r e s u l t = m y s q l i q u e r y ($conn , ”SELECT*

FROM es p WHERE i d = ‘$ GET [‘ c h i p i d ’] ’ ”) ;

$ f e t c h = m y s q l i f e t c h a s s o c ($ r e s u l t) ;

i f ($ f e t c h [u p d a t e]== t r u e){
makeUpda teAva i l ab le () ;

$ t o u p d a t e = mys q l que ry (”UPDATE

‘ es p ’ SET ‘ u p d a t e ’= f a l s e , t imes tamp =

now () WHERE i d = ‘$ GET [‘ c h i p i d ’] ’ ”);}?>

5 CONCLUSION

This paper presents a novel way (backed by a test-
bed along with all its associated technologies such as
NodeMCU and Lua, and components such as a Web-
based mutation control application) to mutate things,
in the context of Internet-of-Things (IoT). Mutation
types, capabilities, and policies for different mutation
actions are also discussed in this paper. However, for
the time being, only 2 mutation actions, namely “re-
configure thing” and “reconfigure capability”, are im-
plemented and tested. For runtime mutation (i.e., new
code injection), Lua script interpreter has been used
for synchronizing devices with the mutation control
application to hot-plugging new code. The proposed
way proves that things can be active rather than pas-
sive, compared to what has been previously stated in
the literature, by mutating things according to diffe-
rent actions/triggers (Table 1). In addition, things can
provide various behaviors based on their technical ca-
pabilities in terms of hardware and software.

As future work, we seek to implement additional
actions listed in Table 1 such as splitting and merging
things. We also seek to define patterns that would of-
fer better understanding of when mutate (e.g., secure
more marketshare and reduce resource cost) and ens-
ure mutation consistency across available thing plat-
forms. Finally, we seek to investigate the benefits of
mutation in developing a safer IoT. Mutation could be
the way for protecting things from threats and attacks.

REFERENCES

Baker, T., Mackay, M., Randles, M., and Taleb-Bendiab,
A. (2013). Intention-oriented programming support
for runtime adaptive autonomic cloud-based applicati-
ons. Computers and Electrical Engineering, 39:2400–
2412.

Bauer, H., Patel, M., and Veira, J. (http://
www.mckinsey.com/industries/semiconductors/
our-insights/the-internet-of-things-sizing-up-the-
opportunity, 2014 (visited in August 2017)). The

In Situ Mutation for Active Things in the IoT Context

731

internet of things: Sizing up the opportunity.
Technical report.

Bölöni, L. and Marinescu, D. (2005). Adaptation and Mu-
tation in Multi-Agent Systems and Beyond. Springer
Berlin Heidelberg.

DZone (https://dzone.com/guides/iot-applications-
protocols-and-best-practices, 2017 (visited in
May 2017)). The Internet of Things, Application,
Protocls, and Best Practices. Technical report.

Lipton, R. (Carnegie Mellon University, 1971). Fault Diag-
nosis of Computer Programs. Technical report.

Lipton, R., DeMillo, R., and Sayward, F. (1978). Hints on
Test Data Selection: Help for the Practicing Program-
mer. IEEE Computer, 11(4).

Maamar, Z., Faci, N., Kallel, S., Sellami, M., and Ugljanin,
E. (2017). Software Agents Meet Internet of Things.
Internet Technology Letters, Wiley.

MicroTCA and Specification, O. M. C. Picmg mtca.4 pci
express hot plug design guide.

Mzahm, A. M., Ahmad, M. S., and Tang, A. Y. C. (2013).
Agents of Things (AoT): An intelligent operational
concept of the Internet of Things (IoT). In Procee-
dings of the 13th International Conference on Intel-
lient Systems Design and Applications (ISDA’2013),
Bangi, Malaysia.

NLM. NLM, US National Library of Medicine.
https://www.nlm.nih.gov.

Polo Usaola, M., Rojas, G., Rodriguez, I., and Hernan-
dez, S. (March 2017). An Architecture for the De-
velopment of Mutation Operators. In Proceedings of
the 12th International Workshop on Mutation Analy-
sis (Mutation’2017) held in conjunction with the 2017
IEEE International Conference on Software Testing,
Verification and Validation (ICST’2017), Tokyo, Ja-
pan.

Raner, M. (October 2006). The Mutator Pattern. In Procee-
dings of the 2006 Conference on Pattern Languages of
Programs (PLoP’2006), Portland, OR, USA.

Taivalsaari, A. and Mikkonen, T. (2017). A Roadmap to the
Programmable World: Software Challenges in the IoT
Era. IEEE Software, 34(1).

Terdjimi, M., Médini, L., Mrissa, M., and Maleshkova,
M. (2017). Multi-purpose Adaptation in the Web of
Things. In Proceedings of the 10th International and
Interdisciplinary Conference on Modeling and Using
Context (CONTEXT’2017), Paris, France.

Yun, W., Shin, D., and Bae, D. (May 2017). Mutation Ana-
lysis for System of Systems Policy Testing. In Procee-
dings of the 2017 IEEE/ACM Joint 5th International
Workshop on Software Engineering for Systems-of-
Systems and 11th Workshop on Distributed Software
Development, Software Ecosystems and Systems-of-
Systems (JSOS@ICSE’2017), Buenos Aires, Argen-
tina.

ICSOFT 2018 - 13th International Conference on Software Technologies

732

