
A Training Simulator for Teleoperated Robots Deployed at CERN

Clare Saliba1, Marvin K. Bugeja1, Simon G. Fabri1, Mario Di Castro2,

Alessandro Mosca2 and Manuel Ferre3
1Department of Systems & Control Engineering, University of Malta, Msida, Malta

2Engineering Department EN-STI, CERN, Geneva, Switzerland
3Centre for Automation and Robotics UPM-CSIC, Universidad Politecnica de Madrid, Madrid, Spain

Keywords: Teleoperated Robot, Telemax, EOD Robots, ROS, Gazebo, Modelling and Simulation, Robot Control, Virtual

Environment.

Abstract: This paper presents the design and implementation of a training simulator for the teleoperated robot Telemax.

Telemax is used at CERN for inspection and maintenance operations to reduce the exposure of personnel to

radiation. The robot is modelled using a robot description format and spawned in the robotic simulator

Gazebo. Control schemes are implemented in ROS in order to actuate the robotic arm in both joint-by-joint

space and operational-space. Control of the robot base is also modelled. A graphical user interface is used in

order to interface with the simulation, and control the robot with the help of live images coming from the

robot’s on-board cameras. The resulting simulator was tested by robot operators at CERN and is envisaged to

be of great help in the training of new operators, as well as in the testing of robot interventions in new scenarios

and environments.

1 INTRODUCTION

At the European Council for Nuclear Research

(CERN), the safety of personnel is given the utmost

importance. In fact, teleoperated robots are used for

inspection and maintenance in areas that are prone to

radiation contamination, such as in the Large Hadron

Collider (LHC). One of the robots used for this

purpose is Telemax which is shown in Figure 1.

Telemax is an explosive ordnance disposal (EOD)

robot manufactured by Telerob (Telerob, 2017). It is

equipped with tracked wheels for enhanced mobility,

with a seven degrees of freedom manipulator to

perform various tasks, and with six colour cameras

used for inspection and to provide visual feedback

during teleoperation.

Operators need to be well trained to use such

robots during various complex interventions.

However, the robots are not always available for

training, and it can be unsafe for a novice operator to

test dangerous manoeuvers on the real robot itself.

Moreover, it can be risky to try out new manipulation

procedures on the real robot since it can lead to

expensive damages. In such situations, the use of

training simulators is very convenient. Training

simulators are a virtual medium where the operators

can use a virtual imitation of the robots to learn how

to operate them safer and better.

In literature, one can find a number of works on

EOD robot simulators. In (Li et al., 2007) information

is provided about the software used to build both the

robot model and its simulated environment. In

addition, the authors document the kinematic model

of their robot, the collision detection algorithm and

how to grade the training system. Schoor et al. (2012)

present the training stages of EOD robots, and the

Figure 1: The teleoperated robot, Telemax, during one of its

maintenance procedures at CERN.

Saliba, C., Bugeja, M., Fabri, S., Castro, M., Mosca, A. and Ferre, M.
A Training Simulator for Teleoperated Robots Deployed at CERN.
DOI: 10.5220/0006849302830290
In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2018) - Volume 2, pages 283-290
ISBN: 978-989-758-321-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

283

operational requirements for realistic training

simulation, such as 3D rendering techniques. Their

paper also discusses a number of challenges that are

typically encountered when building robot

simulations, such as the challenge to simulate

gripping. However, neither of the aforementioned

works gives any detail on the robot simulation

software itself, such as how the robot was visually

modelled and how the control system was

implemented.

Szenaris GmbH, a company that supplies training

and simulation solutions, has put on the market a

virtual reality robotic vehicle simulation (Szenaris

GmbH, 2016) for both teleoperated robots, Telemax

and Teodor. The software can control the arm, base,

and camera using the actual remote control of the

vehicles Telemax and Teodor in a virtual training

environment, such as in an aircraft or in a building.

Unfortunately, this software does not allow the user

to customise the robot model and its virtual

environment. For this reason, it cannot be used with

altered robot models, such as to reflect hardware

changes and add-ons, or to design custom training

scenarios. As expected, the inner workings of this

software are not documented in literature.

For this reason, it was decided that in order to

have the required customisability and full flexibility

to generate new training scenarios and other features,

it is best to design and implement a custom robot

simulator using generic robot simulation software

that includes physics and visualisation engines. This

is the main contribution of the work reported in this

paper.

Various commercial, as well as open-source

software for simulation of different robots is

available. Gazebo, as reported in the survey by Ivaldi

et al. (2014), is one of the most used and popular robot

simulation software. Gazebo offers a robust physics

engine, high quality graphics, and convenient

programming and graphical interfaces. It also offers

applications such as data visualisation, simulation of

remote environments, and even reverse engineering

of black-box systems. In Gazebo all objects have a

defined mass, velocity, friction, and other physical

attributes. Hence, when a force is exerted on an

object, all the physics is simulated for a realistic

behaviour. Gazebo maintains all functions provided

by the physics engine, open dynamic engine (ODE),

to simulate the dynamics and kinematics of bodies.

Gazebo is also compatible with ROS (Quigley et al.,

2009). ROS is a robot framework that can be used to

write code for robot control, and is adaptable to

different robot platforms. In this work, Gazebo is

used as the robotic simulator, with ROS acting as the

middleware between the user and the model in order

to control the robot model in Gazebo. Apart from the

benefits found in literature, Gazebo and ROS were

chosen since these software were already used at

CERN for other projects. Hence, it is easier to

integrate all projects together.

2 SYSTEM OVERVIEW

Figure 2 provides an overview of the designed

simulator and its operation. The generic robotic

simulator Gazebo, which runs on a Linux computer,

is used to simulate the physics and the visuals of the

realistic and functional custom-made model of

Telemax. Thus, Gazebo can provide all the sensors’

states, including the state of all the joints declared in

the model of the robot, as well as information on the

cameras that Telemax is equipped with, since these

are also modelled and simulated. On the other hand,

ROS is used to actuate the robot via the available

control library, get the required actuators’ data from

the controllers developed in the mentioned library,

and send it to Gazebo to actuate the joints. The user

can operate the simulator using either a keyboard or a

specifically designed GUI that runs on Windows. In

order to capture the information from the user,

analyse it, and feed it to ROS, executable programs

were written. The output of virtual cameras is also

streamed on a web server using ROS libraries. This

allows the user to access the cameras’ data and have

it displayed in real-time via the GUI.

Figure 2: Block diagram of the operation of the simulator.

ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics

284

3 SYSTEM MODELLING

For the simulator to be as realistic as possible, both

the mathematical and visual models of the robot

needed to be as faithful to the real robot as possible.

The mathematical model of the robot was derived and

tested. This was followed by the visual modelling of

the robot using a robot description format.

Furthermore, a simple test environment was also

modelled for the robot to operate in.

3.1 Kinematic Model of the Robotic
Arm

The first step in obtaining the kinematic model of

Telemax’s robotic arm, was to determine the Denavit-

Hartenberg parameters. In this manner the reference

frames could be attached properly to the links of the

robot’s arm. This was done by accurately sketching

the robotic arm’s configuration, to clearly show all

the joints and their frames as depicted in Figure 3.

Then, the Denavit-Hartenberg convention (Sciavicco

and Siciliano, 2005) was used to generate the

transformation matrix of each link with respect to the

parent link. At the end, the transformation matrix

between the base reference frame and the end-effector

was found by multiplying all transformation matrices.

3.2 Physical Model of Telemax

The first step in modelling a robot in ROS is to create

a 3D mock-up of the robot in a CAD modelling tool

such as Inventor (Autodesk, 2017). Then, each link of

the model that has a different degree of freedom is

exported in the STL file format (since it is a geometry

file format supported by URDF). This enables the

links to perform different movements once in

operation. The model is simulated in ROS by using

URDF (Coleman, 2013).

URDF is an XML format that describes a robot

model, its links, and the joints connecting the links

together. The link element describes the body, both

kinematically and dynamically. This includes the

visual part of the body, the collision part, and its

inertial properties. The collision and inertial

properties are important to model the robot in

Gazebo. The joint is defined by the joint type, in this

case there were: six revolute joints and one prismatic

joint for the robotic arm. Another four revolute joints

were defined for the flippers of the robotic base.

Furthermore, each joint is defined by its joint

position. The limitations of rotation or extension, and

the maximum joint effort and velocity are also

defined for each joint. The position of the frames of

the non-fixed joints were set according to the

kinematic chain derived. Another useful element used

is the transmission element. This element describes

the relationship between joints and their actuators.

The cameras mounted on the robot are also modelled

using an ROS plugin, the camera_controller plugin

(Gazebo, 2017). This plugin acquired the cameras’

data from Gazebo and outputs it to the user as an

image. Once the model is defined, it is spawned into

Gazebo.

3.3 Physical Model of the Environment

A simple test environment was also set up using a

procedure similar to that followed to build the model

of the virtual robot. A custom training scenario was

built to test the basic functionalities of the robot. This

includes stairs and ramps, and different objects that

are used to test grasping and handling training

procedures.

Figure 3: The joints and links comprising Telemax's robotic

arm.

A Training Simulator for Teleoperated Robots Deployed at CERN

285

4 SYSTEM DESIGN

4.1 Control of the Robot’s Joints

To actuate the joints of the robot, the ros_control

(Lamprianidis, 2017) package in ROS is used. A ROS

controller is assigned to each of the robot’s joints. The

controller needs to be compatible with the hardware

interface declared in the transmission tag in the

URDF. This is because the hardware interface acts as

the mediator between the controller and, in this case,

the simulator. It is able to convert from joint torques

to motor torques, and gives access to read and

command actuator properties in Gazebo. On the other

hand, the ROS controller uses a feedback mechanism

where the controller receives a reference value, such

as a desired joint angle, and varies the control variable

(or effort) to adjust the controlled output accordingly,

based on the signals fed back from the sensors. The

closed-loop control scheme uses a Proportional

Integral Derivative (PID) loop.

The joint position controller and the effort joint

interface are implemented on the joints of the robotic

arm and the joints of the flippers. However, during

teleoperation, the user cannot control the joints by

sending a reference angle, but rather by sending a

desired velocity. Hence, a velocity controller needed

to be emulated to change the velocity reference input

from the user to a reference position of the joints

(angle in case of revolute joints). This is done by

incrementing the angle or position value of each joint

with a constant value every time a specific key on the

keyboard is pressed and until the key is released.

Thus, the joints move with a constant velocity. If the

velocity needs to be changed, the user can decrease or

increase the constant value of increment until it

reaches its limits.

4.2 Design of the Robotic Arm Control

System

The robotic arm can be controlled in two modes,

either in a joint-by-joint control mode or in

operational-space control mode. In the former the

user controls each joint individually. In the

operational-space control mode, the user specifies the

required end-effector position and orientation in

operational space (also referred to as Cartesian

space). Then, a controller is used to find the required

joint variables, qd, so that the manipulator reaches the

reference position and orientation in 3D space.

Figure 4 depicts the adopted joint-by-joint control

scheme. Every time the user presses the keyboard

Figure 4: Joint-by-joint control scheme.

button corresponding to a joint, the current actual

joint angle (in case of revolute joints) or joint position

(in case of prismatic joints) qa is read from Gazebo

and increased (or decreased) by adding (or

subtracting) the constant value, inc. This constant is

set according to the speed predefined by the user.

Consequently, the desired joint angle, qd, is

computed. This value is then sent to the joint angle

controller that uses an internal feedback mechanism

to calculate the torque required to actuate the joints

according to the PID control algorithm. The

controller developed in ros_control is enclosed in the

blue dotted box in Figure 4 and allows only the

reference joint position as an input.
The operational-space control scheme is shown in

Figure 5. Once the user activates the operational-
space control mode, the actual joint angles qa are used
to find the matrix xa, containing the orientation R(qa)
and the position P(qa) (as in (1)) of the end-effector,
by performing the forward kinematics.

𝐱𝐚 = [
𝐑(𝐪𝐚) 𝐏(𝐪𝐚)

𝟎 𝟏
] (1)

Then, each time the user needs to change the

position/orientation of the end-effector, the new

desired rotational matrix xd which is a function of the

desired joint angles qd is found using the

incrementing vector, inc. This vector contains six

constants, three that give an increment in the x, y, and

z axis of the end-effector (incx, incy, and incz), and

three that give a rotation around the x (yaw), y (pitch),

and z (roll) axis (incψ, incθ, and incφ). To find the

new position of the end-effector, the first three

constants of inc are added with the current x, y, and z

position (xx, xy, and xz) as follows

𝐏(𝐪𝐝) = [

xx + incx

xy + incy

xz + incz

] (2)

To find the orientation of the new frame, R(qd), as

denoted by Siciliano and Sciavicco (2005), the

composition of successive rotations with respect to a

fixed frame is obtained by premultiplying of the single

rotation matrices in the order of the given sequence of

rotations.

ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics

286

Figure 5: Operational-space control scheme.

Hence,

𝐑(𝐪𝐝) = 𝐑(𝐪𝐚)𝐑(𝛟) (3)

where, 𝐑(𝛟) is the orientation matrix as a

function of the desired increment angles

(incψ, incθ, and incφ). Hence, this matrix gives the

desired rotation transformation. In (Sciavicco and

Siciliano, 2005), the authors also show that the

orientation matrix R(ϕ) is given by

𝐑(𝛟) =

[

cφcθ cφsθsψ − sφcψ cφsθcψ + sφcψ

sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ

−sθ cθsψ cθcψ

]

(4)

In this equation, c and s denote the cosine and sine

trigonometric functions of the subscript angle

respectively.

Taking,

[

ψ
θ
φ

] = [

incψ

incθ

incφ

] (5)

the set of angles in (5) are computed in (4), and the

orientation matrix that the actual coordinate frame

needs to be rotated with, is found. In order to find the

final desired orientation matrix, R(qd), R(qa) and

R(ϕ) are multiplied together as in (3). Once the

required rotation matrix xd, is found, one can move

on to change from the coordinate space to the joint

space. To find the joint variables required for the

robotic arm to move to the desired position and

orientation, the inverse kinematics are computed on

the desired frame. Following this, the newly

computed reference joints are passed through the joint

angle controller that is the same as that used in the

joint-by-joint control.

For the computation of the kinematics that were

used in the operational-space control, the Kinematics

and Dynamics Library (KDL) (Orocos, 2017a) by the

Orocos Project (Orocos, 2017b) was used. It provides

generic forward and inverse kinematic solvers by the

use of numerical solutions. The forward kinematic

solver of KDL is used in real time to calculate the

forward kinematics of the manipulator. To calculate

the inverse kinematics, the solver TRAC-IK (Beeson

and Ames, 2015) was used. TRAC-IK gives solution

in a relatively low computational time whilst taking

in consideration the joint limits. The gripper of the

robotic arm was also modelled and controlled in a

similar way to the joint-by-joint control scheme. The

gripper consists of six revolute joints which are

moved simultaneously in order to open and close its

claws.

4.3 Control of the Robot Base

The mobile base of Telemax consists of four flippers

which can be rotated clockwise and anti-clockwise

for better maneuverability and to make the base reach

different heights. These flippers are modelled in ROS

as revolute joints and are controlled in a similar

manner to the joint-by-joint scheme. Telemax is also

equipped with tracked wheels. Since Gazebo does not

support tracked vehicles, a way around the issue of

simulating the tracked wheel behaviour needed to be

found. A plugin developed by Team Hector (2017)

was used to simulate the wheels. The motion is led by

a simple controller that exerts forces on the main

robot based on commanded linear and rotational

velocities.

4.4 Graphical User Interface

The user can interface with the simulator via a

keyboard, by which the user can switch from one

mode to another and move the robotic arm, or the

robot base, using the assigned key. Furthermore, The

interface is shown in Figure 6, a GUI developed by

the robotics team at CERN (Lunghi, Marin Prades

and Di Castro, 2016) is interfaced with the simulator.

The user can control the robot using a keyboard or a

A Training Simulator for Teleoperated Robots Deployed at CERN

287

joystick and can only use the output of the cameras

mounted on the robot for teleoperation.

Figure 6: The GUI used with the simulator.

5 RESULTS

To achieve the best computational performance,

different parameters of the physics engine were

adjusted in a heuristic manner, in order to reach a

compromise between the accuracy of the simulation
and its performance. Then, the step response of each

joint was analysed in order to tune the corresponding

PID parameters for a non-oscillatory, accurate but

fast response. The results are shown in Figure 7,

where (a) shows the step responses for each joint of

the manipulator and (b) shows the effort of each joint

of the manipulator.
In order to test the operational-space control

scheme, the robotic arm was programmed to follow

different trajectories, both in 2D and 3D, leaving the

base at rest. The base was left at rest since during

interventions, at CERN, the control and movement of

the manipulator is done whilst the base is stationary.

This test was done by feeding the desired coordinates

in the x, y, and z axes into the operational-space

control scheme. Figure 8 shows the robotic arm

tracking a spiral trajectory with very little error. Some

minor deviations are noticed in Figure 8 and these are

attributed to the PID’s inability to compensate fully

for the system’s coupling effects and nonlinearities.

The gripper of the robot was tested by grasping

different objects that have different weights and

shapes, such as a pallet as seen in Figure 9. The

experiments included also grasping and carrying

around a briefcase, grabbing a small cube from one

box and placing it into another one by using only

visual feedback from the on-board cameras. As in

reality, the operator can deduce that an object is

grasped either visually or by performing some

movements with the arm such as moving the arm

upwards.

Time (seconds)

(a)

Time (seconds)

(b)

Figure 7: (a) shows the step response for each joint, where

the blue graph shows the reference input and the red graph

shows the controlled joint variables. (b) shows the effort

force (Nm) of each joint.

Figure 10 shows a testing exercise of the

simulated robotic base. In this test the operator drove

the robot around a maze and made it climb different

obstacles. By controlling the flippers of the robot,

Telemax was able to successfully climb up a

maximum height of 50 cm. Finally, Figure 11

provides a complete picture of the simulation in use.

J
o

in
t

T
o

rq
u

e
(N

m
)/

J
o

in
t

F
o

rc
e

(N
)

J
o

in
t

A
n

g
le

 (
ra

d
)

/
J
o

in
t

L
en

g
th

 (
m

)

ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics

288

Figure 8: Tracking of a 3D spiral trajectory. Blue plot shows

the desired path and red plot shows the path followed. Error

with time in the x, y, z directions are shown underneath for

each trajectory.

Figure 9: Telemax robot operated to grasp and handle

objects.

Figure 10: Telemax operated to climb up stairs by setting

the flippers accordingly.

Figure 11: Telemax simulation using visual feedback from

the on-board cameras of teleoperation.

The figure shows the robot being operated in a virtual

environment in Gazebo and it also shows the visual

feedback from its onboard cameras made available to

the operator. These exercises help users to gain

confidence in the control of Telemax.

6 CONCLUSIONS

This paper presented the physical and dynamic

modelling of a realistic simulated version of the robot

Telemax, as well as its controller in its working

environment. The virtual robot was designed,

implemented, and simulated in the generic robotic

simulator Gazebo. The physical model was built

using the robotic description format, URDF. To set an

interface between the user and the robot, and the robot

and the simulator, ROS was used. ROS was also used

in order to implement the control algorithms of the

robot.

The robotic arm was modelled by deriving its

kinematic equations. Then, a control system was

implemented to drive the robotic arm in two different

modes, namely: joint-by-joint mode and operational-

space mode. The gripper was also modelled to open

and close accordingly. The drive of the robotic base

was also developed by using a velocity control loop

where the linear or angular reference velocity of the

base is specified and varied by the user in real-time.

Furthermore, another angle control loop is used for

the control of the four flippers of the robotic base.

For the main operation of the robot, a keyboard as

well as a GUI developed at CERN for the

teleoperation of the robots, were interfaced with the

simulator. As in real scenarios, the robots are

teleoperated, hence the operators use the cameras

mounted on the robot for visual feedback. These

cameras were also modelled so that the user can make

use of them to control the robot during training. This

helps the user gain more confidence in teleoperation.

Finally, tests were performed to evaluate the

robustness of the system developed.

A Training Simulator for Teleoperated Robots Deployed at CERN

289

To render the system more realistic, future work

can interface the actual remote control with the

simulator, such that the user obtains the same feel as

when operating the real robot. Furthermore, a better

solution needs to be found to simulate the tracked

wheels. Moreover, the gripping function of the robot

needs to be tested on more objects that differ in shape

and weight to test the robustness of the simulator in

this respect.

In conclusion, a simple to use, low-cost,

reprogrammable and effective training simulator for

the EOD robot Telemax was developed. Operators of

Telemax at CERN performed some tests with the

robotic arm and the drive of the robot. Positive

feedback about the training simulator in general was

given. The operators agreed that such simulator is

easy to use and the manipulation is very realistic.

Furthermore, the operators stated that such tool is

very useful in the training procedure both for new

operators as well as for training before interventions.

One of the advantages of having such a model is that

it can be adapted and tested in different scenarios.

Moreover, using this system, other robots can be

modelled and allowed to interact together in Gazebo.

Hence, when operators are on the real scene, time is

gained as operators are prepared before hand.

ACKNOWLEDGEMENTS

This research was supported by Endeavour

Scholarship Scheme 2016 (Malta) and CERN Trainee

Programme.

REFERENCES

Autodesk (2017) Inventor. Available at: https://www.auto

desk.com/products/inventor/overview (Accessed: 27

September 2017).

Beeson, P. and Ames, B. (2015) ‘TRAC-IK : An Open-

Source Library for Improved Solving of Generic

Inverse Kinematics’, pp. 928–935.

Coleman, D. (2013) urdf. Available at: http://wiki.ros.org/

urdf/XML (Accessed: 2 September 2017).

Gazebo (2017) Gazebo plugins in ROS. Available at:

http://gazebosim.org/tutorials?tut=ros_gzplugins

(Accessed: 4 September 2017).

Ivaldi, S., Padois, V. and Nori, F. (2014) ‘Tools for

dynamics simulation of robots: a survey based on user

feedback’, CoRR, p. 15. doi: 10.1109/HUMANOIDS.

2014.7041462.

Lamprianidis, N. (2017) ros_control. Available at:

http://wiki.ros.org/ros_control (Accessed: 9 September

2017).

Li, X. et al. (2007) ‘Research on simulation and training

system for EOD robots’, 2006 IEEE International

Conference on Industrial Informatics, INDIN’06, pp.

810–814. doi: 10.1109/INDIN.2006.275666.

Lunghi, G., Marin Prades, R. and Di Castro, M. (2016) ‘An

advanced , adaptive and multimodal graphical user

interface for human-robot teleoperation in radioactive

scenarios’, ICINCO, 2, pp. 224–231.

Orocos (2017a) KDL wiki. Available at: www.orocos.

org/kdl (Accessed: 16 September 2017).

Orocos (2017b) The Orocos Project. Available at: http://

www.orocos.org (Accessed: 16 September 2017).

Quigley, M. et al. (2009) ‘ROS : an open-source Robot

Operating System’.

Schoor, W., Förster, M. and Radetzky, A. (2012) ‘Realistic

training simulations of explosive ordnance disposal &

improvised explosive device disposal robots’, IEEE

International Conference on Industrial Informatics

(INDIN), 49(0), pp. 875–880. doi: 10.1109/INDIN.

2012.6300831.

Sciavicco, L. and Siciliano, B. (2005) Modelling and

Control of Robot Manipulators. Second. Springer.

Szenaris GmbH (2016) Remote Controlled Vehicle

Simulation. Available at: https://www.szenaris.com/

wp-content/uploads/2016/09/szenaris_ausbildungsaus

stattung_manipulatorfahrzeuge.pdf (Accessed: 3

August 2017).

Team Hector (2017) Team HECTOR. Available at: http://

www.teamhector.de (Accessed: 10 September 2017).

Telerob (2017) Telerob. Available at: http://www.telerob.

com/en/products (Accessed: 16 August 2017).

ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics

290

