
Orchestrating Functional Change Decisions in Scrum Process using
COSMIC FSM Method

Asma Sellami1, Mariem Haoues2, Nour Borchani1 and Nadia Bouassida1

1Mir@cl Laboratory, University of Sfax, ISIMS, BP 242. 3021, Sfax, Tunisia
2Mir@cl Laboratory, University of Sfax, FSEGS, BP 1088. 3018, Sfax, Tunisia

Keywords: Functional Change, User Requirements, COSMIC ISO 19761, Functional Size Measurement, Scrum, User
Story Description.

Abstract: Because user requirements change frequently during the software life-cycle, project managers looked at flex-
ible methods that manage changes as more information take place. Today, agile methods such as Scrum are
increasingly used in software organizations to avoid the danger of “scope creep” and project delays. Although
the scrum method is gaining popularity, a change request is still poorly evaluated within an ongoing sprint.
Moreover, there is a lack of a structured change evaluation approach that helps in making an appropriate deci-
sion after a Functional Change (FC) request. The main objective of this paper is to propose a decision support
tool that assists the decision-makers to decide whether to accept, deny or defer a given FC request. For this
purpose, we use the COSMIC Functional Size Measurement (FSM) method to evaluate a FC request. We
distinguish between a FC affecting an ongoing sprint and a FC affecting an implemented sprint. Based mainly
on the functional size of the proposed FC and the development progress, we provide recommendations to the
decision-makers.

1 INTRODUCTION

The success of software organizations increasingly
depends on how to manage software projects in a dyn-
amic and unpredictable environment, where software
requirements are likely to change. In fact, software
products are frequently subject to continuous evolu-
tion induced by the addition of new functionality or
the deletion/modification of existing ones. Multiple
causes may be the reason for requirements changes
(e.g., missing functionality, defects corrections, etc.)
(Bano et al., 2012).

Agile methods are increasingly being adopted in
software organizations. They are flexible and can
cope with software evolution. In fact, agile methods
encourage the communication with the customer/user,
who is present during each phase of the software life-
cycle. Although agile methods have the reputation
for coming up with flexible solutions, many promised
software projects have failed to succeed. Gilb con-
siders that 61% of agile projects end up with failure
(Gilb, 2018). He also addressed the importance of
using measure in reviewing development progress, re-
evaluating user stories priorities, etc. This in order to
align with the new customer’s needs.

Over recent years, many agile methods have been
proposed (e.g., extreme programming, scrum, crystal,
etc.). Each organization chooses the most appropri-
ate method suitable to its work. Currently, eXtreme
Programming and Scrum methods are the most popu-
lar (Dikert et al., 2016). In our paper, we selected
“Scrum”. In the scrum process all the participants
(e.g., product owner, development team, scrum mas-
ter, etc.) should be keenly aware about how big is
a change request. In fact, a change considered as
“small” for the Product Owner (PO) may have signifi-
cant impact on the development schedule and budget.

In practice, change requests are usually assessed
by “experts” that have the required knowledge about
the changed product and the process to carry out the
required modifications. However, software organiza-
tions should avoid as much as possible values that are
based on judgment (Abran, 2015), since there is no
guarantee of their effectiveness. Thus, it is necessary
to use a well defined measurement method to assess a
change request.

In this paper, we introduce a new Functional
Change (FC) evaluation approach applied in scrum
process based on the COSMIC FSM method. Sizing a
FC in terms of COSMIC Function Point (CFP) units

482
Sellami, A., Haoues, M., Borchani, N. and Bouassida, N.
Orchestrating Functional Change Decisions in Scrum Process using COSMIC FSM Method.
DOI: 10.5220/0006853804820493
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 482-493
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

will provide a real evaluation of the change request
(Haoues et al., 2017). This evaluation will help the
decision-makers responding to a change request. To
provide for these decisions, we distinguish between
a change request that affects an implemented sprint
and a change request that affects an ongoing sprint.
Nevertheless, in scrum process, changes are not al-
lowed after the sprint starts. However, if a change
affects a user story (not yet fully implemented) in an
ongoing sprint, this will cause either the sprint stop
or time-wasting in implementing a user story that will
certainly be changed in the next sprint as requested by
the PO. The proposed approach in this paper is sup-
ported by the Functional Change Measurement Tool.

The remaining of this paper is organized as fol-
lows: Section 2 presents firstly an overview of the
scrum process and COSMIC FSM method. Secondly,
it discusses some related works. In section 3, we use
COSMIC to evaluate a FC request. Section 4 pre-
sents the recommendations to answer a FC request. In
section 5, we illustrate our approach through the case
study “E-Commerce” and present our tool. Section
6 discusses several threats to validity, concludes the
presented work and outlines some of its possible ex-
tensions.

2 BACKGROUND

2.1 Overview of the Scrum Process

The scrum process starts with a high-level definition
of the project scope. Scrum uses the product backlog
as a list of features corresponding to the Functional
User Requirements (FUR). This list is prioritized by
the PO to be used as an iterative input for different
sprints “Iteration” (Schwaber, 2004). Thus, the active
involvement of the PO is mandatory to explain, eluci-
date the next iteration that should be implemented and
evaluate the work done. For a single sprint, four ty-
pes of meetings should be held: sprint planning meet-
ing, daily scrum, sprint retrospective meeting and
sprint review meeting. The FUR to be implemented
in a sprint are captured during the planning meeting;
the FUR to be selected are derived from the Product
Backlog and placed in a Sprint Backlog. Daily scrum
meetings are held during the sprint to discuss three
main questions: what has been done, what are you
going to do, and what are the issues (Cohn, 2004).
Each sprint is followed by a sprint retrospective meet-
ing during which the development team reviews the
sprint and decides which change will be made, and
how they can improve their work processes for the
next sprint.

Functional users:

Humans

Other software

Hardware devices

Functional

Sub-processes

Persistent

storage

Entry

eXit

Read Write

1 entering

data group

1 exiting

data group

1 retrieved

data group

1 data group

to be stored

Functional

process
Boundary

Figure 1: COSMIC data movements (COSMIC, 2017).

User stories represent a high-level of user require-
ments that typically express the FUR from an external
user perspective. A User Story (US) is a brief state-
ment of intent that describes the user demand. Below
the US description used in the literature (Cohn, 2004).

As a <user type>
I want to <feature or functionality>
so that <value or expected benefit>

Typically, development team uses the User Story
Point (USP) method to determine the complexity of
user stories. This method has been widely critici-
zed (cf., (Berardi E., 2011), (Desharnais et al., 2011),
(Commeyne et al., 2016), etc.). USP is only meaning-
ful for a specific development team and in a specific
project. It could not be used to compare the producti-
vity of the organization with its competitor in the mar-
ket. In addition, (Commeyne et al., 2016) proved that
using COSMIC in agile projects gives a better results
in estimating the effort needed to accomplish a US.

2.2 COSMIC FSM Method: ISO 19761

COSMIC measure the software functional size from
the FURs. FURs represent the “user practices and
procedures that the software must perform” (COS-
MIC, 2017). Each FUR involves a number of functio-
nal processes. Each Functional Process (FP) consists
of a set of functional sub-processes that move or ma-
nipulate data. A data movement moves a single data
group from/to a user (respectively Entry and eXit data
movement) or from/to a persistent storage (respecti-
vely Read and Write data movement). One CFP is
then assigned per data movement. The functional size
of a FP is equal to the number of its data movements.
Thus, the software size is equal to the sum of the sizes
of all its functional processes.

COSMIC is the only FSM method that measure
the size of a change to software. COSMIC defi-
nes a Functional Change (FC) as “any combination
of additions of data movements or of modifications
or deletions of existing data movements” (COSMIC,

Orchestrating Functional Change Decisions in Scrum Process using COSMIC FSM Method

483

2017). To measure the Functional Size of a FC, refer-
red to as FS(FC), COSMIC recommends to attribute
one CFP for each changed data movement regardless
of the change type (addition, deletion, or modifica-
tion). Thus, the FS(FC) is given by the aggregation of
the sizes of all the added, deleted and modified data
movements. The FS(FC) is at least equal to 1 CFP
with no upper limits (COSMIC, 2017). Whereas, the
functional size of the software after a FC is given as
the sum of all added data movements minus the functi-
onal size of all removed data movements (COSMIC,
2017).

2.3 Related Work

Agile methods embrace change while traditional pro-
cess avoid changes. To determine the perception of
practitioners about product backlog changes, (Alsa-
lemi and Yeoh, 2015) conducted a survey that iden-
tified 11 reasons for requirements change. The main
reasons are: defect fixing, functionality enhancement,
and design improvement. Regarding the change type,
the practitioners consider that 56.1% of the requi-
rements changes propose to add new requirements.
While, 62.9% of the requirement changes in the pro-
duct backlog propose to modify existing require-
ments.

Taking into account the importance of change ma-
nagement in scrum, a number of researchers have ad-
dressed the evaluation of requirements change in agile
methods. For instance, (Lloyd et al., 2017) addressed
the problem of requirements changes during the deve-
lopment process in distributed agile development. In
this study, a feature tree approach is proposed with a
supporting tool to help managing requirements’ chan-
ges in distributed agile development. On the other
hand, (Stålhane et al., 2014) proposed to analyze the
impact of technical changes (i.e., changes affecting
non-functional requirements or project requirements
and constraints), in particular, safety requirements.
The safety requirements have been separated and ana-
lyzed after any change that occurs to ensure the vali-
dity of safety requirements. Two main questions have
been addressed in this study: will the requirement and
design affect the safety? and Will the update affect the
safety?.

Table 1 summarizes the main proposals that fo-
cused on the requirements change in scrum process.
We noticed that some studies focused on functional
changes (cf., (Alsalemi and Yeoh, 2015)) while other
studies focused on technical changes (cf., (Stålhane
et al., 2014)). However, changes in these papers have
been always considered as new requirements. Thus,
no change history is recorded. However, we believe

that it is important to evaluate requirements’ changes
and record changes history. This will certainly help
during the software maintenance as well as for new
software development. It guarantees a better under-
standing of the change and directly affects the quality
of the software size measurement results (Desharnais
et al., 2011). Moreover, change evaluation is usually
based on experts’ judgment. Whereas, experts’ judg-
ment evaluation is less transparent compared to any
other technique and depends mainly on the experts’
experiences. In addition, there is no way to verify the
logic of their evaluation especially when there is no
quantified data (e.g., the change size).

3 FC EVALUATION IN SCRUM
PROCESS

This section illustrates how to evaluate a FC in scrum
process using COSMIC FSM method. Thus, we pro-
pose a detailed US description that provides the requi-
red information to apply COSMIC. Then, we present
measurement formulas to measure the functional size
of software products using US format. Later, we des-
cribe our method that can be used in evaluating a FC.

3.1 Detailed US Description

In scrum, user requirements are represented in user
stories format. However, user stories represent the
user requirements at a high level of details (Deshar-
nais et al., 2011). Moreover, there is no standard
representation of user stories. Hence, different user
stories description formats have been proposed. For
instance, (Verwijs, 2016) distinguished between two
ways to break down user stories: horizontal and verti-
cal. The horizontal breakdown divided the user sto-
ries by the type of work that is needed or the lay-
ers or components that are involved (Taibi et al.,
2017). Whereas, the vertical breakdown decomposed
the user stories in “a way that smaller items still result
in working, demonstrable, software” (Verwijs, 2016).
(Desharnais et al., 2011) used COSMIC to assess the
quality of the US documentation. They proposed a
documentation quality rating scale including five va-
lues. The evaluation of the user stories documentation
is based on whether or not it includes information that
can be used to identify COSMIC concepts. They con-
cluded that guarantying the US quality may guaranty
the measurement results quality as well.

In our study, we detail a US in a way that repre-
sents all the required information to apply COSMIC
FSM method. Consequently, the refinement between
the existing description of user stories in section 2.1

ICSOFT 2018 - 13th International Conference on Software Technologies

484

Table 1: Summary of the proposals focused on requirements change in scrum process.

Study Focus Type Findings
(Alsalemi and
Yeoh, 2015)

Product backlog change manage-
ment and requirement traceability

Survey Lack of requirement change
traceability

(Lloyd et al.,
2017)

Requirements change management
in distributed agile development

Experimental A supporting tool

(Commeyne
et al., 2016)

Evaluation of teams’ productivity
using COSMIC

Experimental COSMIC is more reliable in
estimating models with much
smaller variances

(Stålhane
et al., 2014)

Impact of technical changes in sa-
fety requirements

Exploratory A supporting tool that ensures
the validity of safety

This Study Evaluation of functional changes in
scrum process using COSMIC

Exploratory Quantify FC request to help
the decision-makers

/*description*/

As a <UserType> I want to <Action> <Object> so
that <value or expected benefit> <NFR>

/*Scenario description*/

<User/System> <ActionType: Entry, Read, Write,

eXit, Expletive> <DataTransferred> <Action>

Figure 2: Detailed user story description format.

and COSMIC method leads to the new description
that we proposed in Figure 2, where:

• <UserType> is the user of the US referred to as
the functional user in COSMIC.

• <Action> and <Object> are used to replace the
concept “feature or functionality” in the US des-
cription provided in section 2.1. In fact, the “fea-
ture or functionality” is a combination of an action
and an object that the action will be applied on.
These two concepts are important in analyzing
and finding similarities between different user sto-
ries. This distinction is required when measuring
the functional size of a US. For example, consi-
dering the US “as customer I can log-in to my ac-
count”. The <Action> in this US is then “log-in”.
And the <Object> is “customer”.

• <value or expected benefit>: It is used to charac-
terize the successful ending of the US. This infor-
mation is used to distinguish between two functi-
onal processes.

• <NFR> describes the non-functional require-
ments.

<value or expected benefit> and <NFR> are op-
tional.

Two different user stories could not have the same
combination of <UserType>, <Action>, <Object>,
and <value or expected benefit>. Although this des-
cription represents more details compared to the old

one, it do not represent the functional sub-processes.
Hence, moving to the scenario description is requi-
red. At this level, we will be able to identify the sub-
processes. We distinguish the following concepts:

• <User/System>: three main types are identified
such as external actor, system and data storage.
External actor could be a human actor (e.g., ad-
ministrator, client, etc.) or an external system in
a direct relation with the software to be measu-
red. The system that represents the software to
be measured. Finally, the data storage that allows
the retrieving and saving of data (e.g., databases,
XML files, memory cards, etc.).

• <ActionType>: the action that will be applied on
a certain data group is restricted to a number of
known verbs (e.g., select, ask, read, etc). These
verbs could be classified into four main corpses:
entry actions, read actions, write actions, and exit
actions. These corpses are provided in the Appen-
dix. These actions represent the data movements
in each US.

• <DataTransfered>: represents the data that
have been transferred in each functional sub-
process. They can be either input or output
data. This depends on the <ActionType> and
the <User/System>. <DataTransfered> in COS-
MIC corresponds to the “data group” concept.

• <Action>: gives a summary of the user story pur-
pose.

As an example, lets consider the following user
story (US1):

As an <Administrator> I want to <add> <a
Customer>

The priority of US1 is equal to P1. The impor-
tance of US1 is Essential. And the status of US1 is
“done”. The functional size of US1 is equal to 4 CFP.
The detailed measurement results are provided in Ta-
ble 2.

Orchestrating Functional Change Decisions in Scrum Process using COSMIC FSM Method

485

Table 2: Detailed measurement results of the functional size of US1.

Functional
User

US Detailed Description Data
Group

Objects
of interest

Data Mo-
vement
Type

CFP

The administrator asks to add a customer - - - -
The system displays the interface - - - -

Administrator The administrator enters the data of the cu-
stomer

customer
data

customer Entry 1

- The system checks the existing of the client customer
data

customer Read 1

- The system inserts the data customer
data

customer Write 1

Administrator the system displays error/ confirmation
message to the administrator

error
message

error eXit 1

FS(US1) = 4 CFP

3.2 Prioritizing User Stories

In scrum, user stories are prioritized as requested by
the PO (Ambler, 2014). The development team starts
the implementation with the more prior US. Whereas,
PO does not have enough knowledge about the im-
plementation details. For instance, it is not possible
to buy a product without login-on as a customer. The-
refore, we propose to balance the US for PO and de-
velopment team perspectives according to two para-
meters: importance (developers perception) and pri-
ority (PO perception). The priority of user stories is
defined by the PO. The US that must be implemented
first is the more prior one (i.e., P1 is more prior than
P2, P2 is more prior than P3, etc.). The importance
of a US can be Essential or Desirable. Essential user
stories represent the basic user needs (Fairley, 2009).
Desirable user stories add values to the software (Fai-
rley, 2009). For two user stories with the same pri-
ority, the developers start with the Essential one. If
two user stories have the same priority and the same
importance, the developers will start with the US ha-
ving the minimum functional size. For example, a US
with importance = Desirable and priority = P1 (i.e.,
(D, P1)) indicates that this US is Desirable for the de-
velopers but very prior to the PO. Hence, it may be
selected after all the user stories with importance =
Essential and priority = P1 (i.e., (E, P1)).

Figure 3 is used to help prioritizing user stories
in the product backlog/sprint. Hence, it can be used
when selecting user stories from the product backlog
and when re-organizing user stories in an on-going
sprint after an approved FC. The importance/priority
of the changed user stories is compared to the impor-
tance/priority of the user stories initially in the sprint.
For example, suppose that a FC proposes the addition
of a US with importance = Essential and priority = P1.

If this FC is accepted, the added US must be imple-
mented before the user stories initially selected in the
sprint with a priority lowest than P1 (i.e., P2, ...Pn).

On the other hand, developers identify the status
of a US that can be used to control the development
progress of a US. Thus, the status of a US can be:

• New is the status of a user story in the product
backlog.

• To do is the status of a user story assigned to an
on-going sprint.

• Doing is the status of a user story currently being
implemented.

• To test is the status of a user story ready for tes-
ting.

• Done is the status of a user story tested with
success.

In our FC evaluation approach, we consider that
only two status are sufficient (done and undone).
Thus, a US with New, To do or Doing status is not
fully implemented. Whereas, a US with Done or To
test status is fully implemented. Hence, we keep these
two US status: undone and done as given in Figure 4.
Where an undone user story is not fully implemented.
And, a done user story if fully implemented.

3.3 Measuring the Software Functional
Size from its US Descriptions

This section proposes measurement formulas that can
be used to measure the software Functional Size (FS)
based on the description of its user stories. Note that
the FS of the product backlog can be different from
the FS of the increment product. In fact, changes
always happen in the scrum process. Hence, new

ICSOFT 2018 - 13th International Conference on Software Technologies

486

(D, P1) (E, P1)

(D, Pn)
Developers

 perception

PO perception

HighLow

Low

High

Importance level

Priority

level

(E, P2)
.

.

.

(E, Pn)

(D, P2)
.

.

.

Figure 3: Prioritizing user stories in product backlog/sprint.

Figure 4: Adapted user stories status in scrum process.

functionality may appear, while others may be mo-
dified or deleted. The functional size of the product
backlog is given by measuring the sizes of all sprints
initially identified. While, the functional size of the
increment product depends on the functional size of
the implemented sprints.

The functional size of the product backlog or the
increment product is equal to the sum of the functi-
onal sizes of all the sprints it includes (see Equation
1).

FS(P) =
n

∑
i=1

FS(Si) (1)

Where:

• FS(P) is the functional size of the product backlog
or the increment product.

• FS(Si) is the functional size of sprint i.

• n is the number of sprints initially identified in the
case of product backlog size measurement or the
number of implemented sprints in the case of in-
crement product size measurement.

The functional size of a sprint is equal to the sum
of the functional sizes of all the user stories it includes
(see Equation 2).

FS(Si) =
m

∑
j=1

FS(USi j) (2)

Where:

• FS(Si) is the functional size of sprint i (1≤ i≤ n).

• FS(USi j) is the functional size of the user story j
in Si.

• n is the number of user stories in sprint Si.

The functional size of a user story is equal to the
sum of the functional sizes of its actions (see Equation
3).

FS(USi j) =
p

∑
k=1

FS(Acti jk) (3)

Where:

• FS(USi j) is the functional size of the user story j
in Si.

• FS(Acti jk) is the functional size of action Acti jk in
USi j (1 ≤ i ≤ n and 1 ≤ j ≤ m).

• p is the number of actions in user story j.

3.4 Research Method

Accepting or rejecting a FC request depends on two
main factors: the FS of the changed US and the US
status (done or undone). In fact, the FS(FC) gives
a real evaluation of the FC (Haoues et al., 2017). A
change in an ongoing sprint, in an implemented sprint
or in the product backlog may be handled with or wit-
hout extra cost/time. Consequently, every FC needs
to be evaluated. In our study, we evaluate a FC pro-
posed in an ongoing or an implemented sprint. This
evaluation is used later to provide recommendations
to the decision-makers to accept, defer or deny a FC
request.

In Figure 5, we present the different phases of this
study. In scrum, a FC request is proposed by the PO or
the development team. First, it should be expressed in
terms of US format to identify the changed US (noted
by USa). This later has a current status which is either
done (i.e., the change is in an implemented sprint or
an ongoing sprint) or an undone user story (i.e., the
change is in an ongoing sprint). In the case of an on-
going sprint, we identify the attributes of the sprint
where the change occur (e.g., size, start date, etc.) and
measure respectively the FS(FC), the FS(USa) and the
functional sizes of all the undone user stories in the
same sprint. In the case of an implemented sprint, we
measure the FS(FC) and the FS(USa). These measu-
res are used to evaluate the FC and provides guideli-
nes to orchestrate decision making (i.e., accept, deny
or defer a FC request).

3.4.1 FC Evaluation in an Ongoing Sprint

At the moment when a FC appears, an ongoing sprint
may contain both done and undone user stories. Thus,
if the status of the changed user story (USa) is undone,
our method proposes to compare the FS(FC) to the
functional size of all the undone user stories in the

Orchestrating Functional Change Decisions in Scrum Process using COSMIC FSM Method

487

- Accept

- Deny

- Defer

FC request

- Product Owner

- Development team

Express FC in terms

of User Story

Identify the affected

User Story USa

[USa in an implemented

 sprint]

[USa in an ongoing sprint]

Identify the attributes

of ongoing sprint

[USa status = done]

Measure FS of

undone USs

Measure FS of FC

Measure FS of USa

Measure FS of FC

Measure FS of USa

[USa status =

 undone]

Evaluate the

FC

Make the

decision

Evaluate the

FC

Figure 5: Phases for the FC request evaluation in the scrum process.

Table 3: Evaluating a FC request where USa status = un-
done.

Low Moderate High
1 CFP 2 CFP≤ FS(FC)≤

FS(US undone)
FS(FC) >
FS(US undone)

Table 4: Evaluating a FC request where USa status = done.

Low Moderate High
1 CFP 2 CFP≤ FS(FC)≤

FS(USa)
FS(FC) >
FS(USa)

same sprint. Hence, different baselines will be used to
control the status of the FC (see Table 3). Whereas, if
the status of the USa is done, we compare the FS(FC)
to the functional size of USa.

A “High” FC is a change with a functional size
bigger than the total functional sizes of undone user
stories in the same sprint. It will have a potential im-
pact on the software development progress. However,
the functional size of a “Low” FC is equal to 1 CFP.
This change can be handled without any impact on the
software development progress. Whereas, a “Mode-
rate” FC is a change with functional size lowest than
the functional size of undone user stories in the same
sprint. It will produce few changes in the software
development progress.

3.4.2 FC Evaluation in an Implemented Sprint

An implemented sprint in the increment product in-
clude a number of done user stories. Hence, a FC af-
fecting a done US means that the work that has been
already done must be changed. Thus, an additional
time and effort may be required to handle the change.

A “High” FC is a change with a functional size
bigger than the functional size of the changed user

story in the implemented sprint (USa). An important
effort may be required to implement this change. Ho-
wever, the functional size of a “Low” FC is equal to
1 CFP. This change can be handled without any re-
quired effort. However, a “Moderate” FC is a change
with functional size less than the functional size of the
user story affected by the change in the implemented
sprint. A little effort may be required to implement a
“Moderate” change.

4 DECIDING ON A FC REQUEST

Software functional size can be used not only
for effort/cost estimations but also for making-
decisions (e.g., budget decision, portfolio decision,
etc.) (Abran, 2010). In this section, we provide some
recommendations for the decision-makers (cf., pro-
duct owner, development team and the scrum master)
that can be used to help in making decision regarding
a FC request. Recall that a FC may affect either an
ongoing sprint or an implemented sprint. These deci-
sions are as follows:

• Accept the FC request which means implement
the FC in the current sprint.

• Deny the FC request which is made only if the FC
proposes a new software (re-start the development
from the beginning).

• Defer the FC request to the next sprint means
accept the FC and implement it in the next sprint
not in the current one.

4.1 FC in an Ongoing Sprint

Algorithm 1 provides recommendations that can be
used in making decisions when the FC is a modifica-

ICSOFT 2018 - 13th International Conference on Software Technologies

488

tion and affects a US in an ongoing sprint. These re-
commendations are based mainly on the comparison
between the FS(FC), the functional size of all undone
user stories in the current sprint (noted by FS(US un-
done) in Algorithm 1), and the functional size of the
changed user story (noted by FS(USa) in Algorithm
1). For instance, if the FS(FC) is greater than the to-
tal sizes of all the undone user stories in the current
sprint, we suggest to defer the FC. Hence, the chan-
ged user story is deleted from the current sprint and
added after modification with respect to the change to
the next sprint. In the case where the FS(FC) is less
than the total sizes of all the undone user stories in the
current sprint, it is required to compare the FS(FC) to
the FS(USa) before the change (noted by FS(USa)i in
Algorithm 1). Thus, if the FS(FC) is greater than the
FS(USa)i, we suggest to defer the FC, and the USa
after the change (noted by (USa)f in Algorithm 1) is
added to the next sprint. Whereas, if the FS(FC) is
less than the FS(USa)i, the decision will be made ba-
sed on the impact of the change on the FS(USa)i. In
the case where a FC proposes the addition of a user
story without changing any user story in the sprint, a
comparison must be done between the FS(FC) and the
functional sizes of all the undone user stories in the
sprint. Hence, if the FS(FC) is less than the FS(US
undone), the FC is accepted. Otherwise, the FC is de-
ferred to the next sprint. A deletion FC request do not
have any affect on the development progress.

4.2 FC in an Implemented Sprint

To carry out a FC in an implemented sprint, it is requi-
red to discuss the change with the PO. In fact, chan-
ging an implemented sprint means re-work (i.e., re-
doing a work that already has been done as requested
by the PO). In the case of an implemented sprint, we
suggest to deny the change. However, in order to sa-
tisfy the PO needs, we provide some analysis that al-
low the PO to determine the importance of the change
such as a comparison between the time spent in im-
plementing the changed user story and estimate the
required time to re-develop the user story after the
change. These analysis are provided in Algorithm 2.
Hence, this algorithm do not provide recommendati-
ons to answer a FC request but it provides some war-
nings to remember the PO about the importance of the
FC, whether it is really needed or not.

5 CASE STUDY AND TOOL

In this section, we demonstrate the application of our
approach on a case study “E-commerce” web site.

Algorithm 1: Deciding on a FC in an ongoing
sprint.

Aim : Deciding on a FC in an ongoing
sprint

Require: FS(FC), FS(US undone), and
FS(USa).

Ensure : Recommendations

1 begin
2 if FS(FC) > FS (US undone) then
3 defer the FC to the next sprint;
4 delete (USa)i from ongoing sprint /*

(USa)i is US before the FC */
5 add (USa)f to next sprint /* (USa)f is

US after the FC */
6 else if FS(FC) ≤ FS(US undone) then
7 if FS(FC) > FS(USa)i then
8 defer the FC to the next sprint;
9 delete (USa)i from current sprint;

10 add (USa)f to next sprint;
11 else if FS(FC) ≤ FS(USa) then
12 if FS(USa)f > FS(USa)i then
13 /* the FS(USa) after the

change is greater than the
FS(USa) before the change
*/ if remainingtime (USa)f ≤
requiredtime & teamprogress
= early then

14 accept the FC;
15 delete (USa)i from the

current sprint;
16 add (USa)f to the current

sprint;
17 else
18 defer the FC;
19 delete (USa)i from the

current sprint;
20 add (USa)f to the next

sprint;

21 else if FS(USa)f < FS(USa)i then
22 /* the FS(USa) after the

change is lower than the
FS(USa) before the change
*/

23 accept the FC;
24 delete (USa)i from the current

sprint;
25 add (USa)f to the current

sprint;

26 else if FS(FC) = 1 then
27 accept the FC;
28 delete (USa)i from the current sprint;
29 add (USa)f to the current sprint;

Orchestrating Functional Change Decisions in Scrum Process using COSMIC FSM Method

489

Algorithm 2: Deciding on a FC in an implemen-
ted sprint.

Aim : Deciding on a FC in an
implemented sprint

Require: FS(FC), FS(USa), USa priority,
priorities P, FS(USs), devtime, USa
real DevTime

Ensure : Warnings

1 begin
2 FC percentage = FS(FC) * 100 div

FS(USa)
3 Avr DevTime = ∑ devtime div ∑ FS(USs)
4 if USa importance = Essential then
5 alert (you are going to change an

Essential User Story with + FC
percentage) ;

6 else if USa priority < P(n div 2) then
7 alert (This FC could highly impact

other user stories as it was
implemented in an early phase) ;

8 else if Avr DevTime < USa real DevTime
then

9 alert (this US took more time in
development then the average time
needed to accomplish a US with the
same functional size. It may contain
extra data manipulation) ;

5.1 Case Study

The case study “E-commerce” is developed by a team
of engineers. The web site allows the customer to
buy computer equipments on-line. This product has
been delivered after six sprints each one lasts for two
weeks. It includes initially ten user stories. The initial
detailed measurement results are given in Table 5.

The development team defined the first sprint
backlog by choosing the user stories organized accor-
ding to their importance/priority. US5, US6, and US7
have been implemented during the sprint S1. All the
user stories have the importance = Essential and the
priority = P1. In sprint S2, and based on the impor-
tance/priority of user stories in the product backlog,
US4, US8, US9 and US10 have been chosen to be
implemented in S2. As mentioned in Table 5, US4 is
with importance = Essential and priority = P2. Whe-
reas, US8, US9 and US10 are with importance = Es-
sential and priority = P3. Hence, the development
team starts by US4.

By the end of the implementation of US4, the PO
proposes to add (US 11, US 12, and US 13). Where:
the FS(US 11) = 4 CFP, FS(US 12) = 3 CFP and
FS(US 13) = 3 CFP. The importance/priority for all

Table 5: Detailed Product Backlog.

User
Stories

FS(US) Status Importance Priority

US 1 3 CFP New Desirable P3
US 2 3 CFP New Desirable P3
US 3 3 CFP New Desirable P3
US 4 3 CFP New Essential P2
US 5 4 CFP New Essential P1
US 6 6 CFP New Essential P1
US 7 6 CFP New Essential P1
US 8 3 CFP New Essential P3
US 9 3 CFP New Essential P3
US 10 6 CFP New Essential P2

the added user stories is (Essential, P2). Note that
the status of the user stories initially in the sprint are:
US4 status = done and US8 status = US9 status =
US 10 status = undone. The question here is whet-
her to accept the FC and implement it in the current
sprint (S2) or defer the FC to the next sprint (S3). In
this case, the FC affects an ongoing sprint and propo-
ses the addition of three user stories without changing
any user story in the sprint. The total functional size
of undone user stories is equal to 12 CFP. While, the
FS(FC) is equal to 10 CFP. We need to classify the
user stories (initially in S2 and new ones) according to
their importance/priority (see Figure 3). For this pur-
pose, we compare the importance/priority of the new
user stories (US11, US12 and US13) with the user
stories already in S2 (US4, US8, US9, and US10).
Hence, the user stories will be organized as follow:
US4, US11, US12, US13, US8, US9 and US10. The
user stories coming from the FC appear in the begin-
ning of the list. Thus, by applying Algorithm 1, we
make the following recommendations.
• Accept US 11, US 12, and US 13.
• Defer US 8, US 9, and US 10 to the next sprint

S3.

5.2 Tool

Algorithm 3 is used to measure the FS of a given US.
An action is characterized as a data movement if it
includes a verb presented in one of the corpses in the
Appendix.

Figure 6 gives some snapshots of the proposed
tool in this paper. The productivity of the develop-
ment team during the sprints is given in Interface 1.
As it is displayed in this interface, the productivity
of the team decreases to 6 CFP/hour in sprint S4. On
the other hand, the number of done user stories during
the past sprints is equal to 80% of the initially defined
user stories. It remains only 20% of user stories to be
implemented during the next sprints.

ICSOFT 2018 - 13th International Conference on Software Technologies

490

Interface 2 is used for making recommendations
after a FC request. For instance, after finishing the im-
plementation of all user stories (from US1 to US16)1,
the PO suggests a new FC that proposes to delete
US10. US10 has been already implemented in sprint
S3. The functional size of US10 is equal to 6 CFP and
the implementation of US10 has been done in seven
days. Moreover, this user story presents a fundamen-
tal requirements. According to Table 4, this FC is a
“Medium” change. The FS(FC) is exactly equal to
the FS(US10) which is 6 CFP. Thus, by applying Al-
gorithm 1 we suggest to accept this FC.

Algorithm 3: Measuring the FS(US).
Aim : Measure the functional size of a

user story
Require: US is the user story to be

measured.
Ensure : SizeUS is the functional size of US.

1 begin
2 Size US = 0;
3 if User/System = External User & action

= corpusEntry & datagroup != Empty
then

4 data movement type := entry;
5 SizeUS := SizeUS + 1;
6 else if User/System = System & action =

corpuseXit & datagroup != Empty then
7 data movement type := exit;
8 SizeUS := SizeUS + 1;
9 else if User/System = System & action =

corpusWrite & datagroup != Empty
then

10 data movement type := write;
11 SizeUS := SizeUS + 1;
12 else if User/System = System & action =

corpusRead & datagroup != Empty then
13 data movement type := read;
14 SizeUS := SizeUS + 1;

6 CONCLUSION AND THREATS
TO VALIDITY

This work proposed a decision support tool for me-
asuring the Functional Size of User Stories in terms

1US15, US6, and US 6 have been implemented in S1.
US4, UC11, UC12 and UC13 have been implemented in
S2. US8, US9 and US10 have been implemented in S3.
US14 and US15 have been implemented in S4. US1, US2,
and US3 have been implemented in S5. Finally US16 has
been implemented in S6.

of CFP units using COSMIC FSM method. In addi-
tion, functional changes are measured and evaluated
so that the decision-makers will be guided to decide
which FC request should be accepted, deferred or de-
nied. The proposed approach in this paper has been
illustrated through the case study “E-commerce”. Ho-
wever, the validity of the above results are subject to
two types of threats (internal and external) (Wohlin
et al., 2000):

• The internal validity threats are related to four is-
sues. The first issue affecting the internal validity
of our approach is its dependence on a detailed
description of the user story; such details may not
always be available. Thus, for further work, we
consider that approximate/rapid FC evaluation is
required especially for an urgent FC request. The
second issue is related to the productivity of the
development team. In fact, two functional proces-
ses with exactly the same functional size do not
require always the same development time. Mo-
reover, the rapidity of the development team at the
beginning of the sprint and the end of the sprint
are not the same (this depends on the development
team skills). Thus, for further work, we will use
the structural size measurement proposed by (Sel-
lami et al., 2015) for more precise evaluation (i.e.,
to take into account the data manipulations). The
third issue is related to the evaluation of the FC
which is based only on the FS(FC) without taking
into account the FC type (delete, addition or mo-
dification). However, we consider that this factor
is important in the evaluation of a FC request. Fi-
nally, in this study we did not take into account
the relationship between the user stories. In fact, a
FC affecting a use story may lead to an impact on
the functional size of other use stories. For further
work, we will focus on the relationships between
user stories and change propagation.

• The external validity threats deal with the possibi-
lity to generalize the results of this study to other
case studies including the usability of the propo-
sed tool and the decision algorithms. The first is-
sue is the limited number of case studies used to
test the proposed tool. In fact, only one case study
has been used: the ‘E-commerce”. Thus, testing
the proposed tool and algorithms in an industrial
environment is required in order to get the feed-
back from the practitioners.

Orchestrating Functional Change Decisions in Scrum Process using COSMIC FSM Method

491

Figure 6: Snapshots of tool with the case study “E-commerce”.

REFERENCES

Abran, A. (2010). Software Metrics and Software Metro-
logy. IEEE Computer Society.

Abran, A. (2015). Software Project Estimation: The Fun-
damentals for Providing High Quality Information to
Decision Makers. Wiley-IEEE Computer Society Pr,
1st edition.

Alsalemi, A. M. and Yeoh, E. T. (2015). A survey on
product backlog change management and require-
ment traceability in agile (scrum). In the 9th Malay-
sian Software Engineering Conference (MySEC), pa-
ges 189–194.

Ambler, S. W. (2014). User Stories: An Agile Introduction.
Bano, M., Imtiaz, S., Ikram, N., Niazi, M., and Usman, M.

(2012). Causes of requirement change - a systematic
literature review. In EASE 2012.

Berardi E., Buglione L., S. L. S. C. T. S. (2011). Guideline
for the use of cosmic fsm to manage agile projects,
v1.0.

Cohn, M. (2004). User Stories Applied: For Agile Software
Development. Addison-Wesley Professional.

Commeyne, C., Abran, A., and Djouab, R. (2016). Effort
Estimation with Story Points and COSMIC Function
Points: An Industry Case Study.

COSMIC (2017). The COSMIC Functional Size Measure-
ment Method, Version 4.0.2, Measurement Manual.

Desharnais, J. M., Kocaturk, B., and Abran, A. (2011).
Using the cosmic method to evaluate the quality of
the documentation of agile user stories. In 2011
Joint Conference of the 21st International Workshop
on Software Measurement and the 6th International

Conference on Software Process and Product Measu-
rement, pages 269–272.

Dikert, K., Paasivaara, M., and Lassenius, C. (2016).
Challenges and success factors for large-scale agile
transformations. Journal of Systems and Software,
119(C):87–108.

Fairley, R. E. (2009). Managing and Leading Software Pro-
jects. Wiley-IEEE Computer Society Pr.

Gilb, T. (2018). Why agile product development systemati-
cally fails, and what to do about it!

Haoues, M., Sellami, A., and Ben-Abdallah, H. (2017).
Functional change impact analysis in use cases: An
approach based on COSMIC functional size measu-
rement. Science of Computer Programming, Special
Issue on Advances in Software Measurement, 135:88–
104.

Lloyd, D., Moawad, R., and Kadry, M. (2017). A suppor-
ting tool for requirements change management in dis-
tributed agile development. Future Computing and In-
formatics Journal, 2(1):1–9.

Schwaber, K. (2004). Agile Project Management with
Scrum (Developer Best Practices). Microsoft Press;
1 edition.

Sellami, A., Hakim, H., Abran, A., and Ben-Abdallah, H.
(2015). A measurement method for sizing the struc-
ture of uml sequence diagrams. Information & Soft-
ware Technology, 59:222–232.

Stålhane, T., Hanssen, G. K., Myklebust, T., and Haugset,
B. (2014). Agile change impact analysis of safety cri-
tical software. In Bondavalli, A., Ceccarelli, A., and
Ortmeier, F., editors, Computer Safety, Reliability, and
Security, pages 444–454.

Taibi, D., Lenarduzzi, V., Ahmad, M. O., and Liukkunen,
K. (2017). Comparing communication effort within

ICSOFT 2018 - 13th International Conference on Software Technologies

492

the scrum, scrum with kanban, xp, and banana deve-
lopment processes. In Proceedings of the 21st Inter-
national Conference on Evaluation and Assessment in
Software Engineering, EASE’17.

Verwijs, C. (2016). 10 useful strategies for breaking down
large user stories (and a cheatsheet).

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell,
B., and Wessln, A. (2000). Experimentation in Soft-
ware Engineering: An Introduction. Kluwer Acade-
mic Publishers.

APPENDIX

Entry Corpus: These verbs express Entry data-
movements: Assign, change, choose, click, create,
edit, give, input, modify, provide, re-enter, select, sub-
mit, type, update.
Exit Corpus: These verbs express eXit data-
movements: display, edit, list, output, post, present,
print, return, send, Show update, view.
Read Corpus: These verbs express read data-
movements: find, get, obtain, post, read, recognize
retrieve, Validate, Verify.
Write Corpus: These verbs express write data-
movements: add, archive, change, create, define, de-
lete, edit, insert, record, register, remove, save, store,
Update.

Orchestrating Functional Change Decisions in Scrum Process using COSMIC FSM Method

493

