
Membrane Layer Method to Separate Simulation and Visualization for

Large-scale In-situ Visualizations

Akira Kageyama, Naohisa Sakamoto and Kohei Yamamoto

Department of Computational Science, Kobe University, Kobe 657-8501, Japan

Keywords: In-situ Visualization, High Performance Computing, CFD, Magnetohydrodynamics, MPMD.

Abstract: With the progress of simulation technology, the demand for the in-situ visualization in high-performance

computing is increasing. We propose a multiple-program, multiple-data (MPMD) approach to the in-situ vi-

sualization to realize interactive in-situ visualizations. We separate processor nodes in a massively parallel

computer system into two parts; one devoted only to the simulation and the other devoted only to the visuali-

zation. Both the simulation and visualization programs are parallelized by MPI (Message Passing Interface).

The number of MPI processes for the visualization is the same or larger than that for the simulation. The

multiple camera method that we proposed in our previous study enables interactive analysis of the visualiza-

tion movies thus generated. The simulation and visualization programs are separated by a layer mimicking

a semipermeable membrane. It is semipermeable because information runs in one-way from the simulation

to the visualization through the layer, and the layer prevents the simulation program from being affected by

visualization program’s possible delay. The membrane is implemented as two independent MPI programs

which correspond to the front and back faces of it. The four MPI programs (the simulation, visualization, and

membrane faces) are executed at once based on an MPMD framework.

1 INTRODUCTION

In contrast to the post-process visualization, the pre-

sence of the in-situ visualization is gradually ri-

sing (Bethel et al., 2013). A straightforward way to

realize the in-situ visualization is to perform the visu-

alization on the same computer system as the simu-

lation [see Fig. 1(a)]. The visualization in this met-

hod, however, erodes the computational resources for

the simulation such as the memory and processing

time. One can avoid the resource erosion by perfor-

ming the visualization on another computer system

[see Fig. 1(b)]. In this approach, one has to send simu-

lation data through the network between the two com-

puter systems whose bandwidth is usually narrow.

We take in this paper another approach to the in-

situ visualization, which is a kind of combination of

the two styles shown in Figs. 1(a) and (b). In this in-

situ visualization, both the simulation and visualiza-

tion run in the same computer system but on different

processor nodes; see Fig. 2.

The motivation of this study stems from the recent

trends of the growing number of processor nodes in

supercomputer systems. The K computer, for exam-

ple, has more than 82,000 SPARC64 VIIIfx processor

Sim.

Vis.

Loop

Computer

system

(a)

Sim. Loop data

(b)

Vis. Loop

Computer

system

Network

Computer

system

Figure 1: Two styles of in-situ visualization. (a) Visualiza-
tion is performed on the same computer system as the simu-
lation. (b) Visualization is performed on a different compu-
ter system from the simulation. The simulation data to be
visualized are transferred through the network connecting
the two systems.

nodes. It is difficult for most simulation programs to

occupy such a system with full nodes by one job. As

the Amdahl’s law says (Amdahl, 2007), the speedup

of the execution time by the parallelization saturates

at the node number around 5000, when just 5% of the

code is not parallelized. Since the number of proces-

sors in today’s supercomputers is excessive for most

106
Kageyama, A., Sakamoto, N. and Yamamoto, K.
Membrane Layer Method to Separate Simulation and Visualization for Large-scale In-situ Visualizations.
DOI: 10.5220/0006854901060111
In Proceedings of 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2018), pages 106-111
ISBN: 978-989-758-323-0
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



nodes for vis.

Sim. Loop Vis. Loop

nodes for sim.

Computer system

data transfer

by MPI

Figure 2: In-situ visualization proposed in this paper. Both
the simulation and visualization are performed on the same
(parallel) computer system. The same or even larger num-
ber of processor nodes is allocated to the visualization than
the processor nodes for the simulation.

simulation programs, we have to conceive a new way

to make the best use of supercomputer systems, and

we believe that the in-situ visualization is a promising

candidate.

Recently, a similar in-situ visualization to our met-

hod is reported (Buffat et al., 2017). In addition to the

existence of the membrane layer described below, a

difference between their study and ours is the number

of processor nodes devoted to the visualization. The

number of visualization nodes in theirs is smaller than

the number of nodes used for the simulation. On the

other hand, we use the same or even larger number of

processor nodes for the visualization compared with

the simulation nodes.

2 DESIGN

In the dual-system approach to the in-situ visualiza-

tion shown in Fig. 1(b), simulation data are sent to the

visualization system through the network between the

two computer systems. On the other hand, in our met-

hod, we do not have to invoke such a (usually slow)

data transfer because both the simulation and the visu-

alization programs run on the same computer system:

We can take advantage of the broad bandwidth bet-

ween the processing nodes in a supercomputer system

and a customized library of MPI (Message Passing In-

terface) optimized to the system.

In our in-situ visualization method, the simula-

tion and visualization are almost independent applica-

tions. Since there is no tight connection or sync me-

chanism between them, the execution speeds of the

two applications can be very different. Before each

execution, one is supposed to allocate adequate num-

bers of processor nodes for the simulation and visu-

alization in such a way that the two applications run

with a balanced pair of loads. In some cases, howe-

ver, the balance might collapse. Preparing for such a

situation, we set a principle that priority is given to the

simulation rather than the visualization: The simula-

tion should run without being affected by the visua-

lization, even if the visualization takes tremendously

long time to render an image. In other words, un-

der this principle, we want the simulation job to run

without waiting for the end of the rendering even if

we might lose certain range of image sequence of the

output visualization movie.

In practice, a simulation researcher usually has an

estimated time for a pure simulation job (without an

in-situ visualization) under a given number of paral-

lel processors, say Ns. In our approach to the in-situ

visualization, we allocate additional nodes Nv in the

same computer system devoted to the visualization.

Since the visualization job on these Nv nodes does not

affect the simulation job on Ns nodes, the estimated

time for the simulation job is basically the same if we

can ignore the data transfer time from the simulation

to the visualization by making use of an intermediate

layer, which will be described in the next section.

3 MEMBRANE LAYER

We place a virtual “semipermeable membrane” bet-

ween the simulation and the visualization, to fully se-

parate the two programs. See Fig. 3.

Sim. 

program

im
ag

es

Main loop

Viz.

program

Main loop

request

of new data

data

data

M
em
br
an
e

Figure 3: The membrane model proposed in this study. It
separates the simulation program and the visualization pro-
gram. The visualization program is invisible to the simula-
tion program, and vice versa, by the membrane. The simu-
lation program “throw” numerical data to be visualized to
the membrane and the membrane is always ready to receive
them. The membrane pass the data to the visualization pro-
gram on demand from the visualization program.

One of the purposes of the membrane is to make

the two programs being “invisible” each other. The

simulation program, which is an MPI-based parallel

program, can communicate only with the membrane:

The visualization program is invisible for the simula-

tion program. On the other hand, the visualization

program, which is also an MPI-based parallel pro-

gram, can communicate only with the membrane and

the simulation program is invisible. For simulation

Membrane Layer Method to Separate Simulation and Visualization for Large-scale In-situ Visualizations

107



researchers, the invisibility is helpful because it re-

leases them from the burden of visualization-related

tasks. They just throw simulation data to the (front

side of) membrane and the all tasks are automatically

done.

The membrane is semipermeable because the in-

formation goes in one way. While the simulation data

is sent from the simulation program to the visualiza-

tion program, no information is sent from the visua-

lization to the simulation. (Only one exception is a

vital sign of the visualization program: A flag signal

is sent to the simulation when the visualization hap-

pens to die due to some error.)

The membrane is implemented as two indepen-

dent MPI programs. They conceptually correspond

to the front face (simulation side) and the back face

(visualization side) of the membrane. The front and

back face programs have N f and Nb MPI processes,

respectively. See Fig. 4.

The purpose of the front face program is to re-

ceive the simulation data from the simulation pro-

gram. Since the front face program is devoted to this

task of data receiving, the simulation program can as-

sume that the data transfer is completed without delay,

even if other programs (the back face of the mem-

brane and the visualization) are doing their work. By

this mechanism, the membrane allows the simulation

program to run without being influenced by the visu-

alization, along the “simulation first” principle menti-

oned above.

!���

program

im
ag

es

Main loop

Viz.

program

Main loopMain loop Main loop

request request

data data

data

F
ro

n
t 
fa

c
e

B
a
c
k
 f
a
c
e

Figure 4: The implementation of the membrane. It consists
of two independent MPI programs, which correspond to the
front and the back faces of the membrane.

In total, we have four MPI programs to realize the

proposed in-situ visualization method: One simula-

tion program, two membrane programs (front & back

faces), and one visualization program. We execute

the four as an MPMD (Multiple-Program, Multiple-

Data) type application. Each program is a stand-

alone, independent MPI program. (They have their

own MPI Init and MPI Finalize calls.) By sub-

mitting the four MPI executables to a supercompu-

ter at once as an MPMD application, a comprehen-

sive MPI communicator (MPI Comm world) is auto-

matically constructed. The four programs communi-

cate with each other by the standard MPI functions

within the communicator MPI Comm world.

As the simulation goes on, it sporadically sends

data Dn to the front face of the membrane, with Dn

being a set of simulation to be visualized. The index

n(= 1,2,3, . . .) is a time counter. It is usually much

smaller than the simulation’s main loop counter ℓ; for

example, ℓ= 100n when one visualizes the data every

100 steps of the simulation. In most of its execution

time, the front face program waits for the new data Dn

from the simulation program and receives it immedi-

ately when it is sent. After completing the transfer of

Dn, the simulation program continues its job and the

front face program sends Dn to the back face program

of the membrane.

On the contrary to the front face, the back face is

rather busy. Its mission is to store the latest simulation

data, and pass them to the visualization program when

they are requested.

When the visualization program has finished its

job for the latest visualizing data Dn−1, it sends a re-

quest signal to the back face of the membrane for the

next data. There are three possible cases here.

Case 1: The visualization job (for Dn−1) is finis-

hed so swiftly that the membrane programs still hold

Dn−1. In this case, the back face of the membrane

does not return any data to the visualization until it

receives the new data Dn from the simulation (via the

front face of the membrane).

Case 2: The membranes already have the new data

Dn when the request signal comes from the visualiza-

tion. This is the ideal case for the load balance bet-

ween the simulation and visualization. The back face

sends Dn to the visualization in response to the re-

quest.

Case 3: The visualization job (for Dn−1) is so slow

that the simulation job produces the new data Dn+1

while the visualization (for Dn−1) is still running. In

this case, the data Dn on the membranes are overwrit-

ten by Dn+1. Information of Dn will be missing in

the visualization movie produced by this in-situ visu-

alization method. This is the defect we intentionally

accept, following the “simulation first” principle.

4 INTERACTIVE VIEWING OF

IN-SITU VISUALIZATION

MOVIES

A problem in the in-situ visualization as a practical

tool for the simulation’s analytics is that the user can-

not interactively change the visualization-related va-

riables, such as the view point, viewing direction, vi-

sualization methods and their parameters. To over-

come this problem, we proposed a multi-camera ap-

SIMULTECH 2018 - 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

108



proach (Kageyama and Yamada, 2014). Since the de-

tails are reported in detail in our paper, here we briefly

summarize it.

Figure 5: The movie database in our multiple camera met-
hod (Kageyama and Yamada, 2014) for interactive in-situ
visualization. Applying the in-situ visualization on many
cameras scattered in and around the simulation region, we
get a movie database, or a “field” of images defined in four-
dimensional (4-D) space; 3-D for the camera position and
1-D for time or frame in the movies. The user specifies a
“path” in the 4-D space. A specially designed browser ex-
tract a sequence of still images on the path and show them
as an animation on the PC’s screen.

We scatter a lot of virtual cameras, or view points,

inside and around the simulation region, applying in-

situ visualizations at once with them. As a result of

this multiple in-situ visualizations, the same number

of movie files as the number of cameras are produced

at the end of the simulation. We construct a database

by associating the camera position to each movie. As

shown in Fig. 5, the database is regarded as a “field”

of still images defined in a four dimensional space:

The still images are located in a three-dimensional

spatial (x,y,z) dimension and one-dimensional tem-

poral (t) dimension. We retrieve the movie database

from the supercomputer system to a PC and explore

the database with a specially designed database brow-

ser. The browser shows image sequences (animati-

ons) on a window of a PC’s screen. An image se-

quence is extracted from the database according to a

user-specified “path” in the four dimensional space.

By this method, we can attain the interactive viewing

of in-situ generated visualizations. For example, the

user can walk through the simulation space through

the PC’s interface (the mouse and keyboard) to find a

hot spot of interest in the simulation region, and ob-

serve the structure or dynamics there in detail from

the closest camera to the spot with adequate visuali-

zation methods and parameters.

A key point of our interactive in-situ visualization

is to have sufficient number of view points or cameras.

The larger the number of cameras, the smoother we

get in the walk-through. In the present study, we place

Nv cameras inside and around the simulation region,

and perform Nv in-situ visualizations in parallel, i.e.,

one visualization per one node.

We use functionalities of the KVS (Kyoto Visua-

lization System) (Sakamoto and Koyamada, 2015) in

the visualization program. The KVS is an efficient

framework for scientific visualization and provides

a rich set of modules for the visualization pipeline,

i.e., data importing, filtering, mapping and rende-

ring (Telea, 2014). The KVS uses OpenGL graphics

library for hardware accelerated rendering with GPU

(Graphics Processing Unit). Therefore, the visuali-

zation program requires a software emulation to run

on a supercomputer system without GPUs. In this pa-

per, we use the off-screen rendering framework for the

KVS (Nonaka et al., 2018) based on OSMesa (Off-

Screen Mesa), which has become the de facto stan-

dard for the CPU extension of OpenGL.

5 TEST

We test our in-situ visualization method on a su-

percomputer system Oakforest-PACS (Fujitsu PRI-

MERGY CX600 M1) which consists of 8208 nodes

with one Intel Xeon Phi in each node. The target si-

mulation is our original MHD (magnetohydrodyna-

mics) simulation code, named cg-mhd.

We solve the compressible MHD equations in a

rectangular region with cg-mhd. The 2nd-order fi-

nite difference method on the cartesian coordinate sy-

stem is used for the spatial derivatives in the equa-

tions and the 4th-order Runge-Kutta method is used

for the temporal integration. The simulation region is

divided into multiple sub-rectangular regions and one

MPI process is allocated to each sub-region. For tests,

we run cg-mhd with 32 nodes, or Ns = 32.

The original cg-mhd code is a parallelized, stand-

alone, simulation code for various studies on MHD

phenomena, such as MHD convection, MHD dyn-

amo, MHD self-organization, etc. To incorporate the

code into the proposed in-situ visualization, all we

need to do is the following two minor modifications.

One is to change the name of the MPI’s top-level

communicator. The original cg-mhd code uses the de-

fault MPI communicator MPI Comm world for the ma-

nagement of all MPI processes in the program. Since

the communicator variable MPI Comm world is used

for the inter-program communications in our MPMD

application, we rename the top-level communicator

in the cg-mhd from MPI Comm world to other name

(comm sim).

The second change we made to cg-mhd is an ob-

vious one: We add a function call to send simulation

data to the front face of the membrane. It is just a call

of MPI Send.

Membrane Layer Method to Separate Simulation and Visualization for Large-scale In-situ Visualizations

109



While the simulation program (cg-mhd) and the

two membrane programs (front and back faces) are

written in Fortran 2003, the main part of the visuali-

zation program, KVS, is written in C++. We imple-

ment a wrapper layer in Fortran 2003 over KVS. By

making use of the standard ISO C BINDING function

included in Fortran 2003 language specification, we

can easily pass the simulation data to KVS. Our soft-

ware is portable to any supercomputer system as long

as a Fortran 2003 compiler is supported.

(a) (b)

Figure 6: Snapshots of a test in-situ visualization of an
MHD (magnetohydrodynamics) simulation in a rectangu-
lar region. An Alfvén wave is propagated in a direction and
temperature (a) and density (b) fields are visualized with
KVS. The two panels (a) and (b) are taken from different
camera positions and on different time steps.

As a test, we visualize three scalar fields (pres-

sure, density, and temperature) simulated by cg-mhd.

There are various possible ways to implement the

membrane. Here in this paper, we parallelize them

by field-base decomposition. The front face program

has three MPI processes, each of which is in charge

of receiving one of the scalar fields from the simula-

tion program. The back face of the membrane has the

same number (three) of MPI process. Each process in

the back face receives the field data from its counter-

part in the front face.

The visualization program has 32 MPI processes,

or 32 cameras. Fig. 6 shows sample snapshots by two

cameras among the 32 cameras. A test MHD wave

(Alfvén wave) propagation was successfully simula-

ted by cg-mhd and visualized by KVS.

To estimate the effect of the membrane, we com-

pared two in-situ visualization methods, i.e., with and

without the membrane in the MHD simulation. The

computations were performed on a different compu-

ter system (Fujitsu FX-10). The elapsed real time in

seconds (averages of five runs) for 10,000 steps of the

simulations are shown in Fig. 7. The in-situ visualiza-

tions are called every 50 steps in both cases. Thanks

to the membrane, the time for the simulation is dras-

tically reduced.

with

membrane

without

membrane

Figure 7: Elapsed time (in seconds) for the MHD simulation
with and without the membrane. In-situ visualizations are
called every 50 steps. The simulation time is almost halved,
owing to the membrane.

6 CONCLUSIONS

When one performs a massively parallel simulation

on a supercomputer system, he/she faces two techni-

cal problems. One is the difficulty in the data visua-

lization. As the scale of a simulation grows, the post-

process visualization, i.e., visualization after simula-

tion, becomes impractical due to the enormous size

of the numerical data produced by every simulation.

Although the in-situ visualization, i.e., visualization

at the same time as the simulation, is free from the

enormous numerical data, it slows down the simula-

tion (in the mono-system application) or is baffled by

the limited bandwidth of the inter-computer network

(in the dual-system application).

The other technical problem in HPC is that it is

difficult to increase the number of processor nodes

used in a massively parallel computer system for a

simulation due to the saturation of parallel efficiently.

After a certain amount of (usually painful) time spent

for the optimization of a parallel simulation code, it

is almost impossible to double the number of using

processor nodes under a given set of simulation para-

meters.

In this paper, we propose a framework for the

in-situ visualization for large-scale simulations to re-

solve the above two technical problems at once. In

this framework, we allocate—lavishly—a large num-

ber of processor nodes only for the visualization in the

same supercomputer system as the simulation. Since

the simulation nodes and the visualization nodes are

closed in the same computer system, the data can be

swiftly transferred from the simulation nodes to the

visualization nodes, owing to the optimized network

SIMULTECH 2018 - 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

110



system and the MPI implementation for the super-

computer system. (This resolves the first difficulty

of the visualization in HPC.) In our proposal, the size

of the allocated nodes for visualization is very large;

it can be the same or even larger than the size of the

simulation nodes. (This resolves the second difficulty

of the parallelization.)

A simple in-situ visualization loses the user’s inte-

ractivity such as the viewpoint control, which is very

important for effective analysis. We can overcome

this problem by making use of the multi-camera met-

hod proposed in (Kageyama and Yamada, 2014), in

which we apply multiple in-situ visualizations at once

from many view points scattered as dense as possible

in and around the simulation region. The abundant

nodes for the visualization enables us to perform such

a lavish visualization style.

Using more nodes for the visualization than for

the simulation, our proposal can be regarded as a new

way of supercomputer usage: The machine is more

for the visualization rather than for the simulation.

It would not be unreasonable because, in extremely

large-scale HPC, researchers tend to spend more time

for the visualization than for the simulation.

We have developed an MPMD application in

which four MPI programs are executed at once. The

first program is for the simulation. Although we used

in this paper an MHD simulation code as a test, this

simulation part is interchangeable in our framework.

To enable visualization on CPU-based supercom-

puter systems without GPU, we have developed a pa-

rallel visualization program based on KVS, which is

a general-purpose visualization framework written in

C++, in its off-screen rendering mode. To receive

data sent from simulation program, we implement a

wrapper layer for this visualization program in For-

tran 2003 over KVS.

We place a membrane-like layer between the si-

mulation and the visualization programs. One of the

purposes of the membrane is to fully separate the si-

mulation and visualization. From the simulation code

level, we do not “see” the existence of the visualiza-

tion program: We do not call any visualization-related

function from the simulation. All we have to do in

the simulation code is to throw numerical data to the

membrane. The invisibility reduces the burden of the

visualization-related works to simulation researchers

in realizing the in-situ visualization on supercompu-

ters. The membrane also prevents the simulation pro-

gram from being influenced by the visualization pro-

gram.

The membrane is implemented by two indepen-

dent MPI programs. The two programs correspond to

the front and back faces of the membrane. The front

face is to receive numerical data from the simulation

and the back face is to pass the data to the visualiza-

tion.

As a proof-of-concept experiment, we have per-

formed a relatively a small-scale experiment in which

70 MPI processes are invoked in total: 32 for the si-

mulation + 3 for the front face membrane + 3 for

the back face membrane + 32 for the visualization,

and confirmed that this in-situ visualization frame-

work works.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant

Numbers JP17H02998 and JP17K00169. This work

was also supported by SCAT (Support Center for Ad-

vanced Telecommunications Technology Research,

Foundation), Japan.

REFERENCES

Amdahl, G. M. (2007). Computer Architecture and Am-
dahl’s Law. IEEE Solid-State Circuits Newsletter,
12(3).

Bethel, E. W., Childs, H., and Hansen, C. (2013). High
performance visualization : enabling extreme-scale
scientific insight. CRC Press.

Buffat, M., Cadiou, A., Le Penven, L., and Pera, C. (2017).
In situ analysis and visualization of massively parallel
computations. International Journal of High Perfor-
mance Computing Applications, 31(1):83–90.

Kageyama, A. and Yamada, T. (2014). An approach to
exascale visualization: Interactive viewing of in-situ
visualization. Computer Physics Communications,
185:79–85.

Nonaka, J., Matsuda, M., Shimizu, T., Sakamoto, N., Fujita,
M., Onishi, K., Inacio, E. C., Ito, S., Shoji, F., and
Ono, K. (2018). A Study on Open Source Software for
Large-Scale Data Visualization on SPARC64fx based
HPC Systems. In International Conference on High
Performance Computing in Asia-Pacific Region, pages
278–288.

Sakamoto, N. and Koyamada, K. (2015). KVS: A simple
and effective framework for scientific visualization. J.
Adv. Simulation. Sci. Eng., 2(1):76–95.

Telea, A. (2014). Data visualization : principles and
practice. CRC Press, 2nd edition.

Membrane Layer Method to Separate Simulation and Visualization for Large-scale In-situ Visualizations

111


