Simple App Review Classification with Only Lexical Features

Keywords:

Abstract:

Faiz Ali Shah, Kairit Sirts and Dietmar Pfahl
Institute of Computer Science, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia

App Review Classification, Convolutional Neural Networks, Linguistic Resources, Bag of Words.

User reviews submitted to app marketplaces contain information that falls into different categories, e.g., feature
evaluation, feature request, and bug report. The information is valuable for developers to improve the quality of
mobile applications. However, due to the large volume of reviews received every day, manual classification of
user reviews into these categories is not feasible. Therefore, developing automatic classification methods using
machine learning approaches is desirable. In this study, we compare the simplest textual machine learning
classifier using only lexical features—the so-called Bag-of-Words (BoW) approach—with the more complex
models used in previous works adopting rich linguistic features. We find that the performance of the simple
BoW model is very competitive and has the advantage of not requiring any external linguistic tools to extract
the features. Moreover, we experiment with deep learning based Convolutional Neural Network (CNN) models
that have recently achieved state-of-the-art results in many classification tasks. We find that, on average the
CNN models do not perform better than the simple BoW model—it is possible that for the CNN model to gain

an advantage, a larger training set would have been necessary.

1 INTRODUCTION

App marketplaces such as PlayStore or AppStore of-
fer apps to its users supporting virtually all kinds of
services and businesses (Chen et al., 2014). These
marketplaces provide to users a central place to do-
wnload apps and submit their feedbacks on them in
the form of ratings and reviews. The app market is
highly competitive. Therefore, app developers con-
stantly look for information that helps them improve
the quality of their apps (Villarroel et al., 2016). User
reviews contain information such as feature requests,
bug reports, and feature evaluations, making them an
extremely valuable source for app developers to im-
prove the quality of their apps (Maalej and Nabil,
2015).

Developers receive a large number of reviews
every day making manual classification of reviews an
arduous task. In past research, supervised machine
learning methods have been used for automatic clas-
sification of app reviews into different categories (Gu
and Kim, 2015; Maalej and Nabil, 2015). Maalej et
al. (2015) performed automatic classification at re-
view level. However, multiple types of information
can be mentioned in a single review or a review can
contain information that is not informative for app de-
velopers. Therefore, other studies have performed au-

112

Shah, F, Sirts, K. and Pfahl, D.
Simple App Review Classification with Only Lexical Features.
DOI: 10.5220/0006855901120119

tomatic classification of reviews at sentence-level (Gu
and Kim, 2015; Chen et al., 2014).

Gu et al. (2015) use natural language processing
(NLP) tools, such as taggers and parsers, to extract
features for classifying review sentences. However,
the review-level classification results of Maalej et
al. (2015) suggest that extracting such complex
features might not be necessary and comparable
classification results could be obtained by using only
simple lexical Bag-of-Words (BoW) features. The
BoW model, if its performance is on par with more
complex feature sets, is an attractive approach for
a non-expert because it does not require using any
dedicated natural language processing tools. This
perspective motivates us to find an answer to the
following research question:

RQ1: When classifying app review sentences, how
does a model with simple BoW features compare
with the model using more complex linguistic featu-
res extracted via external NLP tools?

To answer RQI1, we use the dataset of Gu et al.
(2015) and train a Maximum Entropy (MaxEnt) mo-
del using both feature sets: BoW features and the set
of linguistic features proposed by Gu et al (2015).

Our results show that the simple BoW is very

In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 112-119

ISBN: 978-989-758-320-9

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

competitive, both in terms of feature extraction and
computational complexity, for review sentence classi-
fication.

Recently, deep learning based models have gained
popularity among researchers as they have an ability
to learn useful feature representations automatically
from a large corpus of labeled data without manual
feature engineering effort.

Specifically, a deep learning model known as
Convolutional Neural Network (CNN) has recently
achieved encouraging results for various text classi-
fication tasks (Kim, 2014). A recent study of Fu and
Menzies (2017) suggest researchers to always com-
pare computationally expensive models with their
simple and efficient counterparts. For this objective,
we are interested in comparing the powerful deep
learning CNN model with the simple BoW model.
We formulate the second research question (RQ2) as
follows:

RQ2: How does the deep learning based CNN
classifier compare with the simple BoW model for
app review sentence classification?

To answer RQ2, we experiment with CNN-based
models for review sentence classification. For that,
we adopt the model proposed by Kim (Kim, 2014). A
comparison of CNN model performance with MaxEnt
model with BoW features shows that on average, the
CNN-based model performs slightly worse than the
BoW model. However, for the review sentence ty-
pes feature request and bug report, which are some of
the most informative sentence types to the developers,
CNN-based models obtain the highest precision.

The rest of the paper is structured as follows.
Section 2 summarizes the related work. In Section 3,
we describe the dataset used for this study. In
Section 4, we provide the description of the features
and models used in this study.

Section 5 details the experimental setting.
Section 6 discusses the results. In Section 7, threats
to validity are examined. Conclusions are presented
in Section 8.

2 RELATED WORK

The system “SUR-Miner” proposed classifying re-
view sentences into feature evaluation, praise, bug re-
port, feature request, and other (Gu and Kim, 2015).
They used a MaxEnt model for the classification task
with a rich set of lexical and structural features ex-
tracted with NLP tools. We adopt their feature set and
compare it to the BoW model. However, our results

Simple App Review Classification with Only Lexical Features

Table 1: Definition of five review sentence types used in
the study of Gu and Kim (2015)

Sentence type Definition Examples
Praise Expressing emotions with Excellent!
specific reasons Ilove it!
Amazing!
Feature Expressing opinions about The Ul is convenient.

Evaluation specific features I like the prediction text.

Bug Report Reporting bugs, glitches It always force closes
or problems when I click the ”.com”
button.
Feature Suggestion or new feature It's a pity it doesn't
Request requests support Chinese.
Other Other categories defined I've been playing it

in (Pagano and Maalej, 2013) for three years.

are not directly comparable to theirs because they trai-
ned a separate model for each app while we train a
single model incorporating sentences of all apps in
the dataset, thus having a larger training set.

Maalej et al. (2015) experimented with different
classification models to classify reviews into feature
request, bug report, rating, and user experience. They
experimented with various features, including BoW.
However, they evaluated their models on review-level
and not on sentence level as we do in this work. Si-
milarly to us, they trained their models on the whole
dataset of different apps.

Chen et al. 2014 proposed the system “AR-
Miner” to help developers filter out informative re-
views. Their system classifies review sentences into
two classes: informative and non-informative.

The study of Panichella et al. (2015) assigned a
different set of categories to reviews based on user in-
tentions, i.e., opinion asking, problem discovery, so-
lution proposal, information seeking, and information
giving, and trained a learner to automatically classify
reviews into those categories.

All these previous studies have used manual fea-
ture engineering for their classification models. Ac-
cording to our knowledge, this the first study that also
experiments with features automatically learned with
a deep neural network to classify app reviews. Mo-
reover, none of the previous studies has established
the BoW baseline for review sentence classification,
which is one of the simplest feature sets that does not
require any feature engineering or external tools, and
which despite of its simplicity can be very effective.

3 DATASET AND
PREPROCESSING

For this study, we used the app review dataset contri-
buted by Gu and Kim (2015). The dataset contains
labeled review sentences of 17 apps belonging to dif-

113

ICSOFT 2018 - 13th International Conference on Software Technologies

Table 2: App-wise distribution of sentence types in the dataset of (Gu and Kim, 2015).

Review types

App Name App Category Feature Evaluation Feature Request Bug Report \ Praise Other \ Total
chase mobile finance 372 152 120 304 1051 1999
duolingo education 370 20 121 614 874 1999
swiftkey productivity 385 98 177 463 876 1999
google playbook books 254 152 198 413 982 1999
yelp food 435 44 54 348 1118 1999
google map map 354 273 141 312 919 1999
text plus social 354 138 75 537 1013 2117
wechat social network 231 132 71 612 953 1999
google calender productivity 466 119 463 109 842 1999
spotify calender = music 231 87 90 714 877 1999
yahoo weather weather 493 71 85 508 842 1999
temple run 2 game 234 48 17 877 877 2053
medscape medical 464 82 83 522 848 1999
espn sports 472 287 128 161 951 1999
camera360 photography 178 67 24 928 928 2125
imdb entertainment 361 115 194 363 966 1999
kakotalk communication 220 69 77 768 865 1999
Total 5874 1954 2118 8553 15782 | 34281

ferent app categories, such as games, communication,
books, and music. Each review sentence is assigned a
label from a set of mutually exclusive types, which
are: a) feature evaluation, b) praise, c) feature re-
quest, d) bug report, and e) other (Gu and Kim, 2015).
Table 1 presents the definition and a sample of review
sentences for each type (Gu and Kim, 2015).

Table 2 shows the distribution of sentence types
in each app category. It is apparent that the distribu-
tion of sentence types is highly skewed. The highest
number of sentences belongs to the type other follo-
wed by praise. The numbers of other three sentence
types—feature evaluation, bug report and feature re-
quest—are significantly smaller. However, these are
the sentence types we are most interested in because
they more likely contain useful information that help
developers to improve their app.

The user review texts contain many typos and con-
tractions that can make automatic classification of app
review sentences a difficult task. To address this is-
sue, we used a collection of 60 types and contracti-
ons' identified by Gu and Kim (2015) to correct the
words in the dataset. During this cleaning process,
we replaced the common typos and contractions, e.g.
“U” is replaced with “you” and “Plz” is replaced with
“Please” etc.

Uhttps://guxd.github.io/srminer/appendix.htm]

114

4 CLASSIFICATION MODELS

This section describes the models designed to answer
our research questions (RQ1 and RQ2). We describe
in detail the textual features used to train MaxEnt mo-
dels for review sentence classification. Then, we ex-
plain the CNN architecture that combines the auto-
matic feature extraction and classifier to classify the
same set of review sentences.

4.1 BoW Features

Bag-of-Words (BoW) is a very simple feature ex-
traction method without much manual effort. In this
approach, first a dictionary is created from all lexi-
cons occurring in the training corpus. Then, a feature
vector for each review sentence is created that sto-
res the frequency of each lexical term in that sentence
(Maalej and Nabil, 2015).

The lexical features are important in characteri-
zing review sentence types. For instance, the words
“awesome” and “great” are mostly used to praise the
app. Similarly, the words “bug” and “crash” represent
bug reports.

4.2 Linguistic Features

We extract the same set of linguistic features as was
proposed by Gu et al. 2015.

Linguistic features can be useful because review
sentences in each category often follow a distinct

structural pattern. For instance, for aspect evaluation,
the sentence structure tends to have a pattern like “The
search (noun) works pretty nice (adjective)” or “Its
perfect (adjective) for storing notes (noun)”. While
for feature request, sentence structure often follows
the patterns such as “please add look up feature” or
“it could be improved by adding more themes”.

Part of Speech (POS): POS tags indicate the type of
each word in a sentence. For example, POS tags for
the sentence “The user interface is elegant.” are “De-
terminer Noun Noun Verb Adjective”. We extracted
the PTB POS tags® with NLTK? and used the conca-
tenation of POS tags of all the words in a sentence as
a feature.

Constituency Parse Tree: Constituency parse tree
represents the grammatical structure of a sentence. Fi-
gure 1 shows the constituency parse tree for a sample
review sentence generated using Stanford CoreNLP
library.* The parse tree shows that the sentence (S)
consists of a noun phrase (NP) and a verb phrase
(VP). The VP is further decomposed into an adjective
phrase (ADJP). The parse tree of a sentence is traver-
sed in breadth first order and the first five nodes are
stored. The concatenation of non-terminal labels of
these five nodes is then used as a feature.

the user interface is

very elegant
Figure 1: Constituency parse tree for a review sentence “‘the
user interface is not very elegant”. The feature extracted
from this tree is “ROOT-S-NP-VP-DT-NN”.

nsubj neg acomp

Hoo

Figure 2: Semantic Dependence Graph of a sample re-
view sentence “the user interface is not elegant”. The fea-
ture extracted from this SGD is “VBZ-nsubj-NN-neg-ADV-
acomp-JJ”.

https://www.ling.upenn.edu/courses/Fall_2003/
ling001/penn_treebank_pos.html

3http://www.nltk.org/

“https://stanfordnlp.github.io/CoreNLP/

Simple App Review Classification with Only Lexical Features

Semantic Dependency Graph (SDG): SDG is a di-
rected graph that shows the dependency relations be-
tween words in a sentence. Nodes in the graph repre-
sent words labeled with POS tags and edges represent
dependency relations between words. Figure 2 shows
the dependency graph of a sample sentence genera-
ted using spaCy” library. The word is is the ROOT
node of the sentence as it does not have any incoming
edges. The root has three dependents with the follo-
wing relationships: a noun subject (nsubj) interface, a
negation modifier (neg) not, and and adjectival com-
plement (acomp) elegant. The child node interface
has two children: a determiner (det) the and a noun
compound modifier (nn) user. To extract the feature,
the SDG is traversed in a breadth first order and the
dependency relations labeling the edges and the POS
tags of the words in the nodes are concatenated. Leaf
nodes that are not directly connected to the ROOT
node are ignored. For example, the textual feature
extracted from SDG of a sentence shown in Figure 2
is “VBZ-nsubj-NN-neg-ADV-acomp-JJ”.

Trunk Words: The trunk word feature is simply the
root word of a SDG. For instance, the trunk word of
the sentence “The user interface is not elegant” is is.
Character N-Grams: Finally, character N-grams, si-
milar to BoW, are simple lexical features.

They have been used successfully in many ap-
plications such as malicious code detection and du-
plicate bug report detection (Gu and Kim, 2015).
Character N-gram features of a sentence are all N-
consecutive letter sequences (without spaces) in the
tokens of the given sentence. For example, the 3-
grams for the sentence “The Ul is Ok™ are The, heU,
eUl, UL, Iis, isO, and sOk. We use 2-4 grams as fea-
tures in our classification model.

4.3 Convolutional Neural Networks
(CNNs)

CNN-based classification models have shown en-
couraging results on various textual classification
tasks (Kim, 2014; Collobert et al., 2011). We adopt
the CNN architecture proposed by Kim (2014) to
classify the review sentences.

The architecture of the model is illustrated in Fi-
gure 3. The first layer of the network embeds words
into low dimensional vectors. The second layer per-
forms convolutions over the embedded word vectors
using multiple filter sizes. The output of these con-
volutions are max pooled into a long feature vector
in the third layer. The fourth layer is a dense layer
with dropout applied. Finally, the results are classi-

Shttps://spacy.io/

115

ICSOFT 2018 - 13th International Conference on Software Technologies

wait
for
the
video -
and R [
do BEE EHEE
n't
rent 2R =
it

n x k representation of
sentence with static and
non-static channels

Convolutional layer with
multiple filter widths and
feature maps

Max-over-time Fully connected layer
pooling with dropout and

softmax output

Figure 3: CNN model architecture for sentence classification (Figure taken from (Kim, 2014)).

fied using a softmax layer. For more details see (Kim,
2014).

Because neural network models have a large num-
ber of trainable parameters, they typically require
large training sets to learn properly. However, when
the available training sets are not that large, as is the
case in this study, initializing CNN-based model with
pre-trained word embedding vectors, obtained from
a unsupervised neural language model might help to
improve the model performance (Kim, 2014; Socher
etal., 2011).

Therefore, we train CNN-models both with and
without pre-trained word embeddings to assess the ef-
fect of using the externally trained word vectors for
classifying app review sentences. We use the 300-
dimensional Word2Vec embeddings (Mikolov et al.,
2013) trained on 100 billion words from Google
News.®

The words that are absent in the vocabulary of pre-
trained embeddings are initialized randomly. In parti-
cular, we experiment with three different models:

¢ CNN (rand): The CNN model in which all word
vectors in the embedding layer are randomly ini-
tialized and then modified during training.

* CNN (static): The CNN model is initialized with
the pre-trained word vectors but all words inclu-
ding the ones that are randomly initialized are kept
static and are not updated during training.

¢ CNN (non-static): Same as CNN (static) but the
pre-trained vectors are fine-tuned during model
training for our classification task.

Shttps://code.google.com/archive/p/word2vec/

116

5 EXPERIMENTAL SETUP

We train and test all models on the dataset described
in Section 3. We compare all classification models
on the test set by computing precision, recall, and f1-
score for each review sentence type.

For all experiments, labeled review sentences of
all apps were merged into one dataset (see Table 2).
We trained 10 instances of each model to ensure that
the impact on accuracy due to variation in the data has
been taken into account.

For each training instance, 80% of the data was
randomly sampled as training set and 20% as test set
without fixing the seed value. During each run, a mo-
del was trained on the training set and evaluated on the
test set. The prediction accuracy of the ten evaluations
were averaged and reported as the final performance.

All the experiments were run on a CPU cluster
(2 x Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz)
with resources of one compute node and 16 GB RAM.
We used the scikit-learn python library’ to train, tune
and evaluate the MaxEnt models. The regulariza-
tion hyperparameter C was fine-tuned separately for
both MaxEnt models by performing 5-fold cross-
validation on 80% of the randomly sampled data. For
the BoW model, the regularization weight was fixed
to .856 and for the linguistic features model, C was
fixed to .09.

For the CNN model, we used a freely available im-
plementation of Kim (2014)8 based on TensorFlow’
library in python. The hyperparameters used in the
CNN model are: rectified linear units (ReLLU), filter
windows of sizes 2, 3 and 4 with 128 feature maps

Thttp://scikit-learn.org/stable/
8https://github.com/dennybritz/cnn-text-classification-tf
https://www.tensorflow.org/

for each filter. The dropout rate of 0.6 and L2 regu-
larization parameter of 0.1 was chosen by performing
5-fold cross-validation on a training set. We used a
batch size of 256 and trained the models for 50 epo-
chs.

6 RESULTS AND DISCUSSION

This section presents the results regarding our rese-
arch questions (RQ1 and RQ2). The classification
accuracies of our models are shown in Table 3. The
first two rows present the results of the MaxEnt mo-
dels. The bottom three rows give the results of the
three CNN-based models. The best result in each co-
lumn is in bold, the best neural model result is under-
lined. We also give the average results of feature eva-
luation, feature request and bug report sentence ty-
pes, as these categories are expected to give the most
information about how improve the app.

In the following, we answer the research questions
and discuss the results.

RQI concerns with the performance comparison
of the two MaxEnt models (the first two rows in Ta-
ble 3). The first model uses simple BoW features and
the second model leverages linguistic resources (see
Section 4.2). On average, the MaxEnt model with lin-
guistic features achieves better performance than the
MaxEnt model with BoW features but the difference
is only .01 points for precision, and .02 points for both
recall and f1-score. Both models demonstrate roughly
the same performance for the class types feature eva-
luation and bug report. Only for the class type feature
request, the model with linguistic features is clearly
better than the BoW model. In relation to our RQl1,
we conclude that the simple MaxEnt BoW model that
does not require linguistic resources and is computa-
tionally the fastest (see Table 4), is almost as compe-
titive as the MaxEnt model with complex linguistic
features.

The RQ2 studies the performance of deep learning
based CNN in comparison with the MaxEnt model
with BoW features. On average, the neural model
with best f1-score (non-static CNN) is worse than the
model with BoW features but the difference is only
less than 0.01. In terms of precision, the best neu-
ral model is the CNN with randomly initialized em-
beddings. For all three relevant sentence categories,
this model obtains the best or close to best precision
among all models at the cost of lower recall for fe-
ature evaluation and feature request sentence types.
In terms of recall, the CNN (non-static) is the best,
obtaining competitive performance for all three rele-
vant sentence types.

Simple App Review Classification with Only Lexical Features

Hence, we conclude with regards to our RQ2 that
the CNN-based neural networks can achieve competi-
tive performance in comparison to the MaxEnt Bow
model.

However, as the best precision and recall were
obtained with the different configuration of the CNN
model (random vs non-static embeddings), the supe-
riority of one or the other approach is not clear. It is
possible that with a larger training set, the CNN model
would gain a clear advantage over the simple MaxEnt
BoW model.

Previous studies have shown that tuning the word
vectors specific to the classification task (non-static
CNN) improves model performance (Kim, 2014).
Although the average Fl-score as well as the recall
of the CNN (non-static) model is the best among the
neural models, the difference at least in F1-score is
non-significant. On the other hand, the precision is
the best for the model with randomly initialized em-
beddings (rand CNN) and the difference between the
other two neural models is almost 5%. One possi-
ble reason for this can be that the textual domain of
Google News is too different from the texts of app re-
views and thus embeddings trained on that will not
give a good starting point for our model. It is possible
that word embeddings pre-trained on a large amount
of app reviews would perform better in our case.

Training neural network models is generally com-
putationally more costly (see Table 4) than training
MaxEnt models due to the larger number of trainable
parameters. Still, the fact that they do not require ex-
ternal linguistic tools (parsers, taggers etc) to extract
features and they can be trained offline, might make
the neural models an attractive alternative in case they
display superior performance over simpler models.
The CNN-based models are expected to perform bet-
ter than the traditional machine learning models, i.e,
MaxEnt, when large amounts of labeled data is provi-
ded. However, this is rarely the case in the software
engineering community. Moreover, such models also
require specialized knowledge and expertise to use
them. Therefore, researchers who are not expert in
deep learning nor have the knowledge of using NLP
tools can safely use the simple BoW model for classi-
fication of app review sentences, which yields results
very close to the more complex models.

7 THREATS TO VALIDITY

The review dataset used in this study is collected from
PlayStore and manually labeled by Gu et al. (2015).
We do not know the extent to which the results of our
study are sensitive to the annotators and annotation

117

ICSOFT 2018 - 13th International Conference on Software Technologies

Table 3: Performance of classification models for different types of review sentences. We also show the mean precision,
recall and f1-score averaged over the most relevant sentence types: feature evaluation, feature request and bug report. The
best result in each column is in bold, the best CNN model result is underlined.

Model Feature Evaluation Feature Request Bug Report Average Praise Other

Prec Rec F1 Prec Rec F1 Prec Rec F1 |Prec Rec F1 | Prec Rec F1 Prec Rec F1
MaxEnt (BoW) 783 633 700 715 589 .646 736 .562 .637 | .745 595 .661 | .835 .853 .844 775 .863 .817
MaxEnt (L+S) 767 645 700 766 .619 .684 733 .588 .652 | .755 .617 .679 | .851 .873 .861 .784 860 .820
CNN (rand) J71 613 681 781 492 602 755 569 .646 | .769 558 .643 | .883 816 .781 .861 .847 .854
CNN (static) 738 638 685 722 522 604 .698 547 612 | 719 569 .634 | 751 864 .802 781 .763 .770
CNN (non-static) .726 .679 .702 .679 .607 .640 .655 .584 .617 | .687 .623 .653 | .788 .822 .804 .842 .855 .848

Table 4: Runtime of different classification models.

Model Runtime for one run
MaxEnt (BoW) 9 mins
MaxEnt (L+S) 22 mins

CNN (rand) 252 mins

CNN (non-static) 376 mins

CNN (static) 554 mins

guidelines used to label this data. Moreover, the na-
ture or language characteristics of the reviews in other
app marketplaces may be different to that of PlayS-
tore. Therefore, we do not claim the generalizability
of our results to reviews from other platforms like,
e.g., AppStore.

The CNN-based model has a large number of hy-
perparameters that can be tuned to potentially im-
prove the performance. This set of hyperparameters
includes the size of the embeddings, number and sizes
of filters, the choice of the optimizer with its parame-
ters, various options for regularization, etc. Tuning
all these hypermarameters is infeasible in practice.
Thus, we tuned the drop-out rate and the strength of
the L2-regularization. Still, tuning other hyperpara-
meters as well might improve the model performance.
The number of examples for each sentence type in the
dataset are imbalanced. To tackle this imbalance, we
experimented with random oversampling and random
undersampling techniques in MaxEnt models but did
not observe any improvements in F1-score. Many ot-
her techniques exist to handle class imbalance and
thus it is possible that using one of those would have
made a difference. Also, we did not apply the class
balancing techniques to neural models where they po-
tentially could have improved the results.

8 CONCLUSION

We explored the power of simple lexical features in
classifying app review sentences. For that, we com-
pared the simple Bag-of-Words feature representation
with a more complex feature set proposed in previous
work extracted using various NLP tools. We found
that on average, the simple BoW model performs al-

118

most as well as the model with complex linguistic fe-
atures. Considering that software developers and soft-
ware engineering researchers are typically not experts
in NLP tools, this is a desirable result. We also experi-
mented with deep learning based CNN models which
have become very popular due to their ability to le-
arn complex feature representations from simple lex-
ical inputs as well as their good performance in many
tasks. In our study, we did not observe any advantage
of using computationally more expensive CNN over
its simpler BoW counterpart. Thus, we conclude that
the simple lexical BoW model is very competitive and
offers a simple method even to the non-experts, both
in terms of feature extraction and computational com-
plexity, for review sentence classification.

ACKNOWLEDGMENTS

We are grateful to Xiaodong Gu for sharing the review
dataset for this study. This research was supported by
the institutional research grant IUT20-55 of the Esto-
nian Research Council.

REFERENCES

Chen, N., Lin, J., Hoi, S. C. H., Xiao, X., and Zhang, B.
(2014). AR-miner: mining informative reviews for
developers from mobile app marketplace. In Procee-
dings of the ICSE 2014, pages 767-778. ACM Press.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavuk-
cuoglu, K., and Kuksa, P. (2011). Natural language
processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493-2537.

Fu, W. and Menzies, T. (2017). Easy over hard: A case
study on deep learning. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE 2017, pages 49-60, New York,
NY, USA. ACM.

Gu, X. and Kim, S. (2015). “what parts of your apps are
loved by users?”. In 2015 30th IEEE/ACM Internati-

onal Conference on Automated Software Engineering
(ASE), pages 760-770.

Johann, T., Stanik, C., B., A. M. A., and Maalej, W. (2017).
SAFE: A Simple Approach for Feature Extraction
from App Descriptions and App Reviews. In 2017
IEEE 25th International Requirements Engineering
Conference (RE), pages 21-30. IEEE.

Kim, Y. (2014). Convolutional neural networks for sentence
classification. In Proceedings of the EMNLP 2014,
pages 1746-1751. ACL.

Liu, P, Joty, S., and Meng, H. (2015). Fine-grained opinion
mining with recurrent neural networks and word em-
beddings. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1433-1443.

Maalej, W. and Nabil, H. (2015). Bug report, feature re-
quest, or simply praise? On automatically classifying
app reviews. In Proceedings of RE 2015, pages 116—
125. IEEE.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Pagano, D. and Maalej, W. (2013). User feedback in the
appstore: An empirical study. In Proceedings of RE
2013, pages 125-134.

Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C. A.,
Canfora, G., and Gall, H. C. (2015). How can i
improve my app? classifying user reviews for soft-
ware maintenance and evolution. In Proceedings of
the 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), ICSME 15,
pages 281-290, Washington, DC, USA. IEEE Com-
puter Society.

Shah, F. A., Sabanin, Y., and Pfahl, D. (2016). Feature-
based evaluation of competing apps. In Proceedings of
the International Workshop on App Market Analytics
- WAMA 2016, pages 15-21, New York, New York,
USA. ACM Press.

Socher, R., Lin, C. C.-Y., Ng, A. Y., and Manning, C. D.
(2011). Parsing natural scenes and natural language
with recursive neural networks. In Proceedings of the
28th International Conference on International Con-
ference on Machine Learning, ICML’ 11, pages 129—
136, USA. Omnipress.

Villarroel, L., Bavota, G., Russo, B., Oliveto, R., and
Di Penta, M. (2016). Release planning of mobile apps
based on user reviews. In Proceedings of the ICSE
2016, pages 14-24. ACM.

Simple App Review Classification with Only Lexical Features

119

