
A Multi-source Machine Learning Approach to Predict Defect Prone
Components

Pasquale Ardimento1, Mario Luca Bernardi2 and Marta Cimitile3

1Computer Science Department, University of Bari Aldo Moro, Via E. Orabona 4, Bari, Italy
2Department of Computing, Giustino Fortunato University, Benevento, Italy

3Unitelma Sapienza, Rome, Italy

Keywords: Machine Learning, Fault Prediction, Software Metrics.

Abstract: Software code life cycle is characterized by continuous changes requiring a great effort to perform the testing
of all the components involved in the changes. Given the limited number of resources, the identification of
the defect proneness of the software components becomes a critical issue allowing to improve the resources
allocation and distributions. In the last years several approaches to evaluating the defect proneness of software
components are proposed: these approaches exploit products metrics (like the Chidamber and Kemerer metrics
suite) or process metrics (measuring specific aspect of the development process). In this paper, a multi-
source machine learning approach based on a selection of both products and process metrics to predict defect
proneness is proposed. With respect to the existing approaches, the proposed classifier allows predicting the
defect proneness basing on the evolution of these features across the project development. The approach is
tested on a real dataset composed of two well-known open source software systems on a total of 183 releases.
The obtained results show that the proposed features have effective defect proneness prediction ability.

1 INTRODUCTION

Add new features and/or increase the software qua-
lity require much effort invested to perform software
testing and debugging. However, software developers
resources are often limited and the schedules are very
tight. Defect prediction can support developers and
reduce the resources consumption through the iden-
tification of the software components that are more
prone to be defective. Basing on the above consi-
derations, several defect prediction machine learning
classification approaches (Radjenović et al., 2013) are
proposed in the last years. They are based on a clas-
sifier that predicts defect-prone software components
basing on a set of features (i.e, code complexity, num-
ber of code lines, number or modified files) (Isong
et al., 2016). Basing on the more recent studies (Rad-
jenović et al., 2013), several machine learning ba-
sed approaches adopt product metrics like Chidamber
and Kemerer’s (CK) (Chidamber and Kemerer, 1994;
Boucher and Badri, 2016) object-oriented metrics as
features. Even if these products metrics are surely
highly correlated to defects as several studies con-
firms (Hassan, 2009), there are also other aspects, re-
lated to the adopted development process, that need to

be taken into account to capture the complex techni-
cal and social implications of the phenomenon of bug
introduction in a predictive model. In this paper a new
machine learning approach to predict defect prone
components is proposed. Differently, from the other
approaches, the proposed classifier uses as features
the evolution over releases of a mix of products and
process metrics.

Section 2 discusses the related work and the back-
grounds. Section 3 introduces the proposed classifica-
tion process while Section 4 presents the evaluation of
the proposed features effectiveness referring to their
capability to evaluate the software code proneness and
discusses the results of the evaluation. Finally, paper
conclusions and future work are reported in Section
5.

2 RELATED WORK

The defect prediction approaches proposed in litera-
ture apply data mining and machine learning algo-
rithms to classify the software components into de-
fective or non-defective. These approaches utilize

272
Ardimento, P., Bernardi, M. and Cimitile, M.
A Multi-source Machine Learning Approach to Predict Defect Prone Components.
DOI: 10.5220/0006857802720279
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 272-279
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

a classification model obtained from the analysis of
the earlier projects data considered as features (Les-
smann et al., 2008). According to the literature (Bou-
cher and Badri, 2016), several approaches are ba-
sed on the adoption of CK metrics suite introduced
in (Chidamber and Kemerer, 1994). Two experi-
ments on the relation between object-oriented design
metrics and software quality are proposed in (Basili
et al., 1996; Briand et al., 2000). In (Kanmani et al.,
2007), the effectiveness of the CK metrics for soft-
ware fault prediction is evaluated by using two neu-
ral network based models. Similarly, multiple linear
regression, multivariate logistic regression, decision
trees and Bayesian belief network are used respecti-
vely in (Nagappan et al., 2005; Olague et al., 2007;
Gyimothy et al., 2005; Kapila and Singh, 2013). In
(Lessmann et al., 2008) a framework for comparative
software prediction is proposed and tested on 22 clas-
sifiers and 10 NASA datasets. The obtained results
show an encouraging predictive accuracy of the clas-
sifiers and no significant difference in the classifiers
performances. Finally, in (Kaur and Kaur, 2018), the
six better (basing on the previous studies) classifica-
tion algorithms are used to compare models for fault
prediction on open source software and compare the
results of open software projects with an industrial da-
taset. The analysis of the literature shows that most
studies on software defect prediction are focused on
a comparative analysis of the available machine lear-
ning methods. In this paper, we propose a features
model that takes into consideration the software com-
ponent’s history to consider the evolution of a mix
of products and process metrics. The novelty resides
in the application of an ensemble learning approach
using the selected set of products and process metrics
evaluated at different observation points in space (i.e.
the project’s classes) and time (i.e. at each release).
This allows training a classifier that becomes more ef-
fective as the software project matures (i.e. more re-
leases are generated) since more training data is avai-
lable.

3 THE METHODOLOGY

The key aspects of our approach are the granularity of
prediction (i.e. the code elements selected as the tar-
gets of the prediction), the metrics exploited as featu-
res, the adopted machine learning prediction techni-
ques.

For that concerns the granularity, the proposed ap-
proach aims at identifying the defects at a class le-
vel. This means evaluating the defect proneness of a
class across software project releases events. Most of

the existing defect proneness prediction approaches
are able to predict the defects only at source file level
(Hassan, 2009; Moser et al., 2008) or, even worse, at
the component level (Nagappan et al., 2010). Coarse-
grained predictions force developers to spend effort in
locating the defects. Since finer granularity, instead,
can mitigate such issue, the proposed model has been
designed to predict the defects at class level thus ef-
fectively restricting the testing effort required.

For what concerns features selection, there are
two classes of metrics that are widely used to predict
bugs: product metrics, that characterize features of
the source code elements; process metrics, that cha-
racterize the development history of the source code
elements. To take into account all these aspects when
predicting defects, the proposed approach exploits a
mix of the first two classes of features.

The last key aspect is the prediction technique ex-
ploited in our approach. In literature, machine lear-
ning techniques have been successfully exploited for
bug prediction. These approaches(Moser et al., 2008),
mostly adopting supervised learning, seems to sug-
gest that the impact of the adopted metrics on the clas-
sification performances is much higher than the speci-
fic machine learning algorithm chosen to perform the
classification. To confirm this, in our study several
classification techniques based on supervised learning
are compared and results discussed.

The overall defect proneness classification process
is summarised in Figure 1 and the remaining of the
section delves into the details of each step.

3.1 Data Collection

The process starts with the data collection step repre-
sented in Figure 1-(a) that extracts the information
from the source code repository and the bug tracking
system and integrates them into a single coherent da-
taset. The required information is spread between the
issue tracker (BTS) and the source code repository
(VCS). Such integration is centered on recovering the
traceability links among the two systems to identify
the commits making up each release and linking the
issues reported in BTS to them.

To this regards a tool, written in Java, has been
developed to execute the following tasks, for a given
software project: downloads the VCS repository; eva-
luates the total number of releases, commits and the
total number of commits for each release; calculates,
for each release, all the revisions (commit IDs) that
are related to it; collects information about commit
date, commit author, commit URL, and other struc-
tural information. Then two scripts have been deve-
loped to automate the extraction process. The first

A Multi-source Machine Learning Approach to Predict Defect Prone Components

273

Figure 1: An overview of the defect prone components prediction process.

123b f7ab 4e1c 8d1c eb10 f2c2 5b0b 8c86

ffc6 0b3b 1ab7 5ca2

Fix 5Feature 3

Fix 4Fix 2

v1.1.1

Fix 3 v1.0.1

v1.1.0

v1.0.0

Fix 1

Feature 2Feature 1

Metrics on commits 123b,f7ab,4ec1 Metrics on commits 123b,f7ab,4ec1,8d1c,eb10,f2c2,5b0b,8c86

Commits for metrics evaluation of release v1.0.0

Commits used to generate labels for release v1.0.0

Figure 2: A small excerpt of a typical repository graphs, decorated with information on Issues, Bugs and Fixes.

script builds automatically all the release source co-
des, using Apache Ant or Apache Maven, while the
second one evaluates the metrics of different classes
and stores the results. A broad overview of the in-
tegration is depicted on Figure 2. A key problem in
evaluating the metrics is to define the portion of the
source code repository graph that is used for each re-
lease. Our approach, given the commit of a release
(e.g. commit ID 8d1c in the figure), creates a set of
commits that, for that release, is built by following
back the parent/children relationship of the repository
DAG until to the branch root (this set is highlighted
in red in Figure 2). For each commit found on this
path, information gathered from BTS are considered
in order to evaluate required metrics. Specifically, as
Figure 1 shows, from these integrated data sources,
two classes of defect predictors (product and process
metrics) are generated and are used, later in the pro-
cess, as features for the subsequent learning step.

3.1.1 Product Metrics

We selected a subset of the Chidamber-Kemerer (CK)
ObjectOriented (OO) Metric Suite(Chidamber and
Kemerer, 1994), reported in Table 1. To evaluate

these metrics, the CKJM tool developed by Spinel-
lis(Spinellis, 2005) was integrated into our toolchain
to perform the experimentation. This tool is able
to calculate Chidamber and Kemerer object-oriented
metrics for each class of the system, by processing the
bytecodes of compiled Java files. This means that, for
each release, a complete snapshot of the entire source
code must be extracted and compiled to produce the
bytecodes feeding the CKJM tool.

3.1.2 Process Metrics

Since there are several factors, related to the deve-
lopment process with which the software project is
developed, influencing the complex phenomenon of
bug introduction. For this reason, process metrics
are also taken into account looking at both the kind
of changes that are performed and the properties of
committers performing such changes. Table 2 reports
the process metrics considered as features. To evalu-
ate the number of commits, issues, and bugs for each
class we build the log from the VCS repository and
extract, for each commit, the files changed, the com-
mit ID, the commit timestamp, the committer ID, and
the commit note. With this information, we are also

ICSOFT 2018 - 13th International Conference on Software Technologies

274

Table 1: Product Metrics adopted as features to train the
classifier.

Metric Description

WMC

Weighted Method per Class - It mea-
sures the complexity of a class calcu-
lated by the cyclomatic complexities of
its methods

DIT
Depth of Inheritance Tree - It calculates
how far down a class is declared in the
inheritance hierarchy.

NOC
Number of Children - It calculates how
many sub-classes are going to inherit
the methods of the parent class.

CBO Coupling Between Objects - It evalua-
tes the coupling between objects.

RFC
Response for a Class - The number of
methods that can be invoked in response
to a message in a class.

LCOM
Lack of Cohesion in Methods - It me-
asures the amount of cohesiveness pre-
sent.

CA
Afferent Couplings - It evaluates the
number of classes that depend upon the
measured class

NPM
Number of Public Methods - It evalu-
ates all the methods in a class that are
declared as public

Table 2: Process Metrics adopted as features to train the
classifier.

Metric Description

#Commits The number of total commits on the
class.

#Issues
The number of total issues (Impro-
vements, Refactoring, and Tasks) in-
volving the class.

#Bugs The number of total bugs involving
the class.

#Owner
Commit-
ters

The number of owners that have
worked on the class.

#Other
Commit-
ters

The number of other committers (i.e.
committers not owning the class)
that have worked on the class.

#Commits
by Others

The number of total commits on the
class performed by committers not
owning the class.

able to identify fix-inducing changes using an appro-
ach inspired by the work of Fischer (Fischer et al.,
2003), i.e., we select changes with the commit note
matching a pattern such as bug ID, issue ID, or si-
milar, where ID is a registered issue in the BTS of
the project. Hence the issue ID acts as traceability

link between VCS and BTS systems. We then use
the issue type/severity field to classify the issue and
distinguish bug fixing changes from different kind of
issues (e.g., improvement, enhancements, feature ad-
ditions, and refactoring tasks). This is needed to com-
pute, for each class, the process metrics (the number
of improvement/refactoring issues and the number of
fixes). Finally, we only consider issues having the
status CLOSED and the resolution FIXED since their
changes must be committed in the repository and ap-
plied to the components in the context of a release.
Basically, we distinguish among: (i) issues that were
related to bugs, since we use them as a measure of
fault-proneness, and (ii) issues that are related to im-
provement and changes.

To identify fix-inducing changes, we use a modi-
fied version of SZZ algorithm presented in (Kim et al.,
2008). It is based on the git blame feature which, for
a file revision, provides for each line the revision of
the last change occurred in time. More precisely, gi-
ven the fix for the bug identified by k, the approach
proceeds as follows:

1. let p(c) be the parent of the commit c; for each
file fi, i = 1 . . .mk involved in the bug fix k (mk is
the number of files changed in the bug fix k) and
fixed in a commit with ID R f ixi,k , we get the same
file in its parent commit with ID p(R f ixi,k), since
it is the most recent revision that still contains the
bug k.

2. starting from the revision with commit ID
p(R f ixi,k), the blame command of git is used to
detect, for each line in fi changed in the fix of
the bug k, the commit, in the past, where the last
change to that line occurred. Hence for each file
fi, we obtain a set of ni,k fix-inducing commit IDs
Rbi, j,k , j = 1 . . .ni,k.

The revisions Rbi, j,k , j = 1 . . .ni,k are finally used to
perform bugs and issues counting aggregating by file
and by release in order to evaluate the a subset of pro-
cess metrics (i.e. the number of commits, fixes and
bugs for each class in each release).

However further information is required to evalu-
ate metrics related to ownership (i.e. the number of
owners committers, the number of other committers
and the number of commits on each class performed
by the other committers).

In (Bird et al., 2011) authors defined a file owner
as a committer that performed, on a file, a given per-
centage of the total number of commits occurred on
that file. Hence we tag as owners the set of the com-
mitters of a file that collectively performed at least
half of the total commits on that file.

More formally, we identify as the set of file ow-

A Multi-source Machine Learning Approach to Predict Defect Prone Components

275

ners for file fi at time t the set:

O(fi, t)≡ {o1, . . . ,oi} (1)

of committers that, overall, performed the 50% of
commits on fi in the time interval [0, t] (where 0 is
the starting point of our period of observation), i.e.,

|O(fi,t)|
∑
j=1

C(o j)≥ 0.5 ·Tc(fi, t) (2)

where C(o j) is the number of commits performed by
oi on file fi in the time interval [0, t], and Tc(fi, t) is
the total number of commits performed on fi in the
time interval [0, t]. To calculate the set O(fi, t), we
build an ascending sorted list of committers based on
the number of commits they performed on fi in the
time interval [0, t], and selected the minimum set of
topmost committers in the ranked list that satisfies the
above constraint.

By collecting all these metrics for each class of the
system, at a given release, the feature vector reported
in Figure 3 is constructed and used for training.

3.2 Dataset Generation Steps

The goal of this step, reported in Figure 1-(b), is to
produce a dataset from the metrics evaluated from
data sources that are suitable to be used to train a clas-
sifier adopting a supervised machine learning appro-
ach. The labeled match data consists of all the com-
mits performed on the fixed file and the corresponding
values of the metrics. The labeled match data is firstly
cleaned (by removing the incomplete and wrong data)
and normalized.

The cleaning consists of polish data produced du-
ring the pre-processing step in order to: i) fix missing
values; ii) remove noise; iii) remove special character
or values; iv) verify semantic consistency.

After the cleaning, the normalization is performed
by using a Min-max scaling approach realizing a li-
near transformation of the original data. More preci-
sely, if minX is the minimum value for the attribute X
and maxX is the maximum for X, the min-max nor-
malization approach relates a value vi of X to a v′i in
the range {newMinX ,newMaxX} by computing:

v′i =
vi−minX

maxX −minX
(newMaxX−newMinX)+newMinX

From the normalized data, a dataset is derived. It
contains the training set used to train the classifier and
the test set used to make the performance assessment
of the classifier.

3.3 Learning Phase

To perform the learning phase is necessary to calcu-
late the labels (i.e. the defective components of relea-
ses used for training the classifier). Given a release X,
we construct such labels by looking at the future com-
mits until we reach on each subsequent branch the
next releases. This allows considering fixes that apply
to release X and from them recover, as already discus-
sed, the fix-inducing changes. Files affected by fix-
inducing changes are finally labeled as DEFECTIVE
or NOT-DEFECTIVE.

The training is performed using a stratified K-fold
cross-validation (Rodriguez et al., 2010) approach. It
consists to split the data into k folds of the same size in
which the folds are selected so that each fold contains
roughly the same proportions of class labels. Subse-
quently, k iterations of training and validation are per-
formed and, for each iteration, a different fold of the
data is used for validation while the remaining folds
are used for training. As pointed out, to ensure that
each fold is representative, the data are stratified prior
to being split into folds. This model selection method
provides a less biased estimation of the accuracy.

3.4 Classification Phase

In this step, the trained classifier is ready to be used
to perform prediction on new data extracted from the
project. It could be applied to the live software project
data and can be used to predict, at the current release,
what are the classes that are the most likely to produce
bugs until the next release cycle. Since the approach
works on metrics that can be automatically extracted,
it is suitable to be integrated into existing BTS or con-
tinuous integration (CI) platforms.

4 EVALUATION

4.1 Experiments Description

To validate the approach, an experiment was perfor-
med involving the following two projects, both writ-
ten in Java Language: Apache CXF, a well known
open source services framework, and Apache Com-
mons IO, a widespread library that contains several
facilities for text and binary data management. The
dataset for Apache CXF contains 134 releases (from
release 2.1 up to release 3.2.0), while the dataset for
Apache Commons IO contains 49 releases (from re-
lease 1.0.0 up to release 2.5.0).

The experimentation was performed by using the
classifiers, reported in Table 3, based on traditional

ICSOFT 2018 - 13th International Conference on Software Technologies

276

Figure 3: The features vector used to train the classifier.

Table 3: Machine-learning classification algorithms.

Classification
Alghoritm Description

J48
A decision tree is created based on the attribute values of the training dataset in order to
classify a new item. The set of items discriminating the various instances is extracted so
when a new item is encountered it can be classified.

Decision
Stump

It consists to create a decision tree model with one internal root node immediately con-
nected to the terminal nodes. The prediction is allowed by a decision stump basing on the
value of just one input feature.

Hoeffding
Tree

An incremental, anytime DT induction algorithm learning from massive data streams.
Basing on the assumption that the distribution generating examples does not change over
time, it often uses a small sample to choose an optimal splitting attribute.

Random
Forest

It operates by constructing, at training time, a multitude of DTs and outputting the class
that is the mode (the most frequent value appearing in a set of data) of the classes of the
individual trees.

Random Tree It constructs a tree containing some randomly chosen attributes at each node. No pruning
is performed.

REP Tree
It builds a DT using information gain/variance and reduces errors using reduced-error pru-
ning. The values are ordered for numeric attributes once and missing values are recovered
with by splitting the corresponding instances into pieces.

Table 4: Best Precision, Recall and F-Measure for Apache
CXF for the adopted learning algorithms.

Algorithm P R F Class
0.82 0.88 Defective

J48 0.83 0.89 0.85 Not defective
0.79 0.78 Defective

Decision
Stump 0.81 0.71 0.78 Not defective

0.86 0.89 Defective
Hoeffding
Tree 0.88 0.91 0.89 Not defective

0.87 0.88 Defective
Random
Forest 0.87 0.90 0.87 Not defective

0.85 0.81 Defective
Random
Tree 0.83 0.86 0.83 Not defective

0.80 0.81 Defective
REPTree 0.77 0.72 0.80 Not defective

Machine Learning (ML) algorithms: J48, Decision-
Stump, HoeffdingTree, RandomForest, RandomTree
and REPTree. A description of these algorithms is
also reported in the same table. They all use a de-
cision tree as a predictive model. The observations
about an item are represented as the branches of the
tree and they are used to obtain conclusions about its
class (the leaves of the tree).

Table 5: Best Precision, Recall and F-Measure for Apache
Commons-IO for the adopted learning algorithms.

Algorithm P R F Class
0.71 0.77 Defective

J48 0.74 0.80 0.70 Not defective
0.68 0.69 Defective

Decision
Stump 0.70 0.60 0.66 Not defective

0.78 0.81 Defective
Hoeffding
Tree 0.80 0.83 0.82 Not defective

0.76 0.77 Defective
Random
Forest 0.75 0.81 0.78 Not defective

0.74 0.72 Defective
Random
Tree 0.76 0.75 0.74 Not defective

0.71 0.72 Defective
REPTree 0.66 0.64 0.68 Not defective

4.2 Evaluation Strategy

To validate the classifier we used the following classi-
fication quality metrics: Precision, Recall, F-Measure
and ROC Area.

Precision has been computed as the proportion of
the observations that truly belong to investigated class
(i.e., defect proneness components) among all those

A Multi-source Machine Learning Approach to Predict Defect Prone Components

277

which were assigned to the class (analyzed compo-
nents). It is the ratio of the number of records cor-
rectly assigned to a specific class to the total number
of records assigned to that class (correct and incorrect
ones):

Precision =
t p

t p+ f p
(3)

where tp indicates the number of true positives and fp
indicates the number of false positives.

The recall has been computed as the proportion
of observations that were assigned to a given class,
among all the observations that truly belong to the
class. It is the ratio of the number of relevant records
retrieved to the total number of relevant records:

Recall =
t p

t p+ f n
(4)

where tp indicates the number of true positives and fn
indicates the number of false negatives.

The ROC Area is defined as the probability that a
positive instance randomly chosen is classified above
a negative randomly chosen. In the evaluation, a ROC
curve for each release of a given system is estima-
ted to study the performance of the classifiers as the
version number increases (e.g. as the software pro-
ject becomes more mature and more training data is
available). Specifically, we expect that as history data
size increases, the performance of the trained classi-
fier consequently improves. Even if this is not always
consistent across all the minor versions, this trend, as
reported in the evaluation, is confirmed by the results
of our study.

4.3 Discussion of Results

Tables 4 and 5 contain the results of classification pro-
cess performed with the six algorithms of Table 3 for
the two systems. The best performing algorithm in
our experimentation resulted to be Hoeffding Tree on
CXF scoring the best precision of 0.86/0.88 with a re-
call of 0.89/0.91 on the two classes and a ROC area
of 0.89. Random Forest was on both system the se-
cond best algorithm experimented but, with respect to
Hoeffding Tree, was much slower during training.

To study classification performances with respect
to project age in terms of releases, the set of ROC
curves were evaluated by release. Figure 4 shows an
excerpt of the 134 ROC curves for Apache CXF that
highlight what we expected: as history becomes lar-
ger the AUC of the classifier improves and the clas-
sification becomes more reliable (in our experimenta-
tion the peak in the accuracy is obtained at 0.89 for
release 3.1.6).

ROC curve for 2.0.9.txt

S
e

n
s
it
iv

it
y

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.640

ROC curve for 2.2.4.txt

S
e

n
s
it
iv

it
y

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.707

ROC curve for 2.4.8.txt
S

e
n

s
it
iv

it
y

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.753

ROC curve for 2.5.1.txt

S
e

n
s
it
iv

it
y

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.757

ROC curve for 2.5.8.txt

S
e

n
s
it
iv

it
y

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.772

ROC curve for 2.7.1.txt
S

e
n

s
it
iv

it
y

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.807

ROC curve for 2.7.10.txt

S
e

n
s
it
iv

it
y

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.809

ROC curve for 3.0.0.txt

S
e

n
s
it
iv

it
y

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC: 0.837

Figure 4: The plots of estimated ROCs for 16 versions of
Apache CXF from 2.0 to 3.1 with HoeffdingTree: AUC im-
proves as history data volume increases.

5 CONCLUSION

The paper proposes a multi-sourced approach to the
defect proneness prediction. The approach performs
a classification process based on the adoption of a ma-
chine learning classifier (different ML algorithms are
tested) and a proposed features model (using a mixed
set of product and process metrics as features). The
approach is tested on a real data set composed of two
software systems of totally 183 releases. The obtai-
ned results show that the proposed features have an

ICSOFT 2018 - 13th International Conference on Software Technologies

278

effective defect proneness prediction ability and that
such ability is deeply influenced by the project ma-
turity. As future work, the extension effort is two-
fold: improve the set of metrics considered as featu-
res — social network metrics impact will be evaluated
by considering degree, betweenness, and connected-
ness of committers in the developer’s social network
working on source code artifacts; enforce the empiri-
cal validation — this will be obtained by adding new
software projects of different domain and with diffe-
rent structural characteristics.

REFERENCES

Basili, V. R., Briand, L. C., and Melo, W. L. (1996). A
validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineer-
ing, 22(10):751–761.

Bird, C., Nagappan, N., Murphy, B., Gall, H., and Devanbu,
P. T. (2011). Don’t touch my code!: examining the
effects of ownership on software quality. In SIGS-
OFT/FSE’11 19th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-19) and
ESEC’11: 13rd European Software Engineering Con-
ference (ESEC-13), Szeged, Hungary, September 5-9,
2011, pages 4–14. ACM.

Boucher, A. and Badri, M. (2016). Using software me-
trics thresholds to predict fault-prone classes in object-
oriented software. In 2016 4th Intl Conf on Applied
Computing and Information Technology/3rd Intl Conf
on Computational Science/Intelligence and Applied
Informatics/1st Intl Conf on Big Data, Cloud Com-
puting, Data Science Engineering (ACIT-CSII-BCD),
pages 169–176.

Briand, L. C., Wst, J., Daly, J. W., and Porter, D. V. (2000).
Exploring the relationships between design measures
and software quality in object-oriented systems. Jour-
nal of Systems and Software, 51(3):245 – 273.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6):476–493.

Fischer, M., Pinzger, M., and Gall, H. (2003). Populating a
release history database from version control and bug
tracking systems. In 19th International Conference
on Software Maintenance (ICSM 2003), The Architec-
ture of Existing Systems, 22-26 September 2003, Am-
sterdam, The Netherlands, pages 23–. IEEE Computer
Society.

Gyimothy, T., Ferenc, R., and Siket, I. (2005). Empirical
validation of object-oriented metrics on open source
software for fault prediction. IEEE Transactions on
Software Engineering, 31(10):897–910.

Hassan, A. E. (2009). Predicting faults using the complexity
of code changes. In Proceedings of the 31st Internati-
onal Conference on Software Engineering, ICSE ’09,
pages 78–88, Washington, DC, USA. IEEE Computer
Society.

Isong, B., Ifeoma, O., and Mbodila, M. (2016). Sup-
plementing object-oriented software change impact
analysis with fault-proneness prediction. In 2016
IEEE/ACIS 15th International Conference on Compu-
ter and Information Science (ICIS), pages 1–8.

Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., and
Thambidurai, P. (2007). Object-oriented software
fault prediction using neural networks. Inf. Softw.
Technol., 49(5):483–492.

Kapila, H. and Singh, S. (2013). Article: Analysis of ck
metrics to predict software fault-proneness using bay-
esian inference. International Journal of Computer
Applications, 74(2):1–4. Full text available.

Kaur, A. and Kaur, I. (2018). An empirical evaluation of
classification algorithms for fault prediction in open
source projects. Journal of King Saud University -
Computer and Information Sciences, 30(1):2 – 17.

Kim, S., Whitehead, E. J., and Zhang, Y. (2008). Classi-
fying software changes: Clean or buggy? IEEE Trans.
Software Eng., 34(2):181–196.

Lessmann, S., Baesens, B., Mues, C., and Pietsch, S.
(2008). Benchmarking classification models for soft-
ware defect prediction: A proposed framework and
novel findings. IEEE Trans. Softw. Eng., 34(4):485–
496.

Moser, R., Pedrycz, W., and Succi, G. (2008). A compa-
rative analysis of the efficiency of change metrics and
static code attributes for defect prediction. In Procee-
dings of the 30th International Conference on Soft-
ware Engineering, ICSE ’08, pages 181–190, New
York, NY, USA. ACM.

Nagappan, N., Williams, L., Vouk, M., and Osborne, J.
(2005). Early estimation of software quality using
in-process testing metrics: A controlled case study.
SIGSOFT Softw. Eng. Notes, 30(4):1–7.

Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., and
Murphy, B. (2010). Change bursts as defect predic-
tors. In Proceedings of the 2010 IEEE 21st Internati-
onal Symposium on Software Reliability Engineering,
ISSRE ’10, pages 309–318, Washington, DC, USA.
IEEE Computer Society.

Olague, H. M., Etzkorn, L. H., Gholston, S., and Quatt-
lebaum, S. (2007). Empirical validation of three
software metrics suites to predict fault-proneness of
object-oriented classes developed using highly itera-
tive or agile software development processes. IEEE
Transactions on Software Engineering, 33(6):402–
419.

Radjenović, D., Heričko, M., Torkar, R., and Živkovič, A.
(2013). Software fault prediction metrics. Inf. Softw.
Technol., 55(8):1397–1418.

Rodriguez, J. D., Perez, A., and Lozano, J. A. (2010). Sen-
sitivity analysis of k-fold cross validation in prediction
error estimation. IEEE Transactions on Pattern Ana-
lysis and Machine Intelligence, 32(3):569–575.

Spinellis, D. (2005). Tool writing: a forgotten art? (soft-
ware tools). IEEE Software, 22(4):9–11.

A Multi-source Machine Learning Approach to Predict Defect Prone Components

279

