
Numerical Investigation of Newton’s Method for Solving Discrete-time
Algebraic Riccati Equations

Vasile Sima1 and Peter Benner2

1Modelling, Simulation, Optimization Department, National Institute for Research & Development in Informatics,
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Abstract: A Newton-like algorithm and some line search strategies for solving discrete-time algebraic Riccati equations
are discussed. Algorithmic and implementation details incorporated in the developed solver are described.
Some numerical results of an extensive performance investigation on a large collection of examples are sum-
marized. These results often show significantly improved accuracy, measured in terms of normalized and
relative residuals, in comparison with the state-of-the-art MATLAB function. The new solver is strongly
recommended for improving the solutions computed by other solvers.

1 INTRODUCTION

Many procedures for control systems analysis and de-
sign require the solution of algebraic Riccati equa-
tions (AREs). Such equations appear in various do-
mains and practical applications, including model re-
duction, optimal filtering, guidance, (robust) control,
robotics, etc. Discrete-time AREs (DAREs) are im-
portant since many measured systems are modeled by
difference equations. LetA, E ∈ Rn×n, B ∈ Rn×m,
andQandRbe symmetric matrices of suitable dimen-
sions. In a compact notation, the generalized DAREs,
with unknownX = XT ∈ Rn×n, are defined by

0 = Q+ op(A)TX op(A) − op(E)TX op(E)

−σL(X)R̂(X)−1L(X)T =: R (X), (1)

whereσ =±1, E andR̂(X) are nonsingular, and

R̂(X) := R+σBTXB,

L(X) := S+ op(A)TXB, (2)

with S of suitable size. The operator op(M) repre-
sents eitherM or MT , corresponding to a control or a
filtering problem, respectively.A andE are the state
and descriptor matrices, respectively, of a linear time-
invariant dynamic system, and, in a control setting,B
is the input matrix. The use of the± sign throughσ
offers a greater generality. In practice, oftenQ and
S are expressed asCTQ̂C andS= CT Ŝ, respectively,
whereC ∈ Rp×n is the output matrix of the system,
andC, Q̂, andŜare given.

The solutions of a DARE are the matricesX = XT

for which R (X) = 0. Usually, what is needed is
a stabilizing solution, Xs, for which the matrix pair
(A− σop(BK(Xs)) ,E) is stable (in a discrete-time
sense), where op(K(Xs)) is the gain matrix of the op-
timal regulator or estimator, given by

K(X) := R̂(X)−1L(X)T , (3)

with X replaced byXs. For the dynamic system
Exk+1 = Axk +Buk, k = 0,1, . . ., x(0) = x0, the op-
timal control trajectory is given by the state feedback
law uk = −σK(Xs)xk. By a proper selection ofQ, S,
andR, the closed-loop dynamics can be modified to
achieve a fast transient response, disturbance rejec-
tion, etc. Note that for a filtering problem,B should
be replaced by the transpose ofC, and the computed
K(X) is the transpose of the filter gain matrix. When
Y is not a solution of (1), thenR (Y) differs from the
zero matrix;R (Y) is called theresidualof (1) in Y.
The Frobenius norm ofR (Y), ‖R (Y)‖F , is a measure
of the error inY with respect to the solutionX.

There is an impressive literature concerning the-
ory and numerical solution of AREs and their practi-
cal applications. Several monographs, e.g., (Ander-
son and Moore, 1971; Bini et al., 2012; Lancaster
and Rodman, 1995; Mehrmann, 1991; Sima, 1996)
address various theoretical and practical results. Ex-
istence and uniqueness results for ARE solutions are
dealt with, for instance, in (Lancaster and Rodman,
1980; Lancaster et al., 1986; Lancaster et al., 1987).
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Many “direct” or iterative algorithms have been pro-
posed for solving AREs. The first class includes
the (generalized) Schur techniques, e.g., (Arnold and
Laub, 1984; Kenney et al., 1989; Laub, 1979; Pap-
pas et al., 1980; Van Dooren, 1981), or structure-
exploiting (QR-like) methods, e.g., (Bunse-Gerstner
and Mehrmann, 1986; Sima and Benner, 2015; Ben-
ner et al., 2016). (These techniques are actually also
iterative, but they are applied to a matrix or matrix
pencil defined by the given matrices of an ARE.) The
second class has several categories, including sign
function techniques, e.g., (Balzer, 1980; Byers, 1987;
Gardiner and Laub, 1986; Roberts, 1980; Sima and
Benner, 2008), Newton techniques, e.g., (Anderson,
1978; Arnold and Laub, 1984; Guo and Laub, 2000;
Hammarling, 1982), doubling algorithms, e.g., (Chu
et al., 2005; Guo et al., 2006; Guo et al., 2007; Guo,
2016), or recursive algorithms (Lanzon et al., 2008).

Newton’s method for solving AREs has been
considered by many authors, for instance, (Klein-
man, 1968; Hewer, 1971; Arnold and Laub, 1984;
Mehrmann, 1991; Lancaster and Rodman, 1995;
Sima, 1996; Benner, 1997; Benner, 1998; Benner
and Byers, 1998). Moreover, the matrix sign func-
tion method for AREs, see (Byers, 1987; Gardiner
and Laub, 1986) and the references therein, is actu-
ally a specialization of Newton’s method for comput-
ing the square root of the identity matrix of order 2n.

Newton’s method is best used for iterative im-
provement of a solution, or as a defect correction
method (Mehrmann and Tan, 1988), delivering the
maximal possible accuracy when starting from a good
approximate solution. Moreover, it may be preferred
in implementing certain fault-tolerant or slowly vary-
ing systems, which require online controller updat-
ing (Ciubotaru and Staroswiecki, 2009); then, the pre-
viously computed ARE solution can be used for ini-
tialization. Some robotics applications can also ben-
efit from using iterative ARE solvers. For this rea-
son, such algorithms are used in a new open-source
C++ library for robotics, optimal and model predic-
tive control (Giftthaler et al., 2018), for solving both
continuous-time AREs (CAREs) and DAREs.

This paper summarizes the main theoretical facts
about Newton’s method for DAREs, as well as imple-
mentation issues and numerical results obtained using
the newly developed solver. There are several contri-
butions comparing to (Benner, 1998; Benner and By-
ers, 1998) concerning, e.g., generality and function-
ality, line search strategies, or stopping criteria. The
paper complements our previous studies on the nu-
merical solution of CAREs by Newton’s method with
line search reported in (Sima and Benner, 2014; Sima,
2015).

2 CONCEPTUAL ALGORITHM

The followingAssumptionsare made:

1. Matrix E is nonsingular.

2. Matrix pair(op(E)−1op(A) , op(E)−1B) is stabi-
lizable.

3. Matrix R= RT is non-negative definite (R≥ 0).

4. A stabilizing solutionXs exists and it is unique,
andR̂(Xs) is positive definite (̂R(Xs)> 0).

Note that Assumption 1 is not actually used by the
developed solver, contrary to other solvers (including
MATLAB function dare).

The algorithmic variants considered in the se-
quel for DAREs are extensions of Newton’s method,
which employ aline searchprocedure attempting to
reduce the residual along the Newton direction.

The conceptual algorithm can be stated as fol-
lows (Benner, 1998):

Algorithm NDARE: Modified Newton method for
DARE

Input: The coefficient matricesE, A, B, Q, R, andS,
and an initial matrixX0 = XT

0 .
Output: The approximate solutionXk of DARE (1).

FORk= 0,1, . . . ,kmax, DO

1. Compute R (Xk). If convergence or non-
convergence is detected, returnXk and/or a warn-
ing or error indicator value.

2. ComputeKk := K(Xk) in (3) and op(Ak) , where
Ak = op(A) −σBKk.

3. Solve the discrete-time generalized Stein equation

op(Ak)
TNk op(Ak)− op(E)TNk op(E) =−R (Xk)

(4)
for Nk .

4. Find a step sizetk which approximately minimizes
‖R (Xk+ tNk)‖2

F , with respect tot.
5. UpdateXk+1 = Xk+ tkNk.

END

Equation (4) is also called discrete-time generalized
Lyapunov equation. The usual, standard Lyapunov
equation hasE = In.

Standard Newton algorithm is obtained by taking
tk = 1 in Step 4 at each iteration. When the initial ma-
trix X0 is far from a Riccati equation solution, New-
ton’s method with line search often outperforms the
standard Newton’s method.

If the assumptions above hold andX0 is stabiliz-
ing, then the iterates of the Algorithm NDARE with
σ = 1 andtk = 1 have the following properties (Ben-
ner, 1997):

(a) All matricesXk are stabilizing.
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(b) Xs ≤ ·· · ≤ Xk+1 ≤ Xk ≤ ·· · ≤ X1.

(c) limk→∞ Xk = Xs.

(d) There is a constantγ > 0 such that

‖Xk+1−Xs‖ ≤ γ‖Xk−Xs‖2, k≥ 1. (5)

Note that the global quadratic convergence for-
mula (5) does not hold fork= 0, involving the iterates
X0 andX1.

Weaker results are available for the modified New-
ton algorithm. One such result (Benner, 1997) states
that if Xk is stabilizing, thenNk computed by Algo-
rithm NDARE is a descent direction for‖R (Xk)‖2

F
from Xk, unlessXk = Xs.

3 ALGORITHMIC DETAILS

Algorithm NDARE was implemented in a For-
tran 77 subroutine,SG02CD, following the SLICOT
Library (Benner et al., 1999; Benner and Sima,
2003; Benner et al., 2010; Van Huffel et al., 2004)
implementation and documentation standards (see
http://www.slicot.org). The same routine also solves
CAREs. A first version ofSG02CD and preliminary
results on random examples and SLICOT CAREX
benchmark collection (Abels and Benner, 1999a)
have been presented in (Sima and Benner, 2006). The
implemented solver deals with generalized DAREs
without inverting the matrixE, which is very im-
portant for numerical reasons, sinceE might be
ill-conditioned with respect to inversion. Standard
DAREs are solved with the maximal possible effi-
ciency. Moreover, both control and filter DAREs
can be solved by the same routine, using an option
(“mode”) parameter, which specifies the op operator.
The matricesA andE are not transposed.

The essential computational procedures involved
in Algorithm NDARE are detailed below.

3.1 RemovingSMatrix

If R is nonsingular, DAREs can be put in a simpler
form, which is more convenient for Newton algo-
rithms. Specifically, setting

Ã= A−σop(BR−1ST) , Q̃= Q−σSR−1ST , (6)

after redefiningA and Q as Ã and Q̃, respectively,
equation (1) reduces to

0 = op(A)TX op(A) − op(E)TX op(E)

−σop(A)TXĜ(X)X op(A) +Q=: R (X),(7)

whereĜ(X) := BR̂(X)−1BT , and the second term re-
duces toX in the standard case (E = In). The trans-
formations in (6) eliminate the matrixS from the for-
mulas to be used. In this case, the matrixKk may

sometimes no longer be computed in Step 2, and
Ak = op(A) −σĜkXk op(A) , with Ĝk := Ĝ(Xk).

To obtainÃ andQ̃ in (6), the Cholesky factor of
R, Rc, can be used ifR> 0, whereR=: RT

c Rc, with Rc
upper triangular. Defining̃B = BR−1

c andS̃= SR−1
c ,

the relations (6) are equivalent to

Ã= A−σop(B̃S̃T) , Q̃= Q−σS̃S̃T , (8)

so just two triangular systems need to be solved,
and two matrix products are computed for obtaining
Ã and Q̃, after factoringR. Symmetry is exploited
for getting Q̃ via a BLAS (Dongarra et al., 1990)
symm operation. Similarly, ifR̂(Xk) > 0, then the
Cholesky factor of̂R(Xk), R̂c(Xk), can be used. Defin-
ing Dk := D(Xk) :=BR̂c(Xk)

−1, thenĜk = DkDT
k , and

Ak = op(A)−σDkDT
k Xk op(A) . The use ofDk instead

of Ĝk is convenient whenm is sufficiently smaller
than n (m ≤ n/4). If Ĝk is to be preferred (since
m> n/4), but the norm ofĜ0 is too large, then, if
possible, the factorDk is used in the iterative process
instead ofĜk, in order to potentially improve the nu-
merical behavior, even if the efficiency somewhat di-
minishes.

WhenR is not positive definite, then eitherUDUT

or LDLT factorization (Golub and Van Loan, 1996) of
Rcan be employed for computing̃A andQ̃. Similarly,
UDUT /LDLT factorization ofR̂(Xk) can be used for
obtainingĜk, whenR̂(Xk) is indefinite.

3.2 UsingSMatrix

WhenS 6= 0, butR is ill-conditioned with respect to
inversion, the use of formulas (6) will potentially in-
troduce large errors from the beginning of the iterative
process, which will be propagated during the entire
process. This might involve a degradation of its be-
havior, resulting in slower convergence, and/or an in-
accurate computed solution. UsingSduring the itera-
tive process could avoid such degradation. Therefore,
an option of the solver allows to avoid the transforma-
tions (6), and involveS in all subsequent calculations.
In this case, other formulas are needed, sinceĜk can-
not be used. Specifically, define

Hk := op(Ak)
TXkB+S, Fk = HkR̂c(Xk)

−1, (9)

with R̂c(Xk) introduced above; for havingFk it is as-
sumed here that̂R(Xk) > 0. (Hk is a convenient no-
tation for L(Xk).) Then, the residualR (Xk) and the
matrixAk can be computed using

R (Xk) = Q+ op(A)TXk op(A)

−op(E)TXk op(E) −σFkF
T
k , (10)

Ak = op(A) −σDkF
T
k , (11)

whereDk has been defined above.
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If, however,R̂(Xk) is indefinite, then the needed
formulas follow directly from (1)–(3), namely,

R (Xk) = Q+ op(A)TXk op(A)

−op(E)TXk op(E) −σHkKk, (12)

Ak = op(A) −σBKk, (13)

involving theUDUT or LDLT factorization ofR̂(Xk).
Moreover, symmetry of the matrix productHkKk is
taken into account. (The solver computes either the
upper or lower triangle ofR (Xk).)

The implementation is optimized by using com-
mon subexpressions when computingR (Xk) and
op(Ak) , taking also into account the ratio betweenn
andm. Various formulas for efficient implementation
of Newton’s method for AREs are proven in (Sima,
2014).

3.3 Initialization and Main Options

The iteration is started by an initial (stabilizing) ma-
trix X0, which may not be given on input, if the zero
matrix can be used. IfX0 is not stabilizing, and find-
ing Xs is not required, Algorithm NDARE could con-
verge to another DARE solution.

Since the solution computed by a Newton algo-
rithm generally depends on initialization, another op-
tion specifies if the stabilizing solutionXs is to be
found. This is assumed to be the case in the sequel.
The initial matrixX0 must then be stabilizing, and a
warning is issued if this property does not hold; more-
over, if the computedX is not stabilizing, an error is
issued.

Another option specifies whether to use standard
Newton’s method, or one of the modified Newton’s
method variations, discussed in a paragraph below,
which employ a line search strategy.

Optionally, the matricesAk and E (if E is gen-
eral) are scaled for solving the Stein equations, and
their solutions are suitably updated. Note that the
LAPACK subroutinesDGEES and DGGES (Anderson
et al., 1999), which are called by the standard and
generalized Stein solvers, respectively, to compute the
real Schur(-triangular) form, do not scale the coeffi-
cient matrices. Just column and row permutations are
performed, to separate isolated eigenvalues. For some
examples, and no scaling, the convergence was not
achieved in a reasonable number of iterations. More-
over, sometimes scaling allows to compute more ac-
curate solutions and/or use less iterations, comparing
to the case with no scaling.

A maximum allowed number of iteration steps,
kmax, is specified on input, and the number of itera-
tion steps performed,ks, is returned on exit.

3.4 Finding the Step Size

The optimal step sizetk is given by

tk = argmin
t

‖R (Xk+ tNk)‖2
F . (14)

Since solving (14) for a DARE is expensive, it was
suggested in (Benner, 1997; Benner, 1998) to use an
approximate valuetk to be found numerically as the
argument of the minimal value in [0,2] of a polyno-
mial of order 4. Indeed,

R (Xk+ tNk) = (1− t)R (Xk)− t2Vk, (15)

where Vk = op(Ak)
TNkĜkNk op(Ak) . The prob-

lem (14) is replaced by the minimization of the ap-
proximate quartic polynomial (Benner, 1997)

fk(t) := trace(R (Xk+ tNk)
2)

≈ αk(1− t)2−2βk(1− t)t2+ γkt
4, (16)

where αk = trace(R (Xk)
2), βk = trace(R (Xk)Vk),

γk = trace(V2
k ).

To solve this problem, a cubic polynomial (the
derivative of fk(t)) is set up, whose roots in [0,2], if
any, are candidates for the solution of the approximate
minimum residual problem. The roots of this cubic
polynomial are computed by solving an equivalent 4-
by-4 standard or generalized eigenproblem, following
(Jónsson and Vavasis, 2004).

Actually, the true fk(t) for DAREs is a rational
function, and the above formulas are obtained by
replacing its denominator by the second order Tay-
lor series approximant att = 0. The approximation
is useful whent is small enough. For instance, if
t < 1/‖ĜkNk‖, where‖ · ‖ is any submultiplicative
norm, thenR̂(Xk+1) := R+BT(Xk+ tkNk)B is nonsin-
gular, if R̂(Xk) is nonsingular. Sincetk is chosen from
the interval [0,2], the condition above is satisfied if
‖ĜkNk‖< 1/2. It can be shown (Benner, 1997) that if
Xk is stabilizing, then eitherNk is a descent direction
for ‖R (Xk)‖2

F , or Xk = Xs. But the stabilizing prop-
erty is not guaranteed, at least fort ∈ [0,2]. When
‖ĜkNk‖ is large (usually, at the beginning of the iter-
ative Newton process), the step sizestk could be too
small, and the progress of the iteration could be too
slow.

3.5 Iterative Process

The algorithm computes the initial residual matrix
R (X0) and the matrix op(A0) , whereA0 := op(A) −
σĜ0X0op(A) . If no initial matrix X0 is given, then
X0 = 0, R (X0) = Q̃ and op(A0) = Ã in (6).

At the beginning of the iterationk, 0≤ k ≤ kmax,
the algorithm decides to terminate or continue the
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computations, based on the current normalized resid-
ual rk (and possible on relative residualrr(Xk)), de-
fined below. If min(rk, rr(Xk)) > τ, a standard (if
E = In) or generalized Stein equation (4) is solved for
Nk (the Newton direction).

The basic stopping criterion for the iterative pro-
cess is stated in terms of anormalized residual, rk :=
r(Xk), and a toleranceτ. If

rk := ‖R (Xk)‖F/max(1,‖Xk‖F)≤ τ, (17)

the iterative process is successfully terminated. Ifτ ≤
0, a default tolerance is used, defined in terms of the
Frobenius norms of the given matrices, and relative
machine precision,εM. Specifically,τ is computed by
the formula

τ = min{εM
√

n
(
‖A‖F (‖A‖F + ‖D0‖2

F‖A‖F)

+ ‖E‖2
F + ‖Q‖F

)
,
√

εM/103}. (18)

(The factor‖D0‖2
F is replaced byĜ0 if R̂(X0) is indef-

inite.) The second operand of min in (18) was intro-
duced to prevent deciding convergence too early for
systems with very large norms forA, E, D0 (or Ĝ0),
and/orQ.

For systems with very large norms of the ma-
trices A, E, D0 (or Ĝ0), and/orQ, and small norm
of the solutionX, the termination criterion involv-
ing (18) might not be satisfied in a reasonable num-
ber of iterations (or never, due to accumulated round-
ing errors), while an acceptable approximate solu-
tion might be much earlier available. Therefore, the
MATLAB-style relative residual, rr(Xk), which in-
cludes the Frobenius norms of the four matrix terms
of (1) in the denominator of its formula, is also tested
at iterations 10+ 5q, q = 0,1, . . ., and it might pro-
duce the termination of the iterative process, instead
of the criterion based on the normalized residual. The
relative residual is not tested at each iteration in or-
der to reduce the computation costs, and to increase
the chances of termination via the normalized resid-
ual test.

Another test is to check if updatingXk is meaning-
ful. The updating is done iftk‖Nk‖F > εM‖Xk‖F . If
this is the case, setXk+1 = Xk+ tkNk, and compute the
updated matrices op(Ak+1) andR (Xk+1). Otherwise,
the iterative process is terminated and a warning value
is set, since no further significant, but only marginal
improvements can be expected, eventually after many
additional iterations. Although the computation of the
residualR (Xk+ tkNk) can be efficiently performed by
updating the residualR (Xk), the original data is used,
since the updating formula (15) could suffer from se-
vere numerical cancellation, and hence it could com-
promise the accuracy of the intermediate results.

Often, but mainly in the first iterations, the com-
puted optimal stepstk are too small, and the resid-
ual decreases too slowly. This is calledstagnation,
and remedies are used to escape stagnation, as de-
scribed below. The chosen strategy was to settk = 1
when stagnation is detected, but also whentk < 0.5,

ε1/4
M < rk < 1, and‖R (Xk+ tkNk)‖F ≤ 10, if this hap-

pens during the first 10 iterations. The rationale of this
strategy is that if the residual is small enough after the
first few iterations, the use of a standard Newton step
could reduce the residual faster than a Newton algo-
rithm with small step sizes.

In order to detect stagnation, the last computed
kB residuals are stored in an arrayRES. If ‖R (Xk +
tkNk)‖F > τs‖R (Xk−kB)‖F > 0, thentk = 1 is used
instead. The implementation usesτs = 0.9 and sets
kB = 2, but values as large as 10 can be used by chang-
ing this parameter. The firstkB entries of arrayRES are
reset to 0 whenever a standard Newton step is applied.

3.6 Line Search Strategies

Other three line search stategies may be chosen be-
sides thepure line search strategy, which uses a solu-
tion tk of the approximate quartic polynomial (16) at
each iterationk. Specifically, in thecombined strat-
egy, line search is employed in the beginning of the it-
erative process, but the algorithm switches to the stan-
dard method when the normalized residual is smaller
than a specified (or default) tolerance. The rationale
for this strategy is that when the normalized resid-
ual is small enough, line search cannot offer sensi-
ble improvements, and the standard algorithm con-
verges with a fast rate, usually quadratrically as to be
expected from the local convergence theory of New-
ton’s method. In addition, in such an instance,tk will
be close to 1, and typically there will be no difference
between the values of‖R (Xk)‖F computed fortk and
for 1. Therefore, the calculations for findingtk are
avoided.

In thehybrid strategy, both standard Newton step
and the step corresponding to the approximate line
search procedure are computed, and that step which
gives the smallest residual is selected at each iteration.
Finally, thebacktracking strategy, proposed in (Ben-
ner, 1997), is a special hybrid strategy in which the se-
lected step is only taken provided there is a sufficient
residual decrease. Otherwise, the step size is reduced
until a sufficient decrease is eventually obtained. If
this is not the case, or stagnation is detected, then a
standard Newton step is used. This approach can in-
crease the speed of the iterative process.
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3.7 Memory Storage Issues

The arrays holding the data matricesA andE are un-
changed on exit, except whenS 6= 0, but it should and
could be removed from DARE using (6). In this spe-
cial case,̃A is returned. ArrayQ stores matrixQ on en-
try and the computed solutionXs on exit. If m≤ n/4
and the Cholesky factor̂Rc(Xs) can be computed, then
the arrayB, storingB on input, returns the final matrix
D(Xs). Otherwise, arrayB is unchanged on exit. Sim-
ilarly, the arrayR, storingR on input, may return ei-
ther the Cholesky factor, if it can be computed, or the
factors of theUDUT or LDLT factorization ofR̂(Xs),
if R̂(Xs) is found to be numerically indefinite. In the
last case, the interchanges performed for theUDUT

or LDLT factorization are stored in an auxiliary inte-
ger array. The finally computed normalized residual
is also returned. Moreover, approximate closed-loop
system poles, as well as min(ks, 50 )+1 values of the
residuals, normalized residuals, and Newton steps are
returned in the working array.

Either the upper, or lower triangles, not both, of
the symmetric matricesQ, R, Xk, and, if used,Ĝk
need to be stored. (Note that if the lower triangle
of R should be used, the Cholesky factorization is
R=: RcRT

c , with Rc lower triangular, but the compu-
tations are similar. The same is true forR̂(Xk).)

When possible, pairs of symmetric matrices are
stored economically, to reduce the workspace require-
ments, but preserving the two-dimensional array in-
dexing, for efficiency. Specifically, the upper (or
lower) triangle ofXk and the lower (upper) triangle
of R (Xk) are concatenated along the main diagonals
in a two-dimensionaln(n+1) array, and similarly for
Ĝk and a copy of the matrixQ, if Ĝk is used. ArrayQ
itself is also used for temporarily storing the residual
matrixR (Xk), as well as the intermediate matricesXk
and the final solution.

The optimal size of the needed real working array
can be queried, by setting its length to−1. Then, the
solver returns immediately, with the first entry of that
array set to the optimal size, which could be used in
the next solver call.

4 NUMERICAL RESULTS

This section presents some results of an extensive
performance investigation of the new solver based
on Newton’s method. The numerical results have
been obtained on an Intel Core i7-3820QM portable
computer at 2.7 GHz, with 16 GB RAM, with the
relative machine precisionεM ≈ 2.22× 10−16, us-
ing Windows 7 Professional (Service Pack 1) oper-

ating system (64 bit), Intel Visual Fortran Composer
XE 2015 and MATLAB 8.6.0.267246 (R2015b). A
MATLAB executable MEX-function has been built
using MATLAB-provided optimized LAPACK and
BLAS subroutines.

Besides tests with randomly generated matrices,
the results for which are not reported here, other
tests have been conducted for linear systems from the
COMPleib collection (Leibfritz and Lipinski, 2004).
Preliminary results have been presented in (Sima,
2013a; Sima, 2013b). (The second reference sum-
marizes the results obtained using Newton’s method
for solving AREs for examples from the SLICOT
benchmark collections for CAREs (Abels and Ben-
ner, 1999a) and DAREs (Abels and Benner, 1999b).)

The COMPleib collection contains 124 standard
continuous-time examples (withE = In), with sev-
eral variations, giving a total of 168 problems. For
testing purposes, these examples have been consid-
ered in this paper as being of discrete-time type. The
performance index matricesQ andR have been cho-
sen as identity matrices of suitable sizes. The ma-
trix S was always zero. All but 16 problems (for
systems of order larger than 2000, with matrices in
sparse format) have been tried. However, 63 prob-
lems did not satisfy the needed conditions for the
existence of a stabilizing solution, and could not be
solved by the MATLAB functiondare, which gave
the error message “There is no finite stabilizing so-
lution”. These examples have been omitted. In ad-
dition, other five examples, namely WEC1, WEC2,
WEC3, HF2DCD4, and HF2DCD6, have been ex-
cluded. For these examples, the solution computed by
dare had a very large Frobenius norm (of order 1013

for WEC examples, 1010 and 1011 for the two HF2D
examples), and relatively large normalized residuals,
of order 10−4 or larger for WEC1–WEC3, 10−7 and
10−6, for HF2D CD4 and HF2DCD6, respectively.
Such matrices proved to offer a poor initialization for
Newton’s method.

In a series of tests,X0 was set to a zero matrix, ifA
was found to be stable; otherwise, an initialization of
the Newton solver with a matrix computed using the
stabilization algorithm in (Armstrong and Rublein,
1976) was tried, and when this algorithm failed to de-
liver a stabilizingX0 matrix, the solution provided by
dare was used. A zero initialization could be tried
for 7 stable examples, namely AC5, REA4, BDT1,
CSE1, TMD, FS, and ROC5, but the Newton solver
failed for CSE1 withX0 = 0, since a singular Stein
equation was found. The stabilization algorithm was
tried on 82 unstable systems, and succeeded for 55 ex-
amples, hence it failed for 27 examples. Both stan-
dard and modified Newton’s method, with or without
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balancing the coefficient matrices of the Stein equa-
tions, were tried.

Tests withX0 computed by the stabilization algo-
rithm also for stable systems, or withX0 returned by
MATLAB dare for all examples, have also been suc-
cessfully performed. The last set of tests shows the
performance of the Newton solver in refining a solu-
tion computed by another solver.

A brief selection of results is presented below. For
standard Newton’s method withdare initialization,
nonzero differences in the normalized residuals for
default andεM tolerance values were encountered for
16 COMPleib examples, and they were of the same
order as, or lower order of magnitude than the resid-
uals themselves. The number of iterations for the tol-
eranceεM increased by 1 (for six examples), 2 (for
two examples), 3 (for three examples), but also by 10
(for DLR1), 24 (for HE6 and HE7), and by 39 and 48
(for NN11, and AGS, respectively). This shows that
with dare initialization, it is preferable to use the de-
fault tolerance, since a too small value, such asεM,
will eventually reduce the residuals only marginally,
but possibly after many more iterations. Actually, for
HE6, HE7, NN11, and AGS, the normalized residuals
slightly increased for a tolerance set toεM. The solu-
tion computed bydare had a very large Frobenius
norm, of order 1010 or larger, for HE6, HE7, AGS,
NN11, and DLR1, but also for PAS, and of order 108

and 107 for HF2D IS7 and HF2DCD5, respectively.
Figure 1 displays the normalized residuals for

examples from the COMPleib collection, using
MATLAB function dare and the standard Newton
solver, with default tolerance anddare initialization.
With few exceptions, the Newton solver is either
comparable withdare or it improved the normalized
residuals, sometimes by several orders of magnitude.
However, for four examples (HF2DIS7, HF2DCD5,
HF2D17, and HF2D18, numbered as 59, 61, 69, and
70, respectively, in Fig. 1), clearly worse results have
been obtained. Line search succeeded to get smaller
normalized residuals for these examples, as can be
seen in Fig. 2.

Figure 3 plots the MATLAB-style relative residu-
als for examples from the COMPleib collection, using
MATLAB function dare and Newton solver with line
search, with default tolerance anddare initialization.
The Newton solver returned comparable or (much)
smaller residuals except for three examples, namely,
HF2D IS7, HF2D17, and HF2D18 (numbered as 59,
69, and 70, respectively). For the last two examples,
the standard method gave smaller residuals than the
line search method.

Similarly, Fig. 4 shows the corresponding elapsed
CPU times for the two solvers. For 18 examples, the
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Figure 1: Normalized residuals for examples from the
COMPleib collection (taken as discrete-time systems), us-
ing MATLAB function dare and standard Newton solver,
with default tolerance anddare initialization.
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Figure 2: Normalized residuals for examples from the
COMPleib collection, using MATLAB functiondare and
Newton solver with line search, default tolerance anddare
initialization.
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Figure 3: MATLAB-style residuals for examples from the
COMPleib collection, using MATLAB functiondare and
Newton solver with line search, default tolerance anddare
initialization.

computations with standard Newton method ended
before finishing the first iteration, and just six exam-
ples (AGS, PAS, NN11, HF2DIS7, HF2DCD5, and
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Figure 4: Elapsed CPU time for examples from the
COMPleib collection, using MATLAB functiondare and
standard Newton solver, with default tolerance anddare
initialization.
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Figure 5: Ratios of the elapsed CPU time needed by
MATLAB function dare and standard Newton solver, with
default tolerance anddare initialization, for examples from
the COMPleib collection.

HF2D17) needed more than one iteration, namely, 8,
11, 11, 50, 50, and 2 iterations, respectively. For the
same examples, the modified Newton method needed
2, 11, 11, 11, 0, and 1 iterations, and it was by
three and two orders of magnitude more accurate for
HF2D IS7 and HF2DCD5, respectively, and compa-
rable for all other examples. Since very few iterations
are most often needed, the CPU time for the New-
ton solver is a small fraction of that for the MATLAB
solverdare. Figure 5 plots the ratios of the elapsed
CPU time needed by MATLAB functiondare and the
standard Newton solver.

The bar graph from Fig. 6 shows the improvement
obtained using the Newton solver with line search, de-
fault tolerance anddare initialization. The height of
the i-th vertical bar indicates the number of examples
for which the improvement was betweeni−1 andi or-
ders of magnitude, in comparison todare. The num-
ber of examples in the six bins are 48, 19, 7, 2, 5,
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Figure 6: Bar graph showing the improvement of the
MATLAB-style residuals for examples from the COMPleib
collection, using Newton solver with line search, default
tolerance anddare initialization. The height of the i-th ver-
tical bar indicates the number of examples for which the
improvement was between i-1 and i orders of magnitude.

and 1, corresponding to improvements till one order
of magnitude, between one and two orders of magni-
tude, and so on.

5 CONCLUSIONS

Basic facts and improved procedures and algorithms
for solving discrete-time algebraic Riccati equations
using standard or modified Newton’s method, with
several line search strategies, have been presented.
Numerical results obtained on a comprehensive set
of examples from the COMPleib collection, taken
as discrete-time systems, have been summarized and
they illustrate the performance and capabilities of this
solver. The possibility to offer, in few iterations, a
reduction by one or more orders of magnitude of the
normalized and MATLAB-style residuals of the solu-
tions computed by MATLAB functiondare, makes
Newton solver an attractive support tool for solving
DAREs.
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