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Abstract: Lattice-based signature schemes have seen many improvements in the past few years with recent at-
tempts (Güneysu et al., 2012; Ducas et al., 2013; Ducas et al., 2014; Lyubashevsky, 2016; Ducas et al.,
2017) to bring lattice-based signature schemes at par with the traditional number-theoretic signature schemes.
However, the trade-off between the signature size and the key size, time for a signature generation, and the
practical and provable security is not necessarily the optimal. We propose a compact lattice-based signature
scheme with key-size and signatures of order n, where n is the dimension of the lattice. The proposed signa-
ture scheme has faster algorithms for key generation, signing, and verification than the existing schemes. The
proposed scheme is simple and is competitive with the other post-quantum signature schemes.

1 INTRODUCTION

The lattice-based public key cryptographic prim-
itives like encryption schemes (Hoffstein et al.,
1998; Lyubashevsky et al., 2013) and digital signa-
tures (Ducas et al., 2013; Lyubashevsky, 2016; Ducas
et al., 2017; Ducas et al., 2014), is almost close to be-
ing used as an alternative to the traditional schemes
in respect to size and computation time. Most of the
lattice-based cryptographic primitives are constructed
based on the average-case hardness of the SIS (or
Ring SIS) and LWE (or Ring LWE) problem. It was
shown these problems enjoy average-case to worst-
case reduction making it a potential alternative of
number theoretic schemes.

Though the Ring LWE and Ring SIS provide hard-
ness based on the worst-case to average-case reduc-
tion, the relatively large number of ring operations
needed for constructing schemes affects the efficiency
of these schemes. Generally, in the schemes based on
the Ring SIS or the Ring LWE set-up, k(≥ 2) ring
elements are used for both the public key and the pri-
vate key, and we need to perform ring operations on
k elements for signature and verification. Making the
private key with one ring element instead of k would
make the signature schemes faster, reducing the com-
putational cost by almost half. There are many road-
blocks to construct signatures with only one ring el-
ement as the secret key. We have proposed such a
signature scheme in this paper.

1.1 Related Work

The recently proposed lattice-based signature
schemes can be broadly distinguished into two
categories. The schemes in the first category fol-
low the hash-and-sign paradigm and use the GPV
sampling (Gentry et al., 2008) procedure to produce
basis that is used as a trapdoor for the key generation
of this lattice-based signatures. But, the sampling
methods used in these schemes are quite complex and
have either expensive runtime or low output quality,
making these relatively unsuitable for practical
implementations (Micciancio and Peikert, 2012).

The schemes in the second category follow the
Fiat-Shamir framework. In (Lyubashevsky, 2009),
the first scheme has been proposed based on this
framework and its security depends on the hardness
of solving the Ring SIS problem. Later in (Lyuba-
shevsky, 2012; Güneysu et al., 2012; Ducas et al.,
2013; Lyubashevsky, 2016), signature schemes have
been proposed whose security depend on the hardness
of SIS problem or Ring SIS problem. More recently,
Ducas et al. have proposed another lattice-based sig-
nature scheme, Dilithium (Ducas et al., 2017)m which
is an improvement of (Güneysu et al., 2012) and re-
lies on the hardness of module SIS (or module LWE)
problem (thus lowering the dimension of the lattice
used by a factor on the security parameter without af-
fecting the security) which is a generalized version of
the Ring SIS (or ring LWE) problem.
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1.2 Our Contribution

In this paper, we present a lattice-based signature
scheme which is based on the Fiat-Shamir frame-
work (Abdalla et al., 2002; Fiat and Shamir, 1986;
Pointcheval and Stern, 2000).

Let us discuss the proposed scheme in brief here.
The details of the scheme is given in Section 3. The
secret key g is a polynomial chosen uniformly at ran-
dom, of degree n− 1 with binary coefficients. The
public keys have two polynomials, h is chosen uni-
formly at random from the ring Zq[x]/(xn + 1) and
make h′ = h?g+2e mod q, where e is a binary poly-
nomial of degree n− 1 chosen uniformly at random,
? is the ring product called the convolution product.
The polynomial e is used to hide the information of
g from h and h′. The polynomial h can be shared
among all users, but the polynomial h′ is individual.
To sign a message M, the signer chooses a masking
parameter y, whose coefficients are chosen uniformly
at random from a set with norm less than q. Then he
computes c∈Zq[x]/(xn+1), where c←H((h?y+M
mod q) mod 2), and computes the potential signature
as z = g?c+y (there is no reduction modulo q in this
step). The polynomial z, along with c, will then be
output as the signature based on some criteria with the
goal to keep the distribution of (z,c) independent of
the secret polynomial g which is termed as Rejection
sampling. The verification of the scheme is done by
checking if the coefficients of z is in the pre-defined
bound, and c = H((h?z−h′ ?c+M mod q) mod 2)

The inclusion of the modulo 2 operation has a
potential problem. The security proof from (Lyuba-
shevsky, 2012) is no longer valid. The security
proof of (Lyubashevsky, 2012) has the foundation
view of many other lattice-based signature schemes
like (Güneysu et al., 2012; Ducas et al., 2013; Lyuba-
shevsky, 2016; Ducas et al., 2017). In particular, it is
no longer clear how to outline for the security proof as
done in (Lyubashevsky, 2012). But we show that this
problem can be overcome. We will show that forg-
ing a signature is as hard as solving the “super NTRU
encrypt problem” (Definition 2).

1.3 Comparison with Other
Lattice-based Signature Schemes

In this subsection, we compare the scheme proposed
in this paper with other competitive lattice-based
schemes which follow the Fiat-Shamir framework.

This work can be seen as an improvement of
Guneysu et al.’ s (Güneysu et al., 2012). Further, the
idea presented in this paper can also be used to im-
prove results of Dilithium (Ducas et al., 2017) which

is submitted to the NIST call for post-quantum stan-
dards. Let us discuss in brief about the difference be-
tween the two schemes. In (Güneysu et al., 2012),
the secret key is the pair of polynomials (g,e) drawn
from a uniform distribution with a small norm. Both
the polynomials play the same importance in the en-
tire scheme. We have shown in this paper that only
one polynomial is enough to define a secure signature
scheme. In our signature scheme, we have also cho-
sen two polynomials g, e, but the secret is only one
polynomial g. The polynomial e is never used in the
signing and verification algorithm except for a com-
parison test in the signing algorithm, which is needed
for the correctness of the scheme. The main goal of
the polynomial e is to hide information of the secret
key g from the public keys. This idea has also helped
us to reduce (by a factor two) the number of masking
parameters needed to generate for the signing algo-
rithm.

This small improvement has many effects on
the signature output over (Güneysu et al., 2012).
Guneysu et al. have used compression algorithm
in (Güneysu et al., 2012) to decrease the signature size
which is still larger than our scheme (O(n) improve-
ment). Further, the scheme is space efficient reducing
the secret key size by a factor two. Also, the signature
scheme is faster than (Güneysu et al., 2012).

The most efficient lattice-based scheme till date,
BLISS (Ducas et al., 2013), uses discrete Gaussian
sampling for generating the masking parameter and
accurate rejection sampling to create compact signa-
tures. But it has been recently reported (Bruinderink
et al., 2016; Pessl, 2016) that these schemes are vul-
nerable to the side-channel attacks possible due to
the usage of discrete Gaussian sampling, resulting in
the complete leakage of the secret key. Further, the
NTRU problem, on which BLISS relies, has been
shown (Kirchner and Fouque, 2017) to be not as hard
as previously assumed for large parameters, though
the NTRU problem with current parameters is not af-
fected by this attack.

2 PRELIMINARIES

In this section we present the notations used in this pa-
per, hardness assumptions, and concrete instantiation
of the proposed scheme.

2.1 Notations

For a distribution D , we use the notation x $← D to
mean that x is chosen according to the distribution D .
If S is a set, then x $← S means that x is chosen uni-
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formly at random from S. Throughout the paper, we
will consider n is a power of 2 and q is a prime integer
of the form q = 1 mod 2n. Any element in Zq is rep-
resented by integers within the interval [− q−1

2 , q−1
2 ].

Whenever dealing with elements that are in Zq, we
will assume that all operations in which they are in-
volved with a reduction modulo q. We will denote
R=Z[x]/(xn+1) to be the ring of polynomials in Z[x]
modulo xn +1. By Rq we represent the elements of R
whose coefficients are in Zq. In particular, R2 ' Zn

2
denotes the polynomials of degree less than n and bi-
nary coefficients (that is, in {0,1}) and R3 ' Zn

3 de-
notes the polynomials of degree less than n and coef-
ficients in {0,1,−1}. Let Dk ⊂ R such that it consists
of all polynomials of degree less than n and coeffi-
cients are bounded by k(< q). All logarithms used in
this paper are base 2.

2.2 Hardness Assumptions

The Ring SIS problem may be put as: For a subset S
of Rq, and two elements s1 and s2 chosen uniformly
from S, an adversary A is given an ordered pair of
polynomials (a, t) ∈ Rq×Rq, where a is chosen uni-
formly from Rq and t = a?s1+s2, and is asked to find
s′1 and s′2 from S such that a? s′1 + s′2 = t.

If S is such that the norms of s1 and s2 are suffi-
ciently large, that is, if ‖si‖∞ >

√
q, then there are pos-

sibly many solutions (s′1,s
′
2) such that t = a ? s′1 + s′2

and then the problem of finding any (s1,s2) can be
connected to worst-case lattice problems in ideal lat-
tices (Lyubashevsky and Micciancio, 2006; Peikert
and Rosen, 2006).

On the other hand, when S is such that the norm
of s1 and s2 are less than

√
q, then with high proba-

bility there is a unique solution of s1,s2. This is an
instance of Ring LWE. It has been shown (Lyuba-
shevsky et al., 2013) that if we choose si from dis-
crete Gaussian distribution instead of uniform distri-
bution then solving the search problem (recovering si
from (a, t)) is as hard as the worst-case lattice prob-
lems (like approximate Shortest Independent Vectors
Problem) on xn +1 cyclic lattices (lattices that corre-
spond to some ideals in the ring Z[x]/(xn +1)) using
quantum algorithm. Further, deciding (a, t) from truly
random elements of Rq×Rq is as hard as the search
problem (Lyubashevsky et al., 2013) using a classi-
cal reduction. Unfortunately, in the later reduction,
the modulus q must be a prime integer. The reduc-
tion from the search version is more general, and it
takes place for any modulus q. Recently, in (Peikert
et al., 2017), Peikert and Regev have shown that the
decisional problem is hard even when q is not a prime
integer. It is shown in (Peikert et al., 2017) that there

is a polynomial time quantum reduction from worst-
case lattice problems to decisional Ring LWE for any
modulus.

Till date, there is no known algorithm that takes
advantage of the fact that the distribution of si is
uniform (instead of Gaussian) and consists of ele-
ments from R2. In this paper, we define our signature
scheme based on the presumed hardness of the search
Ring LWE problem with particularly “aggressive” pa-
rameters.

We recall below the NTRU encrypt problem re-
mains hard even after 20 years of cryptanalytic ef-
forts.

Definition 1 (NTRU Encrypt Problem). Given an
NTRU public key H ∈ Rp and the encryption of the
message m, E = r ?H +m mod p, where r is a small
random polynomial and p is an appropriately chosen
integer, find the message m. 1

The hardness part of the NTRU encrypt problem
is that the polynomial E is pseudo-random in Rp. We
define an extension of the NTRU encrypt problem be-
low.

Definition 2 (Super NTRU Encrypt Problem). Given
(a, t(= a? s+2e)) ∈ Rq×Rq, where a $← Rq, s $← R2

and e $← R2, find the secret s.

The super NTRU encrypt problem can be seen as
the encryption of the message 2e, and the pseudo-
random public key has been replaced with the truly
uniform random one, and thus, harder than the NTRU
encrypt problem. In fact, the super NTRU en-
crypt problem is equivalent to the binLWE prob-
lem and which has been used in previously proposed
schemes (Brakerski et al., 2013; Fan and Vercauteren,
2012). It is still unknown how much the super NTRU
encrypt problem is easier than the standard LWE
problem. The secret and error in the super NTRU
encrypt problem are sufficiently small compared to
the standard LWE problem. It is known that solv-
ing LWE problems with smaller secrets (secrets fol-
lowing the error distribution) are not easier than regu-
lar LWE problems with arbitrary secrets (Applebaum
et al., 2009). Further, there is a reduction from regular
LWE to super NTRU encrypt problem which has an
expansion factor of logq in the dimension (Brakerski
et al., 2013). Nevertheless, there is no attack as such
in our set of parameters.

1In the original NTRU scheme, the ring was Zp[x]/(xn−
1), but lately, researchers have also used Zp[x]/(xn + 1)
when n is a power of 2. Indeed, the latter choice seems
at least as secure
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3 PROPOSED SIGNATURE
SCHEME

In this section, we present our proposed signature
scheme and its concrete instantiation.

3.1 Signature Scheme

Key Generation: We generate a polynomial g
which is chosen uniformly at random from R2.
That is, g is a polynomial in R, whose coefficients
are from the set {0,1}. Then we generate another
polynomial h uniformly at random from Rq. We
then set h′ = h?g+2e mod q, where e is a poly-
nomial with coefficients chosen uniformly at ran-
dom from the set {0,1}. The signing key is the
polynomial g and the verification key is the pair
of polynomials (h,h′).

Signature: To sign a message M ∈ R2 ' {0,1}n, the
signer first generates a y randomly from Dk and
computes c=H((h?y+M mod q) mod 2). The
signer checks if ‖h ? y− 2e ? c+M‖∞ ≤ q/2 and
if not, it chooses another y and repeats. Then
the signer computes z = g ? c + y and checks if
‖z‖∞ ≤ k− 32 and if not, it chooses another y
and repeats. This is the rejection sampling step
in our signature scheme. Finally, the signer out-
puts (z,c). The effect of k plays a vital role in our
signature scheme. If the value of k is too small
then the probability that z ∈ Dk−32 is too small.

Verification: To verify the correct signature, the
verifier checks whether z is small, that is, ‖z‖∞ ≤
k− 32 and if c = H((h ? z− h′ ? c + M mod q)
mod 2). Only if both the conditions are satisfied,
the verifier confirms it to be the valid signature.

3.2 Concrete Instantiations of the
Proposed Scheme

We now give some concrete instantiations of our pro-
posed signature scheme. The security of the scheme
depends on the hardness of solving the super NTRU
encrypt problem. We have set our parameters based
on the parameters suggested in (Gama and Nguyen,
2008), (Chen and Nguyen, 2011) and (Micciancio and
Regev, 2009). Forging signature in our scheme us-
ing lattice reduction mechanism needs the root Her-
mite factor at least 1.0004,1.0002,1.0001 for n =
512,1024,2048 respectively which is out of scope by
the known lattice reduction techniques.

Recent progress in BKW-style algorithms for
solving LWE has given rise to variants (Albrecht

et al., 2015; Albrecht, 2017) of the dual-lattice at-
tack against LWE in the presence of an unusually
short secret. These variants scale the exponent of
the dual-lattice attack by a factor of 2L/(2L+1) and
halve the dimension n of the lattice under consider-
ation at a multiplicative cost of 2h operations, when
logq = Θ(L logn), h is the constant hamming weight
of the secret and L is the maximum depth of supported
circuits. Applying these techniques to parameter sets
n = 1024 and logq ≈ 47 suggested for a promised
80 bits of security by the homomorphic encryption li-
braries SEAL v2.0 and HElib, yields revised security
estimates of 68 bits and 62 bits respectively.

These attacks call for a revision of the suggested
parameters for many of the cryptographic schemes
based the hardness of LWE. We suggest three sets
of parameters, the first two to keep consistency with
the suggested parameters of the existing schemes and
the third one to maintain security against the latest
attacks. It may be noted that even with larger parame-
ters, our scheme is still practical due to the small size
of the keys and the resulting efficiency.

The secret key consists of a polynomial with bi-
nary coefficients of degree less than n. So, the size of
the secret key is n bits. The public key of the signa-
ture scheme is two polynomials (h,h′) of degree less
than n and coefficients in Zq. If trusted randomness is
available, then everyone can share the same h which
considerably lowers the public key size because the
public key h can be included in the signing and verifi-
cation algorithms. So, the public key size depends on
the polynomial h′ and the size is approximately n logq
bits. The signature size will depend mainly on a poly-
nomial of degree less than n and coefficients in the
range [−k+ 32,k− 32]. So, the approximate size of
the signature output is n log(2(k−32)+1) bits.

4 SECURITY ANALYSIS OF THE
PROPOSED SIGNATURE
SCHEME

In this section, we analyze the security of the pro-
posed signature scheme.

Theorem 3. Any polynomial adversary knowing the
verification key (h,h′), cannot recover the private
signing key g based on the hardness of the super
NTRU encrypt problem.

Proof. By definition, h′ = h ? g+ 2e mod q, where
g and e are polynomials chosen uniformly at random
from R2 and h is a polynomial chosen uniformly at
random from Rq. Hence, recovering the signing key
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Table 1: Parameter definition of the proposed scheme.

Parameters Definitions Sample Instantiations

n An integer, power of 2 512 1024 2048
q A prime number ≈ 215 ≈ 216 ≈ 217

k 213 214 215

R The ring Z[x]/(xn +1)
Rq The ring Zq[x]/(xn +1), centre-lifted coefficients

H A random oracle that maps elements of R2 to
{ f ∈ R3 : ‖ f‖1 ≤ 32}

µ Expected number of times the signing algorithm
need to perform to get a valid signature 7 7 7

|sig| The signature size in bits ≈ n log(2(k−32)+1) 7,165 15,357 32,765
|sec| The signing key size in bits ≈ n 512 1024 2048
|pub| The verification key size in bits ≈ n log(q) 7,680 16,384 34,816

g given the verification key (h,h′) is exactly the su-
per NTRU encrypt problem as stated in Definition 2.
Thus, the result follows directly from the assumed
hardness of the super NTRU encrypt problem.

Theorem 4. The proposed scheme is strongly un-
forgeable based on the hardness of solving the super
NTRU encrypt problem.

Proof. Basically, we will show that signature forgery
is equivalent to key recovery for our scheme. That is,
if there exists an adversary F who can forge a signa-
ture of our scheme in time t, then there exists an algo-
rithm which can recover the secret key of the scheme
in time t +poly(n) just from the verification key.

Given (h,h′), we challenge the forger to generate
a forgery. We answer its hash queries and signature
queries as follows.

We maintain a list L, which is initially empty, with
all the answered hash queries. To answer a hash query
on input x ∈ R2, we look up the list L to check if x has
already been queried. If yes, we answer as in the list.
Otherwise, we randomly choose a c at uniform from
the range of H, add the pair (x,c) to the list L and
respond to the forger with c := H(x).

To answer a signature query on a message M, we
randomly choose a vector y and check the list L to see
if

x := (h? y+M mod q) mod 2

has already been queried. If yes, we choose another
y and repeat. Then we choose vectors (z,c) such that
z = g? c+ y, ‖z‖∞ ≤ k−32, ‖c‖1 ≤ 32.

The signature z can be generated in the above way
because its distribution does not rely on the secret key
g, and a simulator can sign messages by programming
the random oracle.

Then we add the pair (x,c) to the list L and re-
spond to the forger with (c,z) as the signature on the
message M.

Finally, we use the rewinding technique as in fork-
ing lemma to use the forger to get two distinct signa-
tures (c,z) and (c′,z′) on the same message M. Then,
by the definition of the signature in our scheme,

z = g? c+ y and z′ = g? c′+ y

so that
z− z′ = g? (c− c′) .

From the last equation, c = c′ implies z = z′, and
z = z′ implies c = c′2. Now, recovering g from z−
z′ = g? (c−c′) can be done in poly(n) time, and thus,
solving the super NTRU encrypt problem.

5 DISCUSSIONS AND FUTURE
WORK

One future direction would be to make our signa-
ture scheme based on the hardness of the decisional
version of the super NTRU encrypt problem. The
decisional version of the super NTRU encrypt prob-
lem can be defined as following: distinguish the case
when (a, t) is uniform in Rq×Rq and when t = a ?
s + 2e mod q. The signature scheme in (Güneysu
et al., 2012) is on the hardness of the decisional su-
per NTRU encrypt problem which has been termed
as the Decisional Compact Knapsack problem in the
paper.

Further, given the recent advances in the attacks
on the LWE problem, modification of our scheme to

2The statement “z = z′ implies c = c′” is only true if g is
invertible, which is true with high probability
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provide desirable security with smaller n. We believe
that a calibration of the parameters such as q, κ and λ
should be able to avoid these attacks while maintain-
ing smaller sizes.
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