
BRAID
A Hybrid Processing Architecture for Big Data

Corinna Giebler, Christoph Stach, Holger Schwarz and Bernhard Mitschang
Institute for Parallel and Distributed Systems, University of Stuttgart,

Universitätsstraße 38, D-70569 Stuttgart, Germany

Keywords: Big Data, IoT, Batch Processing, Stream Processing, Lambda Architecture, Kappa Architecture.

Abstract: The Internet of Things is applied in many domains and collects vast amounts of data. This data provides
access to a lot of knowledge when analyzed comprehensively. However, advanced analysis techniques such
as predictive or prescriptive analytics require access to both, history data, i. e., long-term persisted data, and
real-time data as well as a joint view on both types of data. State-of-the-art hybrid processing architectures
for big data—namely, the Lambda and the Kappa Architecture—support the processing of history data and
real-time data. However, they lack of a tight coupling of the two processing modes. That is, the user has
to do a lot of work manually in order to enable a comprehensive analysis of the data. For instance, the user
has to combine the results of both processing modes or apply knowledge from one processing mode to the
other. Therefore, we introduce a novel hybrid processing architecture for big data, called BRAID. BRAID
intertwines the processing of history data and real-time data by adding communication channels between the
batch engine and the stream engine. This enables to carry out comprehensive analyses automatically at a
reasonable overhead.

1 INTRODUCTION

In the Internet of Things (IoT), everyday objects are
interconnected. Various sensors built into these objects
capture the current context. This knowledge can be
shared with any other connected Thing, i. e., a device
equipped with sensors and connectivity options. These
Things are used in various domains to optimize pro-
cesses. The examples presented in this work focus
on the Industry 4.0 as this domain is one of the key
profiteers from the IoT (Middleton et al., 2013). Yet,
the conclusions and results can be applied to any other
big data use case.

By collecting a great amount of data over time,
precise analyses provide insights into production pro-
cesses, e. g., about the efficiency of a machine at the
shop floor. At the same time, real-time analyses on
data streams can be used to trigger automatic reactions
in the case of an emergency, e. g., when a machine is
overheating. Thereby, the efficiency and quality of the
production process can be enhanced (Geissbauer et al.,
2014).

A combination of both kinds of analyses provides
even more insights, e. g., history production data can
be analyzed to find patterns indicating an ideal pro-
duction setting where only little rejects are produced.

By analyzing real-time machine data, these patterns
can be used as decision models to predict the quality of
the workpieces, e. g., to stop the production process at
an early stage if too many rejects would be produced.

As a consequence, mining algorithms such as the
VFDT algorithm (Domingos and Hulten, 2000) operate
on both, history data as well as real-time data. Initi-
ally, such an algorithm learns patterns from existing
production data via batch processing. Then, it applies
and refines these patterns using real-time production
data via stream processing. Therefore, an underlying
processing architecture has to support both modes of
data processing. Current architectures strictly separate
these processing modes, whereby such comprehensive
analytics are hard to be realized. Yet, these analy-
tics hold inestimable business value (Columbus, 2016).
Therefore, we introduce a hybrid processing architec-
ture, in which the processing of history and real-time
data is tightly intertwined.

Thus, we make the following five contributions:
(a) We describe an Industry 4.0 application scenario
and identify required processing steps for big data
analytics. (b) We analyze existing data processing
architectures—namely, architectures for batch proces-
sing, stream processing, as well as the Lambda and

294
Giebler, C., Stach, C., Schwarz, H. and Mitschang, B.
BRAID - A Hybrid Processing Architecture for Big Data.
DOI: 10.5220/0006861802940301
In Proceedings of the 7th International Conference on Data Science, Technology and Applications (DATA 2018), pages 294-301
ISBN: 978-989-758-318-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Kappa Architecture—and assess their suitability for
comprehensive analytic processes. (c) We introduce a
novel hybrid processing architecture for big data, cal-
led BRAID. Whereas state-of-the-art architectures have
strictly isolated processing branches for history and
real-time data, BRAID provides additional communi-
cation channels via which intermediate results from
batch processing can be used in stream processing
and vice versa. This enables comprehensive analytics.
(d) We evaluate our architecture and compare it with
the Lambda and Kappa Architecture. (e) We discuss
implementation alternatives for BRAID.

The structure of this paper is as follows: An In-
dustry 4.0 application scenario is given in Section 2.
Section 3 presents different data processing approa-
ches and assesses their usability. We introduce a novel
architecture called BRAID in Section 4. We assess
the applicability of BRAID to the introduced big data
use case in Section 5. We discuss implementation al-
ternatives in Section 6 before Section 7 concludes the
paper.

2 APPLICATION SCENARIO

Underutilization of data generated during process exe-
cution is one of the key problems in current manu-
facturing IT systems (Gröger et al., 2014). By using
advanced data analytic techniques, new knowledge
about manufacturing processes can be gained from
this data. For instance, current and future processes
can be optimized by modifying process control at run-
time. In the following, we characterize how a therefore
required comprehensive analysis can be realized (see
Figure 1).

The Master Dataset contains all data collected du-
ring a production process (1). This includes, e. g.,
throughput times or temperature changes in the work-
pieces. These highly heterogeneous data can be stored
and managed in a dedicated data system such as Co-
reDB (Beheshti et al., 2017).

The long-term process data persisted in the Master
Dataset is processed by a batch processing engine (2).
The processing logic is implemented and configured
by the administrator of the system. Descriptive ana-
lytics can be applied to the persisted data in order to
condense the huge amount of raw data. Most business
intelligence solutions support this kind of analytics.
For instance, it is possible to reconstruct which data
records led to a successful production result and the
data can be annotated accordingly. Subsequently, pre-
dictive analytics can be used to make predictions for
future production processes. For example, classifica-
tion algorithms can operate on the pre-processed data

Data Flow ConfigurationData Access

Master 

Dataset
Data 

Mining 

Model

Data 

Stream
Result

Layer

5

1 2

3 4

6 Users

Admin

Batch Processing

Stream Processing

Figure 1: Comprehensive Analysis Steps.

and generate a decision tree based on the annotations.
The decision tree enables to predict which production
times, temperatures, etc., lead to what production out-
come. The decision tree is stored as a Data Mining
Model.

However, to achieve a maximum business benefit
from these models, they have to be applied to pro-
duction data in real-time (Gröger et al., 2014). These
data are emitted from the sensors installed in the pro-
duction machines (3). They are processed by a stream
processing engine (4).

In order to enable comprehensive analytics, de-
cision trees generated on basis of the long-term pro-
cess data have to be loaded into the stream processing
engine as an initial configuration (5). Thereby, it is
possible to detect production errors at an early stage
and either initiate countermeasures or terminate subse-
quent production steps for an affected workpiece if a
successful production result can no longer be achieved.
The combined results of the comprehensive analytics
process are stored in the Result Layer and made avai-
lable for users or other systems (6).

However, as production conditions might alter over
time, it is not appropriate to use a static decision tree
model. Therefore, the results of the real-time analysis
have to influence the model as well. Data mining al-
gorithms such as VDFT (Domingos and Hulten, 2000)
consider this. Here, the decision tree is adjusted to
changing conditions. This means that not only a re-
commendation for action is calculated, but also the
achieved outcome is evaluated. If some of the tree’s
parameters are no longer up to date, the stored model
has to be changed (5). For instance, new raw materials
might be less prone to temperature changes, whereby
the temperature thresholds at which rejects are presu-
mably produced have to be changed in the tree. It is
evident that therefore a tight coupling between the two
processing components is required. However, there is
little software support for this kind of analytics as such
methods have special requirements towards the under-
lying infrastructure. In the following, we look into

BRAID - A Hybrid Processing Architecture for Big Data

295



Serving Layer

Speed Layer

Batch Layer

Batch Processing Batch Views

Stream Processing Real-time Views

Master 

Dataset
Query

Query

Data 

Stream

Config

Config

Figure 2: The Lambda Architecture (adapted from (Marz and Warren, 2015)).

current big data processing architectures and discuss
their applicability.

3 RELATED WORK

As shown in the preceding section, two different types
of data have to be considered in order to accomplish
comprehensive analyses: On the one hand, persisted
long-term process data are required to gain knowledge
about past production processes in order to draw con-
clusions about future production processes. This kind
of long-term data is labeled as history data in the fol-
lowing. As history data is gathered and stored over a
long period of time, a processing system for this data
has to be able to handle a large amount of data whereas
the required processing time is of secondary impor-
tance. On the other hand, data which is sent directly
from a data source (e. g., a sensor) to a processing sink
without persisting it, has to be processed in order to
analyze current production processes. This kind of
data is labeled as real-time data in the following. As
real-time data is only significant for a short period of
time (e. g., a deviation from a reference value has to
be detected as soon as it occurs to enable immediate
countermeasures), a processing system for this data
has to be able to handle it very fast. However, only a
small amount of data has to be processed at each point
in time.

This shows that different processing systems are
required in order to process both, history data and real-
time data. Literature differentiates between three alter-
native big data processing methods: batch processing
(see Section 3.1), stream processing (see Section 3.2),
and hybrid processing (see Section 3.3) (Casado and
Younas, 2015). Hybrid approaches provide both, ba-
tch processing and stream processing. The Lambda
Architecture (Marz and Warren, 2015) and the Kappa
Architecture (Kreps, 2014) are state-of-the-art concer-
ning hybrid big data processing. Section 3.4 discusses
the applicability of the reviewed architectures for the
realization of comprehensive analyses.

3.1 Batch Processing

Batch processing systems operate on large amounts of
data which are stored persistently in a database or a file
system. By processing this data, it is expected that data
mining results will be most accurate due to the large
data stock. A batch processing system splits the en-
tire data volume into smaller subsets, the batches, and
processes each on distributed computation nodes. Ty-
pically, processing takes long due to the large amount
of data. In most cases, a result is only available after
all batches have been processed. In addition, the pro-
cessing logic cannot be adjusted after processing has
started (Casado and Younas, 2015). For instance, Apa-
che Hive can be used for batch processing (Barbierato
et al., 2013).

Batch processing systems are mostly used to pro-
cess history data. However, it is also possible to pro-
cess real-time data via such a system. When incoming
real-time data is buffered in a very small data store
for a limited amount of time, this store can be used
as input for the batch processing system. Thereby, all
data can be processed as a single small batch and the
results are available in near-real-time. Yet, this is not
the intended purpose of a batch processing system.

3.2 Stream Processing

A stream processing system splits incoming data for
processing as streams are infinite (Casado and Younas,
2015). The processing results are immediately availa-
ble to the users. Thereby, the processing logic can be
altered at any time and the changes are automatically
applied to the subsequent data entries. Aurora is an
example for a stream processing system (Abadi et al.,
2003).

Stream processing systems are mostly used to pro-
cess real-time data. Yet, any data source can be pro-
cessed as a data stream. For this purpose, each stored
data set is sent individually to a sink. In this way, his-
tory data can also be processed by a stream processing
system (cf. the Kappa Architecture in Section 3.3.2).

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

296



Stream Processing Results

Config1

Config2

Config3

Query

Master 

Dataset

Data 

Stream

Figure 3: The Kappa Architecture (adapted from (Kreps, 2014)).

However, this kind of processing system is not meant
to detect complex correlations within huge data stocks.

3.3 Hybrid Processing

Often both, high accuracy and low processing time
are required. As neither batch nor stream processing
can achieve this, hybrid processing combines both
techniques. In the following, the Lambda and the
Kappa Architecture are presented.

3.3.1 Lambda Architecture

The Lambda Architecture has separate branches for
batch and stream processing (Marz, 2011). As shown
in Figure 2, data is distributed to both branches. In
the Batch Layer, data is added to an append-only data
storage, the Master Dataset. Periodically, this data is
processed using batch processing. Here, the raw data
is prepared for the user. For instance, data mining is
used to assess past production processes. The results
are saved in so called Batch Views. Users can query
these data via the Serving Layer.

However, batch processing operates only on data
which is available in the Master Dataset when the
processing is started. Since processing a large Master
Dataset takes a lot of time, the batch views usually
do not contain the most recent data. The Speed Layer
addresses this issue. Here, data is processed in real-
time by using stream processing. The results are stored
in the Real-time Views.

Batch Views contain analytics results, which are
based on a huge set of history data but without any
information about the latest incoming data. Such infor-
mation is provided as part of the Real-time Views, but
only for a limited time frame. To obtain a complete
view on the production process data, the user has to
query both views and combine the results manually.

The two branches are strictly isolated from each
other, i. e., each branch has its own processing logic, as
indicated by the separate configuration files in Figure 2.
The logic used in the Speed Layer can be adjusted
quickly, while the Batch Layer is highly scalable. As a
result, the schemata of the Batch Views and the Real-
time Views can differ. Users have to consider this in
their queries. Data access is therefore complex and
time-consuming.

3.3.2 Kappa Architecture

The Kappa Architecture addresses this issue as it uses
stream processing, only (Kreps, 2014). That is, inco-
ming data is persisted in the Master Dataset and also
processed immediately. The architecture is shown in
Figure 3.

A key feature of the Kappa Architecture is the pos-
sibility to perform several separate stream processing
jobs in parallel. This is indicated in Figure 3 by the
several configuration files on the stream processing
component. Due to this feature, the Kappa Architec-
ture enables to process the entire Master Dataset, i. e.,
history data, in parallel to incoming real-time data.
This way, history data can be processed again at any
time with an alternative processing logic. This proce-
dure can be used to perform a batch-like processing of
history data via stream processing engines.

The advantage of the Kappa Architecture is its
single data processing engine, which can be adjusted
quickly. Yet, there is an increased demand concerning
computational power and storage capacity when pro-
cessing voluminous history data in parallel to real-time
data streams.

3.4 Discussion

As shown in Section 2, there is a need for joint analy-
tics of history and real-time data (for further use cases
see (Gröger, 2018)). Yet, architectural support is re-
quired to enable all analytic steps. Three observations
can be made in this respect based on the state of art:
(I) Only hybrid architectures have the ability to process
both, history and real-time data. (II) Only the Kappa
Architecture has the ability to combine the results from
batch and stream processing automatically. This ma-
kes data access considerably easier for users. (III) No
current state-of-the-art approach enables to exchange
intermediate results such as the data mining model in
the given use case between the two processing engines.
Yet, this is crucial to perform comprehensive analytics.

BRAID - A Hybrid Processing Architecture for Big Data

297



Batch Processing

Stream Processing

Shared Storage

Data 

Stream

Master 

Dataset

Result Layer

Batch Views

Real-time ViewsBuffer

Query

ConfigConfigConfig

Figure 4: Architecture of BRAID (components that exceed state-of-the-art are depicted in orange).

4 THE BRAID APPROACH

Due to the aforementioned shortcomings of the state-
of-the-art, a novel approach is required in order to
enable comprehensive data analytics. Thus, we in-
troduce BRAID (see Figure 4), which provides the
required functionalities.

All incoming data is persisted in the Master Da-
taset. In BRAID, the Master Dataset is assigned to a
Shared Storage available for both, batch and stream
processing. Additionally, the latest data is also tempo-
rarily buffered for real-time processing. From there,
the data is forwarded to one of the two processing bran-
ches (details on the two branches are given later). The
Shared Storage is the key component towards com-
prehensive analytics as introduced in Section 2. For
instance, intermediate results from batch processing
(e. g., a data mining model) can be send back to the
Shared Storage and used as input or configuration for
the stream processing and vice versa.

After the processing, the results are stored in a
shared Result Layer. Thereby, result sets can be sto-
red in a joint data storage. Thus, the user can query
the Result Layer directly, without considering which
processing branch created the particular data. Diffe-
rent data schemata in the two result sets do not pose
a problem for many storage systems such as HDFS1.
The data can be annotated with structure metadata to
facilitate data access (Quix et al., 2016).

The processing logic for both, batch and stream
processing, is defined in configuration files which are
stored in the Shared Storage. As both branches have
read and write permissions for the Shared Storage, a
common configuration file can be used to define the

1The Hadoop Distributed File System (HDFS (Shvachko
et al., 2010)) is dominant in the context of storing and pro-
cessing big data, since it is highly available and scalable (Az-
zedin, 2013).

logic for both processing modes. In addition, results
can be written back to the Shared Storage, e. g., to ad-
just the configuration at runtime. This enables flexible
and application-oriented processing. The following
paragraphs detail on the various aspects of the two
processing branches.

The Batch Processing Branch is similar to the Ba-
tch and Serving Layer in the Lambda Architecture.
Periodically, content of the Master Dataset is proces-
sed using batch processing, where configurations and
results from the Shared Storage can be used. The
results are stored in Batch Views in the Result Layer.

The Stream Processing Branch corresponds to the
Speed Layer of the Lambda Architecture. Data is
processed via stream processing. The use of the buffer
is intended for real-time processing, as it ensures faster
access times. By using data from the Master Dataset
a Kappa-like behavior can be realized. In addition,
access to the Shared Storage also enables to adjust the
configuration files and write back results.

BRAID supports several processing modes. It
can be used to emulate all architectures mentioned
in Section 3. Additionally, the interconnection bet-
ween the batch and the stream processing components
due to the Shared Storage and the common Result
Layer offers new processing possibilities, e. g., the re-
alization of comprehensive analytics, as described in
Section 2.
Batch and Stream Processing. Using the Master Da-
taset and BRAID’s batch processing branch enables
pure batch processing. Accordingly, pure stream pro-
cessing can be realized by using the buffer and the
stream processing branch.
Lambda Architecture. As BRAID is able to emulate
both, batch and stream processing, also the Lambda
Architecture can be emulated easily. To do so, real-
time data is stored in the Master Dataset before being
processed in the stream processing branch. The Master

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

298



Dataset itself is processed in periodic intervals via
batch processing. The Shared Storage is used to store
the Master Dataset, and each of BRAID’s branches has
its own configuration. In the Result Layer, the results
are persisted, but not combined.
Kappa Architecture. To emulate the Kappa Architec-
ture, BRAID’s batch processing branch is deactivated.
Incoming real-time data is stored in the Master Da-
taset and processed in the stream processing branch.
Parallel processing jobs can be started at any time. The
Master Dataset is used as a data source and configura-
tions are stored in the Shared Storage.
Self-adjusting Mode. In addition to the aforementi-
oned processing modes, BRAID enables to use and
combine results from both branches within the proces-
sing logic for comprehensive analytics. For this, a data
mining model is trained and tested in the batch pro-
cessing branch using history data. This model can be
stored in both, the Result Layer as well as the Shared
Storage, where it is integrated into a configuration for
the stream processing branch. Incoming real-time data
can be classified using the model created from history
data. By using VFDT, the model can be refined further
by real-time data. This adjusted model is written back
to the Shared Storage to be applied to both, history and
real-time data. So, the application scenario introduced
in Section 2 can be realized by using BRAID.

5 ASSESSMENT

In order to be suitable for comprehensive analyses, an
architecture has to support all analytic steps described
in Section 2. However, especially Step (5) (reuse of
intermediate results for subsequent analysis steps) is
not supported by any of the current state-of-the-art
approaches.

Table 1 shows which processing steps are suppor-
ted by which architecture. The Lambda Architecture
enables both batch and stream processing, which is
why the Steps (1) to (4) are supported. Although the re-
sults of both processings can be combined, the user has
to do this manually by corresponding requests. Step (6)
is therefore only partially supported. Step (5) is not
realizable using the Lambda Architecture, as the Batch
and Serving Layer and the Speed Layer are strictly
separated. It is therefore not possible to automatically
reuse results from the batch processing in stream pro-
cessing. To realize this step, an administrator has to
adjust the configuration for the batch or stream pro-
cessing engine manually. The Kappa Architecture
also enables batch and stream processing, realizing the
Steps (1) to (4). Additionally, results can be combined
easily, which supports Step (6). Yet, no insights gained

Table 1: Feature Support of Data Processing Architectures.

Step Lambda Kappa BRAID

(1) 3 3 3

(2) 3 3 3

(3) 3 3 3

(4) 3 3 3

(5) 7 7 3

(6) (3) 3 3

from prior processing steps can be applied automati-
cally to the processing logic for subsequent analyses
as processing logic has to be defined statically before-
hand. Therefore, Step (5) is also not supported by the
Kappa Architecture. However, BRAID supports all six
processing steps. As it is a hybrid architecture, all four
batch and stream processing steps are supported. Like
in the Kappa Architecture, a joint Result Layer ena-
bles the automatic combination of result sets (Step (6)).
Additionally, the Shared Storage enables the reuse of
results as, e. g., configurations. Therefore, BRAID
is the only architecture which supports Step (5) and
therefore all comprehensive analytics steps.

Thus, BRAID meets all requirements resulting
from the use case given in Section 2. In the subsequent
section, we discuss various implementation alternati-
ves. That is, we assess the applicability of different
processing engines for the implementation of BRAID.

6 IMPLEMENTATION
CONSIDERATIONS

There are multiple implementation alternatives for
both of BRAID’s processing engines. This section
discusses five of these data processing engines. Due to
BRAID’s modular structure, the engines can be repla-
ced if necessary, based on a given optimization goal,
e. g., runtime or memory usage. Similar to the Lambda
Architecture, BRAID has two separated processing
branches for batch processing and stream processing.
Hence, the same processing engines as in the Lambda
reference implementation can be used for BRAID:

Hadoop MapReduce2 is a batch processing engine
based on the MapReduce paradigm (Dean and Ghema-
wat, 2004) which is highly scalable and distributable.
The data is processed in two separate steps: map and
reduce. Input and output data are key-value pairs. In
the map function, intermediate results are calculated
from the data and forwarded to the reduce function

2see https://hadoop.apache.org

BRAID - A Hybrid Processing Architecture for Big Data

299



as key-value-pairs. Here, data with the same key is
consolidated.

Storm3 is a stream processing system promoted
as “Hadoop for real-time”. Incoming real-time data is
distributed to different nodes which process the data.
If necessary, the data is repartitioned after each step.

However, since most processing engines for big
data can process both, batches as well as data streams,
for simplicity in terms of installation and maintenance
effort, the same engine can be used for the batch and
stream processing branch as well. Especially, the con-
solidation of BRAID’s Shared Storage and the Result
Layer is facilitated by using a common processing
engine. Therefore, three engines are considered in
the following, which can be used to realize the batch
branch as well as the stream branch.

Spark4 is highly fault tolerant alternative to MapRe-
duce (Zaharia et al., 2010). Initially, it was a pure batch
processing engine. Nowadays, it also supports stream
processing using micro batches. Data arriving within
a certain time window is computed as one micro batch.
Additionally, Spark provides various extensions such
as Spark SQL or MLlib for machine learning.

Samza5 operates directly on data streams, similar to
Storm. The stream is partitioned and distributed before
being processed. To manage the distribution of the
workload, Samza relies on Hadoop YARN (Vavilapalli
et al., 2013). It uses Kafka (Kreps et al., 2011) to
exchange messages between processing nodes. Samza
offers an integration with HDFS but also provides an
SQL interface as well.

Flink6 is another stream processing engine. Howe-
ver, in contrast to Storm and Samza, Flink can process
large-scale datasets as a kind of finite data streams.
This approach ensures very low processing time. Ad-
ditionally, Flink relies on continuous flows instead of
micro batches. Similar to Spark, Flink provides many
extensions, such as an SQL interface or Flink ML for
machine learning.

Spark, Samza, and Flink support different data
storage systems, such as HDFS or relational database
systems. In contrast, Hadoop MapReduce depends on
HDFS as it is a part of the Hadoop project. Due to
this missing support of different data sources, it is less
suited for BRAID. Samza is able to access various data
storage systems through Kafka. Yet, it still needs the
Hadoop framework due its usage of Hadoop YARN.

Spark and Flink can be flexibly applied to different
applications due to their manifold extensions. These
are the only two of the presented systems which enable

3see https://storm.apache.org
4see https://spark.apache.org
5see https://samza.apache.org
6see https://flink.apache.org

both batch and stream processing out of the box. Other
extensions enable the use of e. g., graph databases
(Spark’s GraphX or Flink’s Gelly) or machine learning
techniques (Spark’s MLlib or Flink ML). In the context
of BRAID, those extensions can be used to achieve a
significant benefit. For instance, the machine learning
libraries can be used to train machine learning models
on the batch processing branch. These models can be
applied to the processing of real-time data. Therefore,
Spark and Flink are best suited for a BRAID prototype.

Since all of these approaches provide integration
of HDFS, we also use HDFS for our implementation
of the BRAID prototype. However, aside from HDFS,
any other data storage systems and query languages
can be used, such as relational database management
systems (e. g., the Oracle Database7) or NoSQL ap-
proaches (e. g., Google BigTable (Chang et al., 2008)).

7 CONCLUSION

Due to the IoT, more and more contextual data are
collected. A lot of knowledge can be gained from
these data if they are analyzed comprehensively. This
knowledge has a high economic value (e. g., to detect
production problems at an early stage). To this end,
a processing architecture for big data not only has to
provide batch processing for history data and stream
processing for real-time data, but also a tight coupling
of these processing modes. That is, communication
channels between the batch and stream processing en-
gines are required in order to exchange data. Existing
hybrid processing architectures for big data, namely
the Lambda and the Kappa Architecture, lack such a
tight coupling—here, batch and stream data are hand-
led in two separate processes and have to be combined
manually.

For this reason, we introduce BRAID, a novel hy-
brid processing architecture for big data, which intert-
wines the processing of history and real-time data by
adding communication channels between the batch
and stream engine. Via these channels, not only data
is exchanged, but also the configuration of the batch or
stream engine can be controlled. That is, the proces-
sing logic can be modified automatically at runtime,
whereby BRAID is able to react to altered conditions.
We discuss different implementation techniques in or-
der to find a suited implementation strategy for BRAID.
Evaluation results show that BRAID enables more flex-
ible and accurate data analytics than the Lambda and
Kappa Architecture.

7see https://www.oracle.com/database/index.html

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

300



In the IoT domain, privacy is a critical issue con-
cerning the processing of data. Future work has to
consider, how to realize privacy protection in BRAID
without compromising analytic quality. A possible
approach towards this goal is PATRON (Stach et al.,
2017; Stach et al., 2018).

ACKNOWLEDGEMENTS

This paper is part of the PATRON research project
which is commissioned by the Baden-Wrttemberg Stif-
tung gGmbH. The authors would like to thank the
BW-Stiftung for financing this research.

REFERENCES

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M.,
Convey, C., Lee, S., Stonebraker, M., Tatbul, N., and
Zdonik, S. (2003). Aurora: A New Model and Ar-
chitecture for Data Stream Management. The VLDB
Journal — The International Journal on Very Large
Data Bases, 12(2):120–139.

Azzedin, F. (2013). Towards a Scalable HDFS Architecture.
In Proceedings of the 2013 International Conference
on Collaboration Technologies and Systems, CTS ’13,
pages 155–161.

Barbierato, E., Gribaudo, M., and Iacono, M. (2013). Mo-
deling Apache Hive Based Applications in Big Data
Architectures. In Proceedings of the 7th International
Conference on Performance Evaluation Methodologies
and Tools, ValueTools ’13, pages 30–38.

Beheshti, A., Benatallah, B., Nouri, R., Chhieng, V. M., Xi-
ong, H., and Zhao, X. (2017). CoreDB: A Data Lake
Service. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management,
CIKM ’17, pages 2451–2454.

Casado, R. and Younas, M. (2015). Emerging Trends and
Technologies in Big Data Processing. Concurrency and
Computation: Practice and Experience, 27(8):2078–
2091.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gruber,
R. E. (2008). Bigtable: A Distributed Storage System
for Structured Data. ACM Transactions on Computer
Systems, 26(2):4:1–4:26.

Columbus, L. (2016). Industry 4.0 Is Enabling A New Era
Of Manufacturing Intelligence And Analytics. Forbes.
https://www.forbes.com/sites/louiscolumbus/2016/08/
07/industry-4-0-is-enabling-a-new-era-of-
manufacturing-intelligence-and-analytics.

Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified
Data Processing on Large Clusters. In Proceedings
of the 6th Conference on Symposium on Opearting
Systems Design & Implementation – Volume 6, OSDI
’04, pages 137–149.

Domingos, P. and Hulten, G. (2000). Mining High-Speed
Data Streams. In Proceedings of the Sixth ACM

SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’00, pages 71–80.

Geissbauer, R., Schrauf, S., Koch, V., and Kuge, S. (2014).
Industry 4.0 – Opportunities and Challenges of the
Industrial Internet. PricewaterhouseCoopers.

Gröger, C. (2018). Building an Industry4.0 Analytics Plat-
form. Datenbank-Spektrum, 18(1):5–14.

Gröger, C., Schwarz, H., and Mitschang, B. (2014). Prescrip-
tive Analytics for Recommendation-Based Business
Process Optimization. In Proceedings of the 17th Inter-
national Conference on Business Information Systems,
BIS ’14, pages 25–37.

Kreps, J. (2014). Questioning the Lambda Architec-
ture. OReilly Media. https://www.oreilly.com/ideas/
questioning-the-lambda-architecture.

Kreps, J., Narkhede, N., and Rao, J. (2011). Kafka: A Dis-
tributed Messaging System for Log Processing. In
Proceedings of the 6th International Workshop on Net-
working Meets Databases, NetDB ’11, pages 1–7.

Marz, N. (2011). How to beat the CAP theo-
rem. http://nathanmarz.com/blog/how-to-beat-the-cap-
theorem.html.

Marz, N. and Warren, J. (2015). Big Data - Principles
and best practices of scalable real-time data systems.
Manning Publications Co.

Middleton, P., Kjeldsen, P., and Tully, J. (2013). Fore-
cast: The Internet of Things, Worldwide. Gartner,
Inc. http://www.gartner.com/document/2625419.

Quix, C., Hai, R., and Vatov, I. (2016). Metadata Ex-
traction and Management in Data Lakes With GEMMS.
Complex Systems Informatics and Modeling Quarterly,
9(9):67–83.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010).
The Hadoop Distributed File System. In Proceedings
of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, pages
1–10.

Stach, C., Dürr, F., Mindermann, K., Palanisamy, S. M., Ta-
riq, M. A., Mitschang, B., and Wagner, S. (2017). PA-
TRON – Datenschutz in Datenstromverarbeitungssys-
temen. In Tagungsband der 47. Jahrestagung der Ge-
sellschaft für Informatik e.V., pages 1085–1096. (in
German).

Stach, C., Dürr, F., Mindermann, K., Palanisamy, S. M.,
and Wagner, S. (2018). How a Pattern-based Privacy
System Contributes to Improve Context Recognition.
In Proceedings of the 2018 IEEE International Confe-
rence on Pervasive Computing and Communications
Workshops, CoMoRea ’18, pages 238–243.

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S.,
Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H.,
Seth, S., Saha, B., Curino, C., O’Malley, O., Radia,
S., Reed, B., and Baldeschwieler, E. (2013). Apache
Hadoop YARN: Yet Another Resource Negotiator. In
Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 5:1–5:16.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. (2010). Spark: Cluster Computing with
Working Sets. In Proceedings of the 2nd USENIX Con-
ference on Hot Topics in Cloud Computing, HotCloud
’10, pages 1–7.

BRAID - A Hybrid Processing Architecture for Big Data

301


