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Abstract: Hydrographical networks are large scale systems that are used to answer to the Human uses. They are impacted
by extreme events that should be bigger due to climate change. By focusing on extreme rainy events, the
amount of water in excess has to be dispatched on all the network to avoid flood, and then rejected to the sea
heeding the tides. Pumps can also be used to reject the water to the sea but they lead to big operating cost. To
deal with this challenging issue, the modelling tools and the water asset management strategies that have been
recently proposed are adapted and improved in this paper. They consist in an integrated model, a flow-based
network and a quadratic optimization based on constrains. The efficiency of this water management strategy
requires an accurate predictive rainfall/runoff model. It is highlighted by considering a realistic case study that
is also used to describe all the methodology step.

1 INTRODUCTION

Transport via inland waterways benefits of econo-
mic and environmental advantages (Kara et al., 2015;
Mihic et al., 1993; Mallidis et al., 2012; Brand
et al., 2012). However, the inland waterways will
be strongly impacted by climate hazards (Koetse and
Rietveld, 2009; EnviCom, 2008; IWAC, 2009). It is
confirmed by the studies in (Arkell and Darch, 2006),
(Wang et al., 2007) and (Jonkeren et al., 2007) that fo-
cus on inland waterways in UK, in China and on the
Rhine respectively. The frequency and intensity of
future flood events are expected higher (Bates et al.,
2008; Boé et al., 2009; Ducharne et al., 2010). To
deal with the management of inland waterways in a
climate change context, a multi-scale management ar-
chitecture has been proposed in (Duviella et al., 2013)
and developed in (Nouasse et al., 2016b), allowing the
use of modelling approaches and management stra-
tegies for water level control (Segovia et al., 2017;
Horvàth et al., 2014b; Horvàth et al., 2015a; Horvàth
et al., 2015b; Rajaoarisoa et al., 2014), and water vo-
lume allocation (Nouasse et al., 2015; Nouasse et al.,
2016a). However, it has been shown that even if it
is possible to control the hydraulic structures with ef-
ficiency by considering a deterministic problem, un-
controlled intakes and withdrawals have a strong in-
fluence on this optimization. It is particularly the case
for rainy events that have big influence on inland wa-

terways. Moreover, inland waterways with outlet to
the sea have not been considered. This implies a new
challenging issue that requires to take into account the
effect of the tide and the electrical cost of the pumps
during the design of the water management strategies.

The management strategy that consists in an opti-
mal adaptive allocation planning of water resource is
adapted and improved in this paper by dealing with
inland waterways with outlet to the sea. The influ-
ence of the tide has taken into account. A criterion
to minimize is defined based on the configuration of
the inland waterways, the priorities on water inta-
kes and withdrawals, the management objectives, the
tide and the predicted volumes that come from rainy
events. The requirement of an accurate prediction of
the amount of water volumes that comes from rain is
highlighted by considering a realistic case study.

The modelling tools and the optimal allocation
planning approach are described in the first section.
In the second section, a state of the art of existing pre-
dictive rainfall/runoff models is presented. Then, a
case study allows illustrating all the step to implement
the designed tools and strategy is proposed in the third
section. This case study is used to highlight the im-
portance of the rainfall/runoff models during the opti-
mization of the water resource planning.
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2 WATER ASSET MANAGEMENT
STRATEGY

2.1 Integrated Model

An integrated model that is linked with a flow-based
network has been proposed in (Nouasse et al., 2016b)
to deal with inland navigation networks. It aims at
modelling the dynamics of each Navigation Reach
(NR), i.e. a part of the canal located between two
locks, as a tank with a sample time of several hours. It
allows taking into account all the inputs and outputs,
controlled or not, of each NR. For inland waterways
with links to the sea, it is necessary to define a new
element representing the output of the integrated mo-
del. The model consists in considering a finite number
η of interconnected NR that are linked following the
configuration of the network (see Figure 1.a). Each
NR is numbered and denoted NRi, with i ∈ 1 to η.
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Figure 1: (a) Inland navigation network, (b) corresponding
model.

Each NRi is supplied and emptied by control-
led water volumes from locks, controlled gates and
pumps when they are available, and by uncontrolled
water volumes from water intakes, rain, or exchan-
ges with groundwater. Moreover, the network can be
emptied thanks to the outlets to the sea. The set of
controlled water volumes is:

1. controlled volumes from one or several upstream
NR that supply NRi, denoted V s,c

i (s: supply, c:
controlled),

2. controlled volumes from NRi that empty it, deno-
ted V e,c

i (e: empty),

3. controlled volumes from water intakes that sup-
ply or empty NRi, denoted V c

i . These volumes are
signed; positive if NRi is supplied, negative other-
wise,

4. controlled volumes from pump that supply NRi,
denoted V s,p

i (s: supply, p: pumped),

5. controlled volumes from pump that empty NRi,
denoted V e,p

i .

6. controlled volumes that empty NRi to the sea, de-
noted V o,c

i (o: outlet).
The set of uncontrolled water volumes is:
1. uncontrolled volumes from natural rivers, rainfall-

runoff, Human uses, denoted V u
i (u: uncontrol-

led). These volumes are signed depending on their
contribution to the volume Vi(k) in NRi.

2. uncontrolled volumes from exchanges with
groundwater, denoted V g,u

i (g: groundwater).
These volumes are also signed.

The dynamic volume of NRi is computed according to
the set of controlled and uncontrolled water volumes:

Vi(k) =Vi(k−1)+V s,c
i (k)−V e,c

i (k)+V c
i (k)+V s,p

i (k)
−V e,p

i (k)+V u
i (k)+V g,u

i (k)−δiV
o,p
i (k),

(1)
where k corresponds to the current period of time and
k−1 the last one with TM the sample time that corre-
sponds to several hours and δi a variable equal to one
when outlet is available, equal to zero otherwise.

2.2 Flow-based Network

A flow-based network is designed according to the in-
tegrated model as G = (N ,A), where N is the set
of ordered nodes (vertices) and A the set of arcs (di-
rected edges). The set of nodes is composed of a
common source vertex O without incoming edges, a
common sink node without outgoing edges, denoted
S (see Figure 2), and a node for each NRi. The total
number of nodes is η = card(N )+2.

An arc links two nodes and is defined as a couple
a= (i, j), a∈Rα with α= card(A), where i and j are
the origin and destination node of the edge respecti-
vely. For networks with outlet to the sea, it is neces-
sary to consider several arcs between the correspon-
ding NR and the sink node S. Indeed, the water volu-
mes can be rejected by gravity or thanks to the pumps
with not the same cost. Therefore, these arcs are defi-
ned as couple aν = (i, S), aν ∈Rα with α = card(A),
where i is the origin node and ν ∈ {1 : m} with m the
number of arcs between these two nodes.

The water volume that is transferred between two
nodes is represented by a flow associated to each arc
a, such as φa(k) = φi j(k) with i and j the indexes of
the nodes. Here again, it is necessary to consider se-
veral flows φν

i S(k) between the NRi and the sink node
S. The exchanged water volumes are limited by phy-
sical characteristics of the hydraulic devices. Hence,
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Figure 2: Flow graph composed of three NR with one outlet.

dynamical boundary constraints are considered such
as li j(k) ≤ φi j(k) ≤ ui j(k), where li j(k) and ui j(k)
are the lower and upper bound constraints respecti-
vely; with lν

i S(k) ≤ φν
i S(k) ≤ uν

i S(k) for the arcs bet-
ween NRi and S.

The dynamical cost ωi j(k) ∈Rα that is associated
to each arc a is denoted ων

i S(k) for arcs between NRi
and the outlet to the sea. These costs constant on the
period k, can be different between k and k+ 1. They
allow taking into account a smaller cost for an arc that
corresponds to a water transfer by gravity comparing
to an arc that corresponds to a water transfer by pump.

The boundary constraints are computed in volume
([m3]) according to the device characteristics (gate,
lock, pump...), the time period TM following some ru-
les that are well described in (Duviella et al., 2016).
They have to reflect real behaviour of the inland navi-
gation networks.

Considering the nodes, with the exception of O
and S, a relative objective capacity Di(k), with i ∈
N −{O,S} is assigned to each of them. It is equal
to 0. The current capacity in the node NRi, denoted
di(k), has to be equal to Di(k). It is computed as:

di(k)= di(k−1)+φa+(k)−φa−(k) for i∈N −{O,S} ,
(2)

where a+ is the set of arcs entering the node i, a− the
set of arcs leaving the node i, and di(k) the capacity
of the node i for the last period. That means that at
each time the amount of water entering in the node
NRi has to be equal to the amount of water leaving
the node. However, an interval around the objective
Di(k) is allowed leading to di ≤ di(k) ≤ d̄i, with di
and d̄i the lower and upper bound constraints. Then,
the capacity di(k) can be negative or positive. When
di(k) is negative (respectively positive) at time k, NRi
requires more (resp. less) water at time k+ 1. Even
if the objective conditions can not be reached at each
time, the capacities di(k) have to be closest as possible
to their objective. Hence, a dynamical cost function

Wi((Di(k)−di(k))
2), i ∈ N −{O,S} is associated to

each capacity di(k). This function aims at penalizing
the gap between the current capacity di(k) and the ob-
jective Di(k). Thus, the optimal water management
consists in satisfying the objectives of each node, i.e.
Di(k), by optimizing the flows Φ(k) in terms of mi-
nimal cost; the vector Φ(k) contains the set of flows
φi j(k), ∆(k) the set of capacities di(k) at time k.

2.3 Optimal Allocation Planning

The objective of the optimal allocation planning con-
sists in determining the optimal sequence of flows
Φ to guaranty the objectives Di(k) (Duviella et al.,
2016). It is based on the minimization of an objective
criterion for each management step:

JV (k) =
η

∑
i

Wi((Di(k)−di(k))
2)+

α

∑
a

ωa(k) ·φa(k),

(3)
with k the current step time, η the number of nodes
without nodes O and S, and α the number of arcs.
That includes arcs between NRi and S, where the cost
is computed as ∑m

ν=1 ων
i,S(k) · φν

i,S(k). Note that the
value of di(k) depends on di(k− 1) and on the flows
φa(k). First terms in equation 3 correspond to the cost
due to the gap between the capacity di(k) and the ob-
jective Di. This cost can be expressed as a quadratic
function. Second terms are the cost of each flow.

The quadratic programming method quadprog in
Matlab is used to minimize JV (k) under the equality
constraints defined for each flow and each capacity:

min JV (k) such that
{

Lb(k) ≤ x(k)≤Ub(k)
A.x(k) = b(k)

(4)
with x(k) the vector that is composed of elements of
Φ(k) and ∆(k), Lb(k) and Ub(k) the boundary vec-
tors, b(k) ∈ Rη·1 the vector that contains the values
of ∆(k− 1) of the previous period and the matrix
A ∈ Rη·(α+η) that is composed of 0 or 1 following
the equation 3 and the structure of the flow graph. It
is considered as initial conditions that di(k− 1) = 0
for i ∈ [1,η]. The following algorithm 1 is proposed
to obtain the sequence of optimal flows Φ by mini-
mizing the criterion JV (k), n times. In this algorithm,
Ξ∈Nα gathers all the indexes of x(k) that correspond
to the flow φa(k), and Ψ ∈Nη the indexes of x(k) that
correspond to the capacities di(k).

This optimization approach leads to the determi-
nation of the optimal sequence of flows. It is well
suitable in a deterministic situation when all the flows
are supposed to be known. But, the uncontrolled wa-
ter volumes are often very difficult to determine with
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accuracy. However, it is possible to estimate their
average values based on real measurements as pro-
posed in (Horvàth et al., 2014a), or based on rain-
fall/runoff models as proposed in (Duviella and Bako,
2012). It will be highlighted that this information will
improve the quality of the proposed optimal water
management. In the next section, a brief state of the
art of predictive rainfall/runoff models is proposed.

Algorithm 1: Optimization algorithm.

3 PREDICTIVE
RAINFALL/RUNOFF MODELS

Rainfall/runoff modelling received considerable at-
tention of many researchers over the past two decades.
This important attention is motivated by the speed up
of the climate change phenomena and their impact on
water resources.

The literature can be classified into two approa-
ches according to the a priori knowledge of the sy-
stem: physical models and data-driven models. The
complexity of the considered system is too important
and then a physical-based/mathematical model could
not be considered because of the huge number of pa-
rameters. Moreover, no theoretical hydrological mo-
del is able to simulate the behavior of a catchment
(Perrin et al., 2003). On the contrary, data-driven,
black box fully numerical modelling approaches es-
tablish models by using only input and output mea-
surements. Many researchers have developed nume-
rical runoff/rainfall models with varying degrees of
success.

Linear models consisting in transfer functions
were firstly used due to their simplicity (Young, 1986;
Tòth et al., 2007). These methods have been abando-

ned because of the nonlinearities due to Evapotrans-
piration phenomenon. Consequently, other approa-
ches have emerged such as the neural networks non-
parametric approach (see (Siou et al., 2010) and re-
ferences therein). However, and despite the accep-
table forecasting results, it leads to non-interpretable
parameters. In (Bastin et al., 2009), the nonlinearities
were represented by a Hammerstein structure using
an a priori knowledge of the hydrological system to
characterize the static function which also means that
the achieved model is non replicable due to the diffe-
rences between a geographical location and another.

In (Perrin et al., 2003), a daily lumped rain-
fall/runoff model called GR4J (from the french
“Génie Rural 4 paramètres Journaliers”) is presented
as an improvement of the GR3J (Edijatno and Michel,
1989; Edijatno et al., ) and the performance was tes-
ted using five criteria. This lumped model shows to
be a reliable tool since it was used in several case stu-
dies (Bourgin, 2014; Ficchi, 2017; Dakhlaoui et al.,
2017).

More recently, a black box Linear Parameter Va-
rying (LPV) model was investigated for the Rainfall-
Runoff Relationship (RRR) in urban drainage net-
works (Previdi and Lovera, 2009) and rural catchment
(Laurain, 2010). This kind of systems consider that a
lot of nonlinearities and depend on one or several ex-
ternal variables, called scheduling variables, and then
could be linearized at different operating points re-
sulting in a set of local Linear Time-Invariant (LTI)
systems. The issue with this approach comes from
how to choose the right scheduling variable which is
not trivial. In (Previdi and Lovera, 2009), the schedu-
ling variable was chosen as the output of a non pa-
rametric model and the model was identified using
the least-squares algorithm when the scheduling pa-
rameter is taken as the output of the best linear model
in (Laurain, 2010) but the optimal identification Sim-
plified Refined Instrument Variable (SRIV) algorithm
was applied. Both LPV methods lead to acceptable
results. However, in (Duviella and Bako, 2012), the
authors proposed an online recursive nonlinear identi-
fication algorithm applied to Liane river (France) and
was compared to a recursive least-squares linear mo-
del over a future horizon of 24 hours. Indeed, the on-
line estimation allows to track the catchment intrin-
sic variations. The study over a horizon is innova-
tive comparing to the previous cited approaches and
shows that even the Fit score (Ljung, 1999) or the
Nash coefficient (Nash and Sutcliffe, 1970) are good,
the introduction of a prediction horizon deteriorates
the estimation results and then increases the number
of false alarms and missed alarms.

One of these approaches will be used and proba-
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bly improved to deal with the prediction of the effects
of rainfall on the amount of water that it will be ne-
cessary to reject to the sea.

4 CASE STUDY

4.1 Description

The considered case study is based on a real inland na-
vigation network that is located in the north of France.
However, the characteristics of the navigation rea-
ches, locks, pumps and gates are realistic but not real.
It is composed of three NR that are interconnected as
it is depicted in Figure 3.a. The NR1 supplies with a
controlled gate and a lock the NR2. It supplies also
with another controlled gate and lock the NR3. The
NR2 is directly linked to the outlet to the sea, and
with a lock to another NR that is is not considered.
The NR2 is equipped with a pump downstream that
allows rejecting water to the sea. The NR3 supplies
another NR that is also not considered in this study.
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Figure 3: (a) Studied network, (b) the integrated volume
model, (c) the flow graph.

The integrated model and the associated flow
graph are depicted in Figures 3.b and .c, respectively.
The characteristics of the system, i.e. dimensions of
the NR and the boundaries on water levels are given
in Table 1.

Table 1: Characteristics of NR, with length L in [km], width
w in [m], depth l in [m] and upper and lower level boundaries
in [m].

L w l l(+) l(−)
NR1 56.724 41.8 3.7 0.1 0.05
NR2 42.3 52 4.3 0.05 0.05
NR3 25.694 45.1 3.3 0.05 0.05

The dimensions of the locks, the operating range
of the gates and the average values of the uncontrolled

discharges are given in Table 2. Notice that the ope-
rating range of Qc

dw2 depends on the tide. During low
tide, the discharge due to the gravity corresponds to
Qc

dw2 = 30 [m3/s]. During high tide, this discharge is
equal to 0. However, the pump can empty NR2 with
discharge between [0;40] [m3/s] whatever is the pe-
riod of the day. That means that the operating range
of Qc

dw2 = [0;70] during low tide and Qc
dw2 = [0;40]

during high tide. Of course the cost of pumping is
higher than the cost of water rejection by gravity. It
is the reason of the consideration of two arcs between
nodes 2 and S (see Figure3.c). The flow φ1

2,S repre-
sents all the water volume that is emptied to the NR2
with the downstream lock and by gravity to the sea.
The flow φ2

2,S is dedicated to the water volume that is
pumped to be rejected to the sea.

Table 2: Characteristics of the lock chamber υch
{up;dw}i ex-

pressed in 103.[m3], gates Qc
{up;dw}i , controlled and un-

controlled inputs Qc
i and Qu

i ; discharges are expressed in
[m3/s]. X = nonavailable, and ∗ = depends to the operating
conditions.

υch
upi υch

dwi Qc
upi Qc

dwi Qc
i Qu

i

NR1 6.7 − X − −1 6.56
NR2 3.5 23 [0;6.4] [0;∗] 0 0.63
NR3 5.9 7.3 [0;30] [0;60] 0 1.2

By taking into account the tide, the sample time
that is considered in these simulations corresponds to
TM = 6 hours.

4.2 Design of the Optimal Water
Allocation Strategy

The lower and upper bound capacities of the arcs
li j(k) and ui j(k) are determined according to the flow
graph G depicted in Figure 3.c and to the known dis-
charge intervals that are given in Table 2 over the pe-
riod TM . By considering the case study, the sets are
χ = {1}, and κ = {2,3}, the number of lock operati-
ons is denoted βi j(k) ∈ N with i the index of the up-
stream NR (i can be the node O) and j the index of
the downstream NR ( j can be the node S):

1. upper bound capacities for arcs{
φ12, φ13, φO1, φ1

2S,φ3S
}

are the sum of the
maximum available volumes from water intakes
over TM , i.e. as an example V u

1 = Qu
1 · TM , and

volumes that correspond to the lock operations,
i.e. as an example υch

up1 ·βO1(k),

2. upper bound capacities for arcs {φO2,φO3} are
the sum of the maximum available volumes from
water intakes over TM , i.e. V u

2 = Qu
2 · TM and

V u
3 = Qu

3 ·TM respectively,
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3. upper bound capacity for arc {φ1S}, corresponds
to the sum of the maximum volumes that can
empty NR1 during TM , i.e. V c

1 = Qc
1 ·TM ,

4. upper bound capacity for arc
{

φ2
2S

}
, corresponds

to the maximum discharge that can be pumped to
the sea during TM , i.e. Qp

2 ·TM ,

5. lower bound capacities for arcs{
φ12, φ13, φ1

2S,φ3S
}

are the volumes from that
lock operations, i.e. as an example υch

dw2 ·β2S(k),

6. lower bound capacity for arc {φO1} is the volume
from that lock operation and the sum of the max-
imum available volumes from water intakes over
TM , i.e. υch

up1 ·βO1(k) and V u
1 = Qu

1 ·TM ,

7. lower bound capacities for arcs
{

φO2,φO3,φ2
2S

}

are equal to 0,

8. lower bound capacity for the arc {φ1S} is equal to
the reserved discharge during period TM , i.e. V c

1 =
Qc

1 ·TM ,

that leads to:




φO1 ∈ [υch
up1 ·βO1(k)+Qu

1 ·TM ; υch
up1 ·βO1(k)+Qu

1 ·TM ],

φO2 ∈ [Qu
2 ·TM ; Qu

2 ·TM ],
φO3 ∈ [Qu

3 ·TM ; Qu
3 ·TM ],

φ1S ∈ [Qc
1 ·TM ; Qc

1 ·TM ],
φ1

2S ∈ [υch
dw2 ·β2S(k); υch

dw2 ·β2S(k)+Qdw
2 ·TM ], low tide,

φ1
2S ∈ [υch

dw2 ·β2S(k); υch
dw2 ·β2S(k)], high tide,

φ2
2S ∈ [0; Qp

2 ·TM ],
φ3S ∈ [υch

dw3 ·β3S(k); υch
dw3 ·β3S(k)+Qc

dw3 ·TM ],
φ12 ∈ [υch

up2 ·β12(k); υch
up2 ·β12(k)+Qc

up2 ·TM ],

φ13 ∈ [υch
up3 ·β13(k); υch

up3 ·β13(k)+Qc
up3 ·TM ], (5)

where Qp
2 is the maximum capacity of the pump, TM

is expressed in 10−3 s to obtain volumes in 103 · [m3],
and Q the upper value of the controlled discharge in-
terval.

The management objective aims at keeping the ca-
pacity objective Di = 0 for each NR. A same and con-
stant quadratic cost function Wi is assigned to each
NRi:

Wi((Di−di(k))
2) =

{ Cmax
(di)2 · (Di−di(k))2, i f di(k)≤ 0,
Cmax
(di)2 · (Di−di(k))2, i f di(k)> 0,

(6)
with Cmax the maximal cost, assuming that di and
di correspond to the lower and upper boundaries re-
spectively. For the proposed system, Cmax = 2,000 as
a big arbitrary value. It is assumed that water volu-
mes that supply or empty the network from natural ri-
vers {φO2, φO3, φ1S} have less priority than the others{

φO1, φ12, φ13, φ1
2S, φ3S

}
. Thus, two different costs

are chosen such as
{

ωO1, ω12, ω13, ω1
2S, ω3S

}
= 0

and {ωO2, ωO3, ω1S} = 1. Moreover, the cost asso-
ciated to the pump is defined as

{
ω2

2S

}
= 5.

Table 3: Navigation demand over 1 week.

Day 1 2 3 4 5 6 7
βO1 21 19 20 22 21 20 0
β12 13 10 14 12 13 14 0
β13 14 12 15 16 13 14 0
β2S 10 9 10 11 9 11 0
β3S 16 15 16 18 16 15 0

4.3 Water Allocation Planning

The proposed water allocation planning algorithm has
been implemented in Matlab. A Simulink model has
been build to reproduce the dynamics of the studied
network. It is run at a discrete time T M correspon-
ding to 6 hours. At each step k, the current states
of the NR, i.e. di(k), the navigation demand and the
predicted water volumes that come from rain are ta-
ken into account for the minimization of the criterion
JV (k) (see equation 4). New setpoints are therefore
computed for the controlled devices of the conside-
red network, then a new simulation step is run. The
results can be depicted at the end of the simulation.

To test the proposed approach and highlight the
requirement of a good prediction of water volumes
that come from rain, several scenarios have been built.
For all these scenarios, the navigation is allowed du-
ring half of the day and then forbidden (12 hours for
navigation and 12 hours without navigation). The na-
vigation is also forbidden the 7th day that corresponds
to Sunday. The navigation demand is the same for all
the scenarios. It is given in Table 3. The effect of the
tide is also simulated that allows the rejection of water
volume to the sea by gravity during 6 hours during the
beginning of the navigation periods and the beginning
of the non navigation periods.

The scenarios are built by considering extreme
rainy events. They impact directly the inland naviga-
tion network by increasing the uncontrolled dischar-
ges that supply each NR. These uncontrolled dischar-
ges are multiplied by 3 between time 1 to 4 and by
more than 4 between time 7 to 14 (see Figure 4).

The first scenario (Scenario 1) consists in using
the water allocation planning algorithm without any
prediction about the increase of the uncontrolled dis-
charges. The NR1 is the most impacted because the
magnitude of uncontrolled discharges is high and the
water allocation planning is not able to allocate the
water between the NR (see Figure 5.a). The rain has
also some flood consequence during the second rainy
event in the NR3 (see Figure 5.c). However, the vo-
lume of the NR2 stays inside the defined boundaries
thanks to the use of the pump (see Figure 6.b) and the
water rejection to the sea by gravity (see Figure 6.a).
The water volumes can be rejected by gravity to the
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Figure 4: Uncontrolled discharges Qu
1, Qu

2 and Qu
3 for the

defined scenario with two periods of strong rain, where a
sample time correspond to 6 hours.

sea only during low tide. The tide is depicted in red
dotted line in Figure 6.a. When additional water vo-
lumes that come from rain have to be rejected during
high tide, it is necessary to use the pump guaranteeing
the navigation condition in NR2 (see sample times 4
and 12 in Figure 6.b). This strategy allows limiting
the cost due to the use of the pump.

Figure 5: Scenario 1: in red line, the water volume in (a)
the NR1, (b) the NR2 and (c) the NR3, in blue dashed line
the allowed boundaries.

The second scenario (Scenario 2) is based on the
strong assumption that the water volumes from rainy
events are perfectly predicted. With this assumption,
the three NR keep perfectly their navigation objective
as it is depicted in Figure 7. In this case also, the
pump and the water rejection by gravity are used to
keep the objective in the NR2 by taking into account
the tide (see Figure 8). The water volumes that are
pumped are not so different than the Scenario 1. In
this Scenario 2, the water volumes have been better
allocated between the three NR. This strategy allows
limiting the cost due to the use of the pump.

The third scenario (Scenario 3) consists in consi-

Figure 6: Scenario 1: water volumes that are rejected by (a)
gravity to the sea, (b) pump [m3], with the tide depicted in
red dotted line.

Figure 7: Scenario 2: in red line, the water volume in (a)
the NR1, (b) the NR2 and (c) the NR3, in blue dashed line
the allowed boundaries.

Figure 8: Scenario 2: water volumes that are rejected by (a)
gravity to the sea, (b) pump [m3], with the tide depicted in
red dotted line.

dering an error of 30 % in the prediction of the water
volumes from rainy events. Based on this assumption,
the NR1 is still the most impacted. However, its vo-
lume is kept inside the defined boundaries (see Figure
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9.a). The objectives are guaranteed also for NR2 and
NR3 as it is depicted in Figure 9.b and in Figure 9.c.
The pump and the water rejection by gravity are still
used to keep the objective in the NR2 by taking into
account the tide (see Figure 8). The pumped volu-
mes are more progressive during the time, but not so
different from the two first scenarios.

Figure 9: Scenario 3: in red line, the water volume in (a)
the NR1, (b) the NR2 and (c) the NR3, in blue dashed line
the allowed boundaries.

Figure 10: Scenario 3: water volumes that are rejected by
(a) gravity to the sea, (b) pump [m3], with the tide depicted
in red dotted line.

The three scenarios show that the prediction of
strong rainy events is required to optimize the water
resource management of inland navigation networks.
However, the Scenario 3 indicates that the manage-
ment objectives can be kept even if a big error is made
on this prediction, i.e. an error of 30 %. Hence, a
strong effort have to be done on the design of accu-
rate predictive rainfall/runoff models.

5 CONCLUSIONS

In this paper, the integrated model and the flow graph
that have been already proposed in past publications,
are adapted and improved to deal with the case of in-
land water systems with outlet to the sea. The water
allocation planning algorithm is also adapted to consi-
der these new elements. A realistic case study which
characteristics are based on the real inland waterways
of the north of France is presented to test these im-
proved tools and algorithm. The simulation results
show that the prediction of the impacts of rainy events
is necessary to guarantee the management objectives
even if an important error in prediction can be allo-
wed. Future works will be dedicated to improve the
predictive rainfall/runoff model. Then, the designed
tools and methods can be applied on a part of a real
inland waterway.
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mate change impacts on water resources and hydro-
logical extremes in northern france. XVIII Conference
on Computational Methods in Water Resources, June,
Barcelona, Spain.

Water Asset Management Strategy based on Predictive Rainfall/Runoff Model to Optimize the Evacuation of Water to the Sea

83



Duviella, E. and Bako, L. (2012). Predictive black-box mo-
deling approaches for flow forecasting of the liane ri-
ver. SYSID12, Bruxelles, Belgium, July 11-13.

Duviella, E., Nouasse, H., Doniec, A., and Chuquet, K.
(2016). Dynamic optimization approaches for re-
source allocation planning in inland navigation net-
works. ETFA2016, Berlin, Germany, September 6-9.

Duviella, E., Rajaoarisoa, L., Blesa, J., and Chuquet, K.
(2013). Adaptive and predictive control architecture
of inland navigation networks in a global change con-
text: application to the cuinchy-fontinettes reach. in
IFAC MIM conference, Saint Petersburg, 19-21 June.

Edijatno and Michel, C. (1989). Un modèle pluie-débit
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vement of a parsimonious model for streamflow simu-
lation. Journal of Hydrology, 279:275 – 289.

Previdi, F. and Lovera, M. (2009). Identification of
parametrically-varying models for the rainfall-runoff
relationship in urban drainage networks. IFAC Pro-
ceedings Volumes, 42(10):1768 – 1773. 15th IFAC
Symposium on System Identification.
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