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Abstract: Lung function tests are critical for diagnosis and monitoring of asthma and other respiratory diseases. 
Monitoring of lung function, in the absence of a healthcare professional, is very challenging but may be 
obtained through Smart Devices if automated quality assessment systems guarantee the proper technique 
during the forced expiratory manoeuvre. This paper describes the evaluation of one such system that uses the 
microphone of smart devices, regarding the initial effort of forced expiratory manoeuvres using the Back 
Extrapolated Volume. A health professional recorded microphone spirometry in 55 children (5-10 years), 
using a mobile game engineered for the purpose, and registered its quality. At least one acceptable manoeuvre 
was achieved for 96% of the children using a featured threshold. Using a stricter threshold of 5% of forced 
vital capacity, it was possible to ensure at least one acceptable manoeuvre for 69%. While the obtained results 
are comparable to findings in literature for regular spirometry in this age group, further work is required before 
we can determine whether the proposed algorithm is effective in real life. 

1 INTRODUCTION 

Spirometry is the most widely used non-invasive test 
of lung function, used for detection and diagnosis of 
various respiratory diseases, including asthma, in 
children (Pierce, 2005). The performance of a forced 
expiratory manoeuvre (FEM) involves three distinct 
phases: maximal inspiration; a “blast” of exhalation; 
and continued complete exhalation to the end of test 
(Miller et al., 2005). On spirometers a plot called a 
spirogram is generated at the end of each manoeuvre, 
measuring air flow. This is typically presented to 
health professionals as a volume-time (Figure 1) and 
a flow-volume graph. A FEM requires the coaching 
of the patient by a specialized health professional, due 
to the quality and repeatability criteria that must be 
met (Miller et al., 2005). Assuring that these criteria 
are fulfilled is of paramount importance, as 
neglecting them has led to over 25% of false-positives 
in diagnosing chronic obstructive pulmonary disease 

(Moger et al., 2013), and 50% of false-negatives 
(Walters et al., 2011). 

 

Figure 1: Volume-time curve showing the calculation of the 
Back Extrapolated Volume. 
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One of those criteria is the satisfactory start of 
exhalation, measured by the back extrapolated 
volume being higher than 5% of the Forced Vital 
Capacity (the total airflow in litres exhaled by the 
patient) or 150mL, whichever is greater (Miller et al., 
2005). The back extrapolated volume is the exhaled 
volume at the instant where the maximum derivative 
of the volume-time curve crosses the abscissa axis 
(Figure 1). 

Due to the growing popularity of smart devices, 
work has been developed to enable accurate 
estimation of FEM medical parameters outside of a 
clinical setting (or in otherwise resource constrained 
settings) making use of their computational 
capabilities and embedded sensors, especially the  
microphone (Larson et al., 2012), (Stein, 2013), (Liu, 
2013), (Teixeira et al., 2015), (Zubaydi, 2016). 
However, there lies a largely unexplored problem 
common to all these solutions, which is that of 
assuring the validity of the manoeuvre in the absence 
of a health professional. In 3 of these works, we have  

Improvements in automatic spirometry quality 
analysis have been recently developed for clinical 
spirometers (Melia et al., 2014), (Luo et al., 2017), 
but they do not take into account specific challenges 
faced by FEM acquired by microphone, henceforth 
referred to as microphone spirometry. To the best of 
our knowledge, no work has been done so far in the 
field of automatic quality evaluation in microphone 
spirometry. 

This paper presents a first attempt of automatic 
quality evaluation in microphone spirometry, 
specifically on an initial effort criterion based on the 
ATS/ERS quality criteria (Miller et al., 2005). 
Adequate initial effort is already difficult even with 
the presence of a specialized health professional 
incentivizing the child. In the absence of such 
personnel, it becomes even more critical to correctly 
determine if the patient exhaled with enough force. 

The development of this automatic quality 
evaluation module is part of a mobile serious game 
called “Ar.cade”. It is a virtual pet game, with an 
asthmatic dragon. Its purpose is to allow and 
incentivize long term asthma monitoring in children 
from 5 to 10 years old, away from their healthcare 
professional, via microphone spirometry with smart 
mobile devices. While more typical actions such as 
feeding and cleaning a virtual pet will be available to 
the player, the main focus is on the mini-games. 
These revolve around the usage of the microphone as 
the main game input, rewarding the player for 
properly executed FEM and providing feedback on 
how to improve, in case of failed quality criteria. 

2 EXPERIMENTAL SETUP 

The assessment of identification methods requires a 
properly annotated database of microphone 
spirometry recordings. Therefore, one mini-game of 
Ar.cade was used for data collection and 
classification. 

2.1 Game Design 

Ar.cade is an Android mobile virtual pet game, 
developed and implemented in C# using the 
FlatRedBall game engine. Among other things, inside 
it can be found mini-games that use the microphone 
as the main controller, for the purpose of recording 
FEM’s. The selected mini-game is a physics-based 
game, using the Farseer physics engine. The player 
character is a dragon, which is able to make a fireball-
like projectile with its breath (Figure 2). 
 

 

Figure 2: The game's idle state. 

The main game loop consists of a 5 main phases: 
1 Inhale phase (Figure 3): the screen zooms in on 

the dragon, a countdown with visible and audible 
feedback starts, and at the same time the dragon 
performs an animation to inhale deeply. As the 
countdown approaches the end, other background 
sound effects are gradually muted. 

 

Figure 3: The game's inhale phase. 

2 Exhale phase (Figure 4): Having all existing game 
sounds muted and the countdown finished, the 
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audio recording starts. The dragon performs an 
exhalation animation for a total of 3.5 seconds, 
after which the recording stops.  

 

Figure 4: The game's exhale phase. 

During this animation, fire particles are blown by 
the dragon and a slowly expanding projectile starts to 
form.  
 

2 Upgrade phase (Figure 5): Quality of the 
manouvre is reflected by upgrading or 
downgrading projectile. For now, the final state is 
determined by the type of test the healthcare 
professional intends to perform, but in the future 
the quality detection module will evaluate this 
automatically. 
 

 

Figure 5: The game's upgrade phase. 

3 Destruction phase (Figure 6): The projectile is 
launched towards a destructible structure built of 
blocks with different materials. 
 

 

Figure 6: The game's destruction phase. 

Feedback phase (Figure 7): The player receives an 
award based on his/her performance. In the future, 
this will be linked with the overarching virtual pet 
game’s economy, however currently just serves as 
another potential instant gratification source. More 
importantly, this will be the place where the player 
will receive instructions on how to improve their 
manoeuvre and receive the next possible ranking, in 
case of a sub-optimal manoeuvre. 

 

Figure 7: The game's feedback phase. 

The dragon’s inhale and exhale animations serve 
the purpose of incentivizing the child to perform 
maximal effort on both phases, while the rest of the 
gameplay elements are an attempt to provide the child 
with instant gratification for the effort made. 

2.2 Audio Processing Pipeline 

To extrapolate the flow-time chart from an audio 
capture, the processing pipeline (Figure 8) as 
presented in (Teixeira et al., 2015) was implemented 
in C# for integration with the Ar. cade project. In that 
work, an attempt was made to measure and classify 
lung function based on signal processing, 
constructing the flow-time curve. This would then be 
followed by a machine learning stage that enabled the 
regression of typical spirometry parameters. To 
perform this regression, a previously obtained 
database from adults was used for model training 
purposes. Given that we have no identical database 
for users in our target age group, we were unable to 
attempt a similar approach – that is, to try and 
establish absolute medical parameters. We have 
chosen to rely only on relative spirometry criteria for 
this work. 

Automatic signal segmentation precedes the pre-
processing stage. This serves to remove non-
expiration sounds from the input to be analysed: a 
modified version of the back-extrapolation algorithm 
was used to determine the initial instant, and a sliding 
window algorithm based on the magnitude ratio 
threshold to determine the end (Teixeira et al., 2015). 
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The pre-processing stage attempts to transform 
the raw pressure data obtained from the microphone 
into the airflow measured at the lips. Afterwards, the 
envelope of the signal is extracted, with smoothing 
being applied on the post-processing stage. 

3 DATA COLLECTION 

3.1 Participants 

The target population were children with/without 
asthma, aged between 5 to 10 years old. Data 
collection occurred in an informal environment, 
namely with the collaboration of a school. 

Data was gathered anonymously, with written 
permission of legal guardians of all the children. 

Besides the FEM audio recordings, self-reported 
data comprised of sex, ethnicity, age, and if they had 
asthma. Each child was assigned an internal random 
ID, enabling anonymous same-child recording 
analysis and comparison. 

3.2 Procedures 

A specialized healthcare professional performed the 
data collection. After introducing the child to the 
game’s concept and performing a demonstration of 
the game, two different tests were made: 
- “Hot air” test: Have the child exhale with a wide 

open mouth, focusing on achieving a good 
aperture and not emphasizing the need to exhale 
with maximal force. 

- Maximal force test: Have the child exhale with the 
same mouth aperture, only this time with the 
added requirement and emphasis of maximal 
force, evaluated by the healthcare professional. 

For each of these tests, the goal was to achieve at least 
one successful recording. At the end of each 
maneuver, the healthcare professional registered its 
quality with an in-game form assessing the maneuver 
on 6 different criteria in a yes/not sure/no format: 
- Good mouth aperture 
- Good initial effort 
- Good continuous effort 
- Good finish 
- No cough/outside interference 
- No glottis closure 

3.3 Algorithm Development and 
Evaluation 

Official guidelines defined by the ATS (Miller et al., 

2005) state that  BEV should be lower than 150mL or 
5% of the FVC, whichever is higher. As a first attempt 
to automatically determine if the manoeuvre’s initial 
effort was acceptable or not, the official guidelines 
were used in as much as possible, and we 
implemented an algorithm for BEV calculation 
according to ATS standards (Miller et al., 2005). 

Given that we do not have access to absolute 
values in our implementation of the processing 
pipeline, we chose to only use the relative criterion of 
BEV < 5% of FVC. We then compared the results 
obtained by this classifier with the healthcare 
professional’s classification of the manoeuvres, 
acting as our ground truth. 

 

 

Figure 8: In orange, the acceptable BEV ranges using the 
ATS guidelines; in blue, the ranges using the implemented 
algorithm (The ATS ranges overlap with the algorithm’s 
ranges). 

In figure 8 is shown that for FVC values under 3 
litres, the ATS guidelines are increasingly more 
lenient as the FVC decreases compared to just using 
the relative criteria implemented in the algorithm. To 
evaluate how relevant this issue is for our collected 
data, we used children’s age specific reference 
equations for FVC developed by (Koopman et al., 
2011). According to these equations, FVC varies with 
age, height and sex. We used the self-reported age and 
sex, while for height the World Health Organization’s 
height-for-age charts were considered (de Onis et al., 
2007) (“WHO | Height-for-age (5-19 years),” n.d.).  

To illustrate the FVC boundaries of our targeted 
population the mean FVC, along with the lower and 
upper limit of normal (LLN and ULN) for a 5% cut-
off, are shown in tables 1 and 2. 

Table 1: FVC percentiles (5% cut-off) for 10-year-old 
children in the 99th height percentile. 

 LLN Mean ULN 
Male 2.52L 3.02L 3.65L 
Female 2.35L 2.86L 3.41L 

 

This allows us to conclude that, for our target age 
group, it is more likely to be dealing with cases where 
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the expected FVC is under 3L, making our algorithm 
more stringent than the official ATS guidelines. 

Table 2: FVC percentiles (5% cut-off) for 5-year-old 
children in the 1st height percentile. 

 LLN Mean ULN 
Male 0.73L 0.91L 1.11L 
Female 0.82L 1.00L 1.19L

 

As an initial attempt to overcome this limitation, 
we defined an age adjusted BEV threshold for each of 
the target ages. This threshold was calculated as thus: 

 

BEVi = 0.15/FVCi (1)
 

where FVCi is the mean expected FVC value for the 
given children’s age (i), assuming the 50th height 
percentile of the WHO standards. The resulting BEV 
thresholds for males and females can be seen on table 
3 and 4, respectively. By doing this, we are trying to 
have the acceptable BEV for a specific age match the 
static 150mL criterion defined by the ATS, but by 
using the FVC percentage relative criterion. 

The value found for 5-year-old males is in 
complete agreement with the findings of (Aurora 
2004) in pre-schoolers observed BEV/FVC ratio. In 
that work, a possible quality control cut-off of 12.5% 
is suggested. 

Table 3: Age adjusted BEV thresholds for the 50th height 
percentile of each presented age in males. 

Age 5 6 7 8 9 10 
BEV 
(%) 

12.5 10.7 9.3 8.2 7.0 6.4 

Table 4: Age adjusted BEV thresholds for the 50th height 
percentile of each presented age in females. 

Age 5 6 7 8 9 10 
BEV 
(%) 

12.9 11.1 9.8 8.6 7.5 6.6 

 

Considering that the target is the classification 
made by the healthcare professional, where positives 
indicate an acceptable manoeuvre, the prediction is 
the resultant classification by the algorithm for the 
specified BEV threshold can be evaluated. 

To compare different settings for the algorithm, 
two measures were used, namely the F1 score and 
accuracy. The F1 score is the harmonic mean of 
precision and sensitivity given by: 

 

F1 = 2TP / (2TP + FP + FN) (2)
 

and the accuracy, which measures how often is the 
classifier correct, with the following formula: 
 

A = (TP + TN) / (TP + TN + FP + FN) (3)

4 RESULTS AND DISCUSSION 

4.1 Participants 

A total of 55 children between 5 to 10 years old have 
participated, 52 within 8 to 10 years of age. Out of 
these children, 31 were females and 24 were males. 
Only 4 (7.2%) of these children reported to suffer 
from asthma. 

In Table 5 we present the distribution of the 
classifications by the healthcare professional, along 
with the total amount of recordings obtained for each 
type of test. In this case, “yes” represents a positive 
evaluation of the child’s initial effort. Table 6 
characterizes the amount of manoeuvers required by 
the healthcare professional to obtain a positive 
classification. 

Table 5: Total amount of recordings obtained per test, and 
the distribution of acceptable BEV quality classification by 
the healthcare professional registered quality. 

Test Type Total Yes Not Sure No 
Hot Air Test 89 65 2 22 

Max Force Test 144 108 3 33 

Table 6: Number of attempts until a positive classification 
by the healthcare professional. 

Test type Max Median Min 

Hot Air Test 3 1 1 

Max Force Test 5 1 1 

4.2 Quality Assessment 

Tables 7 and 8 show the confusion matrix for the 
algorithm using ATS guidelines relative BEV 
threshold and the healthcare professional, for the two 
tests performed.  

Table 7: Confusion matrix for the hot air tests using the 
BEV threshold <5% FVC. 

Hot Air Test 
BEV < 5% 

Predicted 
Yes No

Target 
Yes 27.3% 47.6%
No 7.1% 17.8%

Table 8: Confusion matrix for the maximal effort tests using 
the BEV threshold <5% FVC. 

Max Force Test 
BEV < 5% 

Predicted 

Yes No 

Target 
Yes 36.2% 41.3% 
No 18.1% 13.0% 
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At a first glance, the high false negative rates 
indicate that the algorithm is too strict with respect to 
the healthcare professional. Nevertheless, given that 
the only information available to the healthcare 
professional to produce an evaluation was the visual 
observation of the child, and not an objective 
measurement obtained by a spirometer as would 
happen on a regular spirometry, it is certainly possible 
that there was some mislabelling – specifically by 
accepting manoeuvres that otherwise would not have 
been accepted. 

Given the already explained influence of age, sex 
and height on the FVC, it is worth noting that the 
presented results are based off a sample database that 
is heavily biased towards the higher end of the age 
spectrum. Given the positive correlation between age 
and height to expected FVC values, this means that it 
would be reasonable to expect our results to be worse 
with a more balanced database, for any static BEV 
threshold. 

Table 9: Confusion matrix for the hot air tests using the 
BEV threshold <12.5% FVC. 

Hot Air Test 
BEV < 12.5% 

Predicted 
Yes No

Target 
Yes 64.2% 10.7%
No 22.6% 2.4%

Table 10: Confusion matrix for the maximal effort tests 
using the BEV threshold <5% FVC. 

Max Force Test 
BEV < 12.5% 

Predicted 
Yes No

Target 
Yes 68.8% 8.7%
No 18.1% 4.3%

 

As a test, we repeated the analysis for the BEV 
threshold suggested by (Aurora et al., 2004), that 
coincided with the estimated male BEV threshold for 
5-year olds on Table 3, 12.5% (Tables 9 and 10). 
While it did improve the true positives and false 
negatives, it came at a cost of true negatives, and false 
positives in the case of the hot air test. However, it is 
important to note that the hot air test is of lesser 
importance compared to the maximal effort test, not 
only for the scope of this paper, but for Ar.cade’s 
scope: the players are expected to have been coached 
to perform maximal effort manoeuvres, whereas they 
were not in the hot air test. This is due to specific 
instructions and coaching for maximal force on 
exhale being only given on the maximal effort test, 
and not before. In terms of gameplay, a false negative 
would mean asking the child to repeat the manoeuvre, 
while a false positive would promote poor form. 
Taken to the extreme, both of these would lead to the 

failure of the “Ar.cade" project, even if due to 
different reasons: high difficulty causing frustration 
and a loss of interest in the game, or useless gathered 
results from a medical standpoint. Therefore, a hybrid 
approach might be worth exploring: starting out with 
a lower BEV threshold, but raising the threshold after 
several failed attempts. 

The Tables 11 and 12 show the confusion 
matrixes for the age adjusted BEV thresholds. When 
compared to the results of the static BEV thresholds, 
they are somewhere in between them. The differences 
between these are cleared when looking at Tables 13 
and 14, which present the F1 score and accuracy 
measurements for the 2 presented static BEV 
thresholds along with the age adjusted approach. As 
expected, the 5% threshold gives the worst results. 
The 12.5% threshold appears to be best, and while 
previously mentioned research does point to this 
threshold as appropriate for the younger children in 
our target group, it is important to note this: F1 score 
and accuracy can provide falsely inflated results in 
unbalanced classes, such as the ones presented in our 
confusion matrices. 

Table 11: Confusion matrix for the hot air tests using the 
age adjusted BEV thresholds. 

Hot Air Test 
Age adjusted BEV 

Predicted 
Yes No

Target 
Yes 50.0% 25.0%
No 15.5% 9.5% 

Table 12: Confusion matrix for the maximal force tests 
using the age adjusted BEV thresholds. 

Max Force Test 
Age adjusted BEV 

Predicted 
Yes No

Target 
Yes 55.1% 22.4%
No 14.5% 8.0%

Table 13: F1 scores, accuracy measurements for different 
BEV thresholds in the hot air test.  

BEV F1 score Accuracy 
5% 50.0% 45.2% 

12.5% 79.4% 66.6% 
Age adjusted 71.1% 59.5% 

Table 14: F1 scores, accuracy measurements for different 
BEV thresholds in the maximal force test.  

BEV F1 score Accuracy
5% 58.8% 49.2% 
12.5% 83.7% 73.2% 
Age adjusted 74.9% 63.0% 

 

Aside  from  this,  according  to  (Koopman  et al., 
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2011) the direct correlation between FVC and age is 
small compared to FVC’s correlation with height, as 
can be seen on Figure 9. Given this notable 
discrepancy, and the fact that we assumed the average 
height for each age shows another significant 
limitation in our work, as the height for a child varies 
around 20% from the 3rd percentile to the 97th, at any 
given age in our target group according to WHO 
standards. 

 

 

Figure 9: Plot illustrating the importance of the predictors 
for FVC estimation as they vary with age or height. The red 
and blue lines represent the impact of children’s height, 
measured in cm, for females and males respectively (target 
group bounded between 100 and 150cm, using WHO’s 
height-to-age standards). The green line represents the 
impact of age, measured in months, for both females and 
males (target group between 60 and 120 months of age). 

Table 15: Number of children capable of performing at least 
one maximal force test with acceptable BEV for different 
thresholds, in absolute and relative units respectively. 

Criterion 
Children with at least 

one positive 
classification 

Healthcare 
professional 54 (98%) 

5% FVC 46 (84%)
12.5% FVC 55 (100%)

Age adjusted 52 (95%)
 

Despite the limitations described above, it is 
important to note. On Table 15, we can see the 
number of children that managed at least one positive 
detection with the current algorithm, set at different 
thresholds, considering the maximal force tests which 
are more relevant to us as already explained. Even for 
our worst performing criterion, we obtained 
reasonably similar results to (Tomalak et al., 2008), 
where 80.4% of 117 children between the ages of 4 
and 10 years old were able to pass the ATS standard 
for BEV acceptability, using clinical spirometers. 

This shows that while much work is still needed, for 
a first approach on the unexplored field of 
microphone spirometry automatic quality assessment 
(at least to the best of our knowledge), the results look 
promising. 

4.3 Limitations and Future Work 

Given the source of children for this study, only 7.2% 
of them had asthma. It is important to have a larger 
representation of these cases to establish how much 
can we extrapolate from studies in healthy children, 
and what are the specific challenges present in 
asthmatic children. 

The fact that our ground truth was established by 
a single healthcare professional may have introduced 
a bias in our database, and to reduce this risk further 
data collection events should be performed with 
different healthcare professionals, with them cross-
evaluating the same manoeuvre. 

As was already mentioned, the database was 
heavily biased in terms of age distribution. Therefore, 
in further data collection events, there should be an 
increased focus on gathering audio samples from 
children under 7 years of age. This is especially 
important to further test the validity of the age 
adjusted BEV approach, to evaluate whether it has 
any merit to it. 

5 CONCLUSIONS 

The automatic evaluation of the FEM through 
BEV estimated from microphone spirometry allowed 
the assessment of the manoeuvre’s quality, with 
respect to the start of exhalation. 

Using the alternative less strict BEV thresholds of 
12.5% and the Age Adjusted version, the quality was 
correctly assessed for over 70% of the manoeuvres. 
At least one acceptable manoeuvre was achieved for 
96% of the children. Even using the stricter criteria of 
5% of FVC it was possible to ensure at least one 
acceptable manoeuvre for 69%, which is slightly 
lower with the reported spirometry quality ratio in the 
literature for this age group. 

While this leads us to conclude that our results are 
acceptable, at the same time we recognize the need of 
improvements for an automated system like this to 
become feasible in a real-world application. 
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