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Abstract: As the sophistication of cyber-attacks is ever increasing, cyber breaches become inevitable and their conse-
quences are often highly damaging. Isolation and diversity are key techniques of cyber resilience for creating
built-in resistance in cyber networks against the lateral movement of multi-step Advanced Persistent Threats
(APTs) and epidemic attacks. However, the key unaddressed challenges are (1) how to ensure that specific
isolation and diversity configurations are sufficient to prevent the lateral movement of attacks and (2) how
to verify that such configurations are enforced safely despite the complex inter-dependency between cyber
components. In this paper, we address these challenges by developing formal models and properties to verify
the effectiveness and enforceability of proactive cyber resistance techniques. We present a bounded model
checking approach based on satisfiability Modulo theories (SMT) for OpenFlow software defined networks
(SDNs). We verify that given resistance techniques are enforced in a way that does not violate the cyber mis-
sion requirements and we evaluate the configuration resistance based on user-defined resistance properties.

1 INTRODUCTION

The recent incidents of data breaches, such as the at-
tacks on SnapChat, Yahoo, the SWIFT system, and
others reported in the recent Verizon Data Breach In-
vestigation Reports (Verizon, 2016; Verizon, 2017)
emphasize the important fact that cyber breaches have
become inevitable. This requires high assurance of re-
silient proactive defense techniques to increase the re-
sistance against the propagation of cyber attacks and
significantly limit their impacts.

Cyber resilience is the capability that allows the
cyber to defend against active attacks (i.e., when
the attackers are partially or completely success-
ful) (Goldman, 2010; Melin et al., 2013). Although
different definitions exist in literature for cyber resi-
lience, they are all centered around three key stra-
tegies: resistance, deterrence, and recovery. In this
work, we focus on the cyber resistance and we de-
fine it as “the capability of the network configuration
to increase the required time, effort, skill set, resour-
ces and knowledge for active attackers in order to
achieve their goal.” Specifically, we study two key
techniques of cyber resistance, namely isolation and
diversity, that can potentially impede the lateral mo-
vement of cyber attacks. Lateral movement is a key

step in the kill-chains of cyber attacks where attackers
compromise the most vulnerable systems and move
through the network to reach their ultimate targets.
Isolation aims at segregating the network components
such that critical assets are less susceptible to thre-
ats from vulnerable sources (Rahman and Al-Shaer,
2013; Goldman et al., 2011; Sahinoglu, 2006). Thus,
ensuring that critical portions of the network continue
to function even if others are compromised. Diver-
sity aims at changing the attack surface as the attacker
progresses through the attack kill-chain by using he-
terogeneous variants of software and hardware com-
ponents (Larsen et al., 2015; Miu et al., 2005; Yang
et al., 2008), in an effort to increase the time and re-
sources that she requires to identify and exploit unfo-
reseen cyber vulnerabilities.

Network resistance is not only about whether an
attacker can reach and exploit a particular asset, but it
is more about the effort she has to spend in order to ac-
complish that. Resistance techniques are implemen-
ted to maximize this effort without violating the net-
work mission. However, in order to ensure cyber re-
sistance, two properties must be satisfied: (1) the de-
sired isolation and diversity configurations are imple-
mented correctly and (2) they are effective against the
lateral movement of specific cyber attacks. Through
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the rest of this paper, we refer to these two proper-
ties by the Enforcement and Effectiveness, respecti-
vely. We believe that violating the enforcement and
effectiveness properties can impose substantial risks
on both the security and the performance of the net-
work. On the one hand, resistance techniques are rea-
lized through one or more layers of network elements,
including the configuration of hosts, the applications
hosted by them, and the network infrastructure, which
performs a variety of traffic transformations, such as
filtering, inspection, tunneling, encryption, and au-
thentication. This makes ensuring correct and con-
sistent resistance configuration a challenge, especially
in complex, large-scale, and densely connected cyber
networks. A single mistake may jeopardize the mis-
sion of the network by granting unauthorized access
to critical network assets, denying legitimate access
to network services, exposing confidential informa-
tion by inappropriately encrypting or decrypting net-
work traffic, misplacing software components which
renders them nonfunctional, etc. On the other hand,
violating the effectiveness property implies the pre-
sence of security configuration weaknesses and man-
dates more resistive configuration. Hence, techniques
and tools are required to automatically verify the en-
forcement and effectiveness of resistance configura-
tion.

In this paper, we present a model checking fra-
mework to verify the enforcement and effectiveness
of resistance configuration. Specifically, our contri-
bution in this paper is twofold. First, we develop a
scalable Linear Temporal Logic (LTL)-based boun-
ded model checker that models the entire data plane
of OpenFlow-based software defined networks along
with the hosts configuration and verifies its resistance
against cyber attacks. To model the lateral movement,
our model checker encodes the indirect reachability
through stepping stones or intermediate hubs. To the
best of our knowledge, this is the first network confi-
guration model checking framework that goes beyond
end-to-end reachability and provides the ability to de-
fine and verify properties that span an entire attack
path with all its intermediate hubs. In addition, our
model can be extended to integrate different types
of security middle-boxes and host configurations to
accommodate variant isolation and diversity strate-
gies. Second, we model two of the network resistance
techniques: isolation and diversity, and verify their
enforcement and effectiveness. We provide a high
level language to facilitate the specification of resis-
tance techniques and demonstrate the capabilities of
our model checker. Our model checker is not limi-
ted to isolation and diversity and any other resistance
technique can be verified as long as it can be repre-
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Figure 1: Design Philosophy.

sented in single or multiple LTL expressions.
The scope of this work encompasses the network

data plane and host configuration abstracted by the
software variants running on top of it. Hence, we do
not model the complete application-layer configurati-
ons such as application level access control. We re-
alize that some lateral movement techniques require
higher level actions, such as privilege escalation, but it
also depends on the weaknesses that might exist in the
network data plane and the basic host configuration.
For example, to exploit a remote access tool, the at-
tacker’s machine should be able to communicate with
the remote victim, which is controlled by the isolation
countermeasures in the network. Our objective in this
work is to discover and address such weaknesses.

We designed our framework to support the two-
phase verification that is depicted in Figure 1. In the
first phase, we verify the enforcement of the resis-
tance specifications, which is a composition of isola-
tion and diversity configurations. If the enforcement
property is not satisfied, a counter-example will be
generated to refine the hosts and network data plane
configuration. Otherwise, the model will further ve-
rify the effectiveness property with respect to user-
defined resistance properties. If this is not satisfied, a
counter-example will be generated to show the weak-
nesses of the resistance techniques and refine them ac-
cordingly. Multiple resistance properties can be com-
posed to measure the effectiveness of cyber resistance
against different attack capabilities. Thus, resistance
configuration can be iteratively tuned until a satisfac-
tory resistance profile is found. We implemented our
bounded model checker using Satisfiability Modulo
Theories (SMT). The temporal relation between con-
secutive packet transformations, performed by Open-
Flow switches and security middle-boxes in the net-
work, is crucial for the enforcement and effectiveness
of the resistance configurations. Model checking can
efficiently capture such temporal dependency by ex-
ploring all relevant paths. Moreover, bounded model
checking does not require exponential space or ma-
nual manipulation of variables as the case in BDD-
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based verification (Clarke et al., 2001). Using SMT
allows our framework to support advanced decision
procedures for linear and non-linear arithmetic and
difference logic, which are needed to consider mis-
sion requirements and resistance thresholds.

The rest of the paper is organized as follows.
In Section 2, we present our technical details for a
resistance-oriented bounded model checker. In Secti-
ons 3 and 4, we present the models required to verify
the resistance enforcement and effectiveness proper-
ties. In Section 5, we report the performance evalu-
ation. Finally, the related work and conclusions are
presented in Sections 6 and 7, respectively.

2 OPENFLOW BOUNDED
MODEL CHECKING

An OpenFlow-based SDN consists of a set of
OpenFlow-enabled switches controlled by a central
controller. The controller provides interfaces to de-
ploy network management applications and dynami-
cally updates the flow tables in the switches. Open-
Flow switches operate based on a flow-based rule sets.
Each flow rule consists of six components: the ma-
tch fields, priority, counters, instructions, timeouts,
and cookies. We focus on the components that di-
rectly affect the packet processing, which include the
match fields, the priority, and the instructions set.
The match fields are filters that determine the set of
flows that match the flow rule and they include the
Ethernet, IP, and TCP/UDP headers in addition to the
VLAN, MPLS, and PBB tags. The priority determi-
nes the matching precedence of the flow rule. The
instructions set contains one or more of the instructi-
ons {Apply-Actions, Clear-Actions, Write-Actions, or
Goto-Table} according to the OpenFlow specification
document 1.4 (ONF, 2013). Thus, a rule in an Open-
Flow table is a set of conditions on the OpenFlow ma-
tch fields and a set of instructions that are performed
on flows matching the conditions.

In this section, we show how we model the net-
work data plane as a transition system for bounded
model checking. We also present the unique features
of our model checker that makes it suitable for re-
sistance verification. The complete formalization and
low-level details of building the exact SMT asserti-
ons based on the OpenFlow configuration are availa-
ble at (Alsaleh and Al-Shaer, 2016).

2.1 Transition System

The state of the network is determined by the uni-
que flows (represented by the match fields) that can

be transferred through the network and their possible
locations. The flows are represented by the flow ma-
tch fields. The state in our model is encoded by the
following characteristic function:

σ : loc× tbl×F×A×L× st× stns→{true, f alse}
The variables loc and tbl encode the unique switch

ID and the index of the flow table within the Open-
Flow switch, respectively. The set F includes the ma-
tch fields’ variables. The Action Set variablesA con-
tains a variable for each action that is carried between
the flow tables during the pipeline processing inside
an OpenFlow switch. This set of variables are requi-
red to capture the flow transformations inside a single
switch. L is an extensible set of special purpose varia-
bles, referred to by app-specific variables, that are in-
tegrated in the model only for particular applications.
The variables st and stns are defined to capture the in-
direct reachability between network hosts, where st
represents the current step within a multi-step path
and stns is a list of the visited stepping stones in the
path.

Transitions between states are realized through
packet transformation and forwarding across Open-
Flow switches or across flow tables in the same
switch. We add a transition to the global transition
relation if we encounter an Output action (a transition
to a new OF switch) or a Goto instruction (a transition
to a new table in the same OF switch). According to
OpenFlow specification, multiple transitions may be
associated with the same flow entry.

2.2 Resistance Verification Model

We emphasize here the features provided in our model
that are required for the resistance verification.

Modeling Stepping Stones. Using stepping stones or
intermediate attack hubs is a technique that is widely
used in attacks to bridge the connection between the
attacker and her targets (Nicol and Mallapura, 2014;
Shullich et al., 2011). Proactive resistance techniques
can break the chain of stepping stones by deploying
multiple heterogeneous resistance countermeasures in
potential attack paths.

Instead of discarding the packets once they reach
their direct destinations, we transform and forward
them back to the network. Incorporating the varia-
bles st and stns in the state characteristic function al-
lows us to track potential attack steps and the list of
stepping stones that has been visited in an attack path.
We modify the hosts behavior so that they will echo
the packets back to the network once they are recei-
ved and the list of previously visited stepping stones
is used to prevent loops.
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Modeling Middle-boxes. OpenFlow switches sup-
port the basic forwarding and filtering functions, but
they do not support other important functions, such
as encryption, inspection, or authentication. This li-
mitation is addressed by integrating legacy middle-
boxes, such as VPN gateways, proxies, and intrusion
detection and prevention systems and configuring the
OpenFLow switches to forward the traffic to the ap-
propriate middle-boxes according to high level po-
licy (Qazi et al., 2013). In our work, these middle-
boxes provide the expected isolation between the net-
work assets and threat sources. Hence, it is essen-
tial to model their complete configuration along with
the OpenFlow data plane. We provide a unified mo-
del that captures both the data plane of the Open-
Flow switches and the complete configuration of se-
lected middle-boxes. We model the configuration of
a middle-box as an ordered rule set. Each rule con-
sists of a set of conditions on the match fields and
an action that belongs to a predefined set that might
include {stateful-inspect, deep-inspect, AH, ESP, tun-
nel}. This set may be extended based on the suppor-
ted middle-boxes in a network.

App-specific Variables. These variables are integra-
ted in the model for specific purposes such as defi-
ning QoS parameters or aggregate functions at run
time without the need to recompile the framework.
We provide special keywords, def and map, to define
new app-specific variables and use them to verify re-
sistance properties. The def declares a variable that
will be encoded as an integer. The map is used to
assign values to the new variable based on the other
variables of the same state. For example, the app-
specific variable shown below defines a new variable
called Thr whose value is mapped from the loc varia-
ble. In this example, the value of the new variable is
50 if loc=1, 30 if loc=2, and so on.

def Thr = map(loc){{1, 50}, {2, 30}, . . .}
All the state variables including the location, match
fields (F), action set (A), and other app-specific va-
riables (L) can be used in the map construct. Once
defined, users can use the new variables directly in
writing the mission or resistance properties.

2.3 Specification Language

We use the standard LTL specification language as a
generic means to specify various properties. Any pro-
perty that can be expressed using LTL can be verified
using our framework. However, as will be shown la-
ter, we provide high level specification language to
describe the resistance requirements and properties
and we translate them automatically to LTL and, later,

Mission Requirements Specification Syntax

QoS Param ρ ::= BW | D RATE | DELAY | . . .
Operator ./::= > | < | ≥ | ≤ | ==

predicate Φ ::= ρ | Z+ | max(ρ) | min(ρ) |
sum(ρ) | avg(ρ)

QoSCond Ψ ::= Φ ./ Φ | Ψ∧Ψ | Ψ∨Ψ
Location L ::= < (ip:port) >

Sec. Comp. M ::= C | I | A | ∗
Requirement R ::= CanReach(L , L , Ψ) |

Protect(L ,M ) | R∨R | R∧R

Resistance Techniques Specification Syntax

Pattern P ::= Ei | Ed

Isolation Ei ::= Icm | Ei∧Ei | Ei∨Ei

Diversity Ed ::= D | Ed ∧Ed | Ed ∨Ed

CMeasure Icm ::= FW | V PN | PROXY | IDS | . . .
Div. Param D ::= OS | V ERSION | SERV ICE | . . .

Res. Tech. S ::= ResistSpec(L ,L ,Z+,P )

Resistance Properties Specification Syntax

Vector V ::= < software/hardware variants >
Property Pres ::= CanResist({L},{V },{M },{Icm})

Figure 2: Specification Language Syntax. Z+ is the set of
positive integers.

to SMT constraints. A property in LTL can contain
any of the standard LTL temporal connectives: next
(X), eventually (F), global (G), until (U), and release
(R). In addition, multiple temporal constraints can be
combined using the logical operators AND (∧), OR
(∨), and NOT (¬).

3 RESISTANCE ENFORCEMENT
VERIFICATION

The network data plane satisfies the resistance enfor-
cement property if it meets two conditions: (1) it cor-
rectly implements desired resistance techniques (i.e.,
isolation and diversity patterns) and (2) implementing
the desired techniques does not introduce violations to
the network mission requirements. In this section, we
formally define the resistance techniques and mission
requirements and show how we verify them using our
bounded model checker.

3.1 Resistance Techniques and Network
Mission Specification

Resistance techniques enforce specific attack resis-
tance and deterrence measures, such as isolation,
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through inspection or encryption, and diversifying the
network parameters in all paths from threat sources to
system assets. In this work, we consider two major
resistance techniques, isolation and diversity, and we
define them formally as follows.

Resistance Techniques Specification. We define a
resistance technique as the tuple (S ,D,P ,F ), where:

• S is a set of locations in the network that represent
potential insider or outsider threat sources.

• D is a set of locations inside the network that re-
present critical assets.

• P is the isolation or diversity pattern. For isolation
techniques, P is expressed as a logical expression
in terms of the countermeasures deployed in the
network, such as VPN gateways, proxies, and in-
trusion detection/prevention systems. For diversity
techniques, P is expressed in terms of the hosts at-
tributes, such as vendor, platform, applications, and
their version.

• F is the frequency that determines in how many
steps of the attack steps the isolation pattern, P ,
should hold in any attack path.

Intuitively, an isolation technique specified based on
this definition means that the specified pattern should
be met in all direct and indirect paths between the spe-
cified threat sources and critical assets for at least F
number of times. Similarly, a diversity technique de-
termines how many times, in an attack path, the attac-
ker should encounter hosts that have different values
for the diversity parameters specified in the the pattern
P . The frequency F makes our definition suitable to
specify existing diversity requirements and metrics,
such as the d2-diversity metric (Zhang et al., 2016),
which typically specify the least number of distinct
components that must be encountered in potential at-
tack paths.

To simplify the specification of the resistance re-
quirements, we provide a unified language to express
the resistance techniques in terms of the construct Re-
sistSpec, which can define both the diversity and iso-
lation techniques. In Figure 2, we show the syntax of
the ResistSpec construct, which takes four arguments.
The first two represent the set of threat sources and
critical destinations. The third argument represents
the frequency. The fourth argument is a Boolean ex-
pression for the isolation or the diversity pattern. For
example, the isolation technique that “if a path is pos-
sible from students labs to the records servers, at le-
ast two rounds of inspection or header authentication
(AH) must exist” can be represented as:

ResistSpec(Labs, Records, 2, (inspect ∨ AH))

Mission Requirements Specification. The mission
of cyber networks is not limited to binary configu-
ration decisions that specify whether hosts are con-
nected to each other or not. In addition to basic con-
nectivity, we identify two types of requirements that
may be crucial for successful mission: (1) to guaran-
tee particular performance and QoS requirements and
(2) to preserve the confidentiality, availability, and
the integrity of particular critical assets in the system.
The performance and QoS requirements are normally
described in the Service Level Agreement (SLA) and
translated to the QoS parameters of the networking in-
frastructure in terms of bandwidth, delays, jitter, etc.
The network data plane affects these parameters as
it determines which switches, ports, and queues the
traffic passes through, which may have different per-
formance metrics. Therefore, end-to-end analysis is
required in order to ensure that the global network
configuration can support the required QoS.

To formally specify the mission requirements, we
provide the language shown in Figure 2. According
to this syntax, a mission requirement, R, can be spe-
cified in terms of the two constructs CanReach and
Protect. CanReach is used to specify the QoS require-
ments between a pair of locations in the network. The
QoS Constraints are composed of a set of conditions
on the aggregate values of the network infrastructure
QoS parameters. The aggregate functions max, min,
sum, and avg calculates the maximum, the minimum,
the summation, and the average values of the para-
meter ρ in each possible path between the specified
locations. For example, let the set C be a set of clients
in an organization that are using a particular service
s. And let P be a pool of servers that are running that
service. Let us assume that the mission of this organi-
zation requires that: (1) “each client should be able to
reach at least one server with a data rate greater than
or equal to τdr” and (2) “the response from any ser-
ver to any client should not be delayed more that τdl”.
These requirements can be represented using our lan-
guage as follows:

∧

c∈C

∨

p∈P
CanReach(c, p : s,min(Drate)≥ τdr)

∧

p∈P

∧

c∈C
CanReach(p : s,c,sum(DELAY )≤ τdl)

The construct Protect can be used to mark the cri-
tical assets in the network, those that if compromised,
the system mission will be in jeopardy. We further
provide the option to specify the fine-grain security
component (i.e., Confidentiality, Integrity, Availabi-
lity) of particular locations in the network, that is cri-
tical to the mission.
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3.2 Verifying Resistance Specifications

To verify the correct implementation of resistance
techniques, we translate their specification to LTL
properties and verify them using our bounded model
checker. This cannot be possible without considering
the indirect reachability. We show in the following
how the resistance techniques specification is transla-
ted to LTL expressions.
• Isolation Countermeasures. The isolation techni-

ques specification depends on the set of counter-
measures that may be deployed in the network. We
define an app-specific variable that associates each
location in the network to its resistance functiona-
lity (i.e., whether it is a filter, a VPN gateway, a
packet inspection box, a proxy, etc). The values of
those variables are determined based on the loc va-
riables using the map construct. Then, we define a
marking variable for each type of countermeasures.
The marking variables capture which countermea-
sures a packet passes through between one parti-
cular source to a destination. At each transition,
the value of each marking variable is set to true if
the flow passes through the corresponding counter-
measure. Otherwise, its value is copied from the
previous state as is.

• Diversity Attributes. For each diversity attribute
that is part of the resistance technique, we define
a new variable in the model and we use the map
construct to assign its value based on the locations
in the network.

• Resistance Pattern. At this point, we have defined
the isolation marking variables in addition to the
diversity variables. The resistance pattern can be
expressed as a logical expression in terms of the
marking and diversity variables.

• Frequency. We define an app-specific variable
(step) that works as a counter. The value of this
counter is incremented only if the resistance pat-
tern is satisfied at the end of each attack step.

• Finally, the isolation specification is expressed as
an LTL property that expresses a counter example
for the desired isolation specification (i.e., it veri-
fies if the attacker can indirectly reach the destina-
tion with inappropriate frequency of the specified
resistance pattern). The absence of counter exam-
ples proves the correct deployment of the specified
resistance techniques.
In Table 1, we show examples for isolation and di-

versity techniques specifications along with the trans-
lated LTL. In the isolation example, we define the
variable cm that maps each location in the network
to its type (i.e., host, filter, IDS, etc.). Then we

Table 1: Resistance Techniques Examples.

Isolation Technique Specification

ResistSpec( dmz, c db, 2,(vpn∨ ( f ilter∧d-inspect))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
def cm = map (loc) {{1, filter}, {2, vpn}, . . . }
def cm f tr = (cm == f ilter)?true : cm f tr−1

def cm vpn = (cm == vpn)?true : cm vpn−1

def cm dnp = (cm == d-inspect)?true : cm dnp−1

def iso = ((step 6= step−1)∧
(cm vpn∨ (cm f tr∧ cm dnp))) ?iso−1 +1 : iso−1

Piso = (loc == dmz)∧F [(loc == c db)∧¬(iso > 2)]

Diversity fTechnique Specification

ResistSpec( i net, c db, 3,os)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
def os = map (loc) {{1, win7}, . . .}
def div = ((step 6= step−1)∧ (os 6= os−1)) ? div−1 +
1 : div−1

Pdiv = (loc == i net)∧F [(loc == c db)∧¬(div≥ 3))]

define the marking variables cm f tr, cm vpn, and
cm dnp. We define these variables using if-then-
else statement ( ? : ). For example, the statement
(cm vpn = (cm == vpn)? true : cm vpn−1) will set
the value of cm vpn to true if the system reaches a
state at which a packet is at a location whose type is
vpn. Otherwise, the previous value is carried along.
We use the notation v−1 to represent the previous va-
lue of the variable v. The same goes for the other
marking variables. Then, we defined the variable iso,
which counts the steps at which the specified isola-
tion pattern is satisfied, based on the marking vari-
ables. Note that this counter is incremented at each
stepping stone (i.e., when step 6= step−1). The fi-
nal LTL expression Piso defines a counter example for
the desired specification utilizing the state’s basic and
app-specific variables. We follow the same procedure
for the diversity example except that the counter div
is incremented only if the current stepping stone di-
versity attributes are different from the previous one.
The expression Pdiv represent a counter example for
the desired diversity specification.

3.3 Verifying Reachability and QoS
Requirements

In this section, we show the steps we follow to trans-
late the mission requirements to LTL properties and
verify them using our model checker. The translation
of the Protect is deferred to the following section be-
cause it depends on the attack description.

The reason that we need to verify the network
mission requirements is that misconfigurations in the
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Table 2: Examples of CanReach Requirements.

Property LTL Property Expression

1. CanReach(s, d, ) P1 = (loc== s)∧(IP SRC == s)∧(IP DST == d)∧F [(loc== d)∧(IP DST == d)]

2. CanReach(s, dc, min(DR)≥ τ) def DR = map (queue) {{1, 512}, {2, 1024} . . .}
P2 = (loc == s)∧ (IP DST == dc)∧F [(min(DR)< τ)∧ (loc == dc))]

isolation and diversity techniques may have negative
impacts on the network mission requirements. Incor-
rect placement of software and hardware variants may
cause reachability and/or performance violations be-
cause some variants may require specific configura-
tion in the network infrastructure level to make them
accessible or they may not be capable of providing
the required performance. Similarly, if an isolation
technique is implemented incorrectly, it may intro-
duce reachability, performance, or security violations
by blocking some legit traffic flow, forwarding traffic
flows through inappropriate ports or queues that are
incapable of providing the required QoS, or granting
undesired access to critical assets in the network. As a
part of verifying the enforcement of resistance techni-
ques, we ensure that all network mission requirements
are satisfied under the deployed techniques.

The CanReach construct can specify basic rea-
chability requirements without any constraints on the
QoS as appears in the first example of Table 2. The
corresponding LTL expression that is shown in the ta-
ble is satisfied if packets that are initially located at
location s will be located at the destination d at any
future state.

The CanReach requirements can also specify con-
straints on the QoS between sources and destinations
in the network. In order for these requirements to be
satisfied, the source should be able to reach the desti-
nation and the QoS, in terms of the QoS parameters,
should meet particular thresholds. In this case, we
follow the following steps:
• The QoS parameters such as bandwidth, data rate,

and delay are defined as app-specific variables and
encoded using the map construct. We assume that
every device/port in the network will have a value
for each quality of service parameter.
• If any aggregate functions are used, they will be en-

coded as app-specific variables and their values are
computed accumulatively at each transition. The
use of SMT allows us to compute their commuta-
tive values utilizing the basic arithmetic and condi-
tional operators.
• Since the QoS parameters and the aggregate values

are defined as app-specific variables, the QoS con-
straints are encoded directly into SMT by replacing
the QoS parameters defined in the constraints with
the corresponding app-specific variables.

The second property in Table 2 shows an exam-
ple of CanReach requirements with QoS constraints.
In this example, the mission requires that the traffic
from a particular server s to the data center dc does
not pass through a port which has a data rate less
than a particular threshold τ. Such requirement is cru-
cial in several solutions that have proposed techniques
for task scheduling in MapReduce architectures (Qin
et al., 2014). Since this requirement depends only on
one QoS parameter, data rate, we define the DR pa-
rameter and assign it is value as a map between the
OpenFlow queue ID and the data rate of that parti-
cular queue. Next, we express the requirement as an
LTL expression that contains a constraint in terms of
the new variable DR and the aggregate function min
that is satisfied if the data rate in all the paths between
the source and destination does not drop below the
given threshold.

4 RESISTANCE EFFECTIVENESS
VERIFICATION

The effectiveness of resistance techniques is evalu-
ated with respect to specific attack propagation mo-
dels. We model in this section the resistance proper-
ties, which define attacks with certain capabilities and
we show how to verify the effectiveness of the resis-
tance configuration against them.

4.1 Network Resistance Properties

We study the resistance of the network configuration
within the context of multi-step attacks, in which the
attacker compromises multiple hosts (stepping sto-
nes) sequentially in order to reach his target. This
behavior is commonly used in two major classes of
cyber attacks: worms and Advanced Persistent Thre-
ats (APTs). We characterize cyber attacks based on
the following attributes:

• Attack Target. The attack target is reaching and
compromising critical assets in the network in or-
der to gather sensitive information or gain access to
private computer systems.

• Impact. The impact specifies which security com-
ponent(s) (i.e., Confidentiality, Integrity, and/or
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Availability) the attack is targeting.

• Attack Vector. The attacker in our model posses-
ses some capabilities to exploit specific software
or hardware components in order to propagate and
compromise network resources.

• Propagation. If the attacker can reach a vulnera-
ble host whose vulnerabilities belong to the attack
vector, that host becomes a stepping stone and the
attack can automatically propagate to its neighbors.

• Countermeasures. Each attack is associated with a
set of countermeasures that are capable of preven-
ting it. An attack is successful if there is at least one
attack path in which the attacker reaches his target
without encountering any of the specified counter-
measures.

The resistance properties evaluate the ability of
the implemented resistance techniques to resist a gi-
ven attack with certain capabilities. Hence, a resis-
tance property describes an attack based on the attack
model discussed above as follows:

Resistance Properties We define a resistance pro-
perty as the tuple (O,V ,M ,C ), where:

• O is a set of untrusted locations that are assumed to
be compromised and they constitute the potential
origins of the attack.
• V is the attack vector, a set of software/hardware

variants that the attacker is capable of compromi-
sing.
• M ⊆ {C, I,A} is the impact vector.
• C is a set of countermeasures that can prevent

and/or divert the attack if encountered in an attack
path.

The network configuration satisfies a resistance pro-
perty if it can prevent the specified attack from propa-
gating and compromising its target. We consider any
critical asset in the network, that is defined as part of
the mission requirements using the Protect construct,
as a potential target of the attack.

Based on this definition, we can see that there is a
direct relation between the implemented isolation and
diversity patterns and the satisfaction of the resistance
properties. The selection of software and hardware
variants in each location in the network through diver-
sity techniques determines whether or not the attacker
encounters variants that she is capable of compromi-
sing (i.e., those variants that belong to the attack vec-
tor V ). On the other hand, the optimal deployment
of isolation techniques can guarantee that attackers
encounter appropriate attack countermeasures ((i.e.,
those that belong to set C ) in any potential path to the
critical assets of the network.

To specify resistance properties, we provide the
high level construct, CanResist, whose syntax is
shown in Figure 2. For example, let us assume that
preserving the integrity and confidentiality of two
database servers, db1 and db2, is specified as part
of the mission requirements using the requirement
Protect({db1,db2},{I,C}), then the following repre-
sent a valid resistance property:

CanResist({dmz, i net}, {RH-6.0}, {I, C}, ids)

This property specifies that threat sources may
exist in the Internet (i net) and the dmz, the attacker
is capable of exploiting Red Hat 6.0 (RH-6.0), the
attacker is targeting the integrity and confidentiality
of its victims, and IDS is an effective countermeasure
against this attack profile.

4.2 Verifying Resistance Properties

In this section, we demonstrate how we translate the
resistance properties to LTL and verify them using
our bounded model checker. Modeling indirect rea-
chability and potential attack propagation makes the
verification of such properties straight forward. Re-
sistance properties are specified using the construct
CanResist(O,V ,M ,C ). To verify that the resistance
configuration can prevent the specified attack from re-
aching the critical locations in the network, we iden-
tify the set of critical locations defined using the Pro-
tect construct as part of the mission requirements.
Specifically, we follow the following procedure to
translate resistance properties to LTL expressions.

• First, we define an app-specific variable, cm, and
assign its value using the map construct to identify
the type of each location in the network (i.e., whet-
her it is a host, filter, ids, etc.).

• Second, we define another app-specific variable, v,
that identifies the software/hardware profile of each
location in the network (i.e., the installed software
and hardware variants). Similar to the cm variables,
it is mapped to appropriate values using the map
construct based on the loc variable.

• Third, We compile a set of hosts in the network
(W) that are declared critical for the network mis-
sion and they are potential targets of the specified
attack. Recall that the Protect construct not only
specifies the location, but also the critical security
component (i.e., confidentiality, integrity, and/or
availability). If the security component specified
in the Protect construct is the wild card (∗) or it be-
longs to the impact vector of the specified attack,
we add the location to the set of critical hosts W.
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Formally,

∀ Protect(l,m) : (l ∈W) ⇐⇒ (m = ∗)∨(m∈M )

• Finally, we compile the LTL expression that
searches for violations of the desired resistance
property utilizing the Until temporal operator as
follows:

∨

o∈O

[
(loc = o)∧(

((cm /∈ C )∧ ((cm = host)→ v ∈ V ))
U(loc ∈W)

)
]

This LTL property is satisfied if there is a path from
any location that belongs to the untrusted set (O)
to any of the critical locations (W), such that all
the intermediate nodes are either vulnerable hosts
or middle-boxes that do not belong to the set of
countermeasures (C ) that are effective against the
specified attack.

5 EVALUATION

We implemented a tool using C#.NET that automati-
cally reads the complete data plane of an OpenFlow
network and provides a GUI for the user to specify the
mission requirements, the resistance techniques spe-
cification, and the resistance properties. This tool uses
the Z3 .NET API to compose the proper SMT expres-
sions and generate an SMT file that contains the com-
plete problem encoded as SMT assertions. We then
feed this file to the Z3 SMT solver. We ran all expe-
riments on a standard PC with 3.4 GHz Intel Core i7
CPU and 16 GB of RAM.

To evaluate the performance and the scalability of
our framework, we measure the time required to solve
the satisfaction problem with respect to multiple pa-
rameters, such as the network size, the sizes of flow
tables, the number of app-specific variables, and the
complexity of the mission requirements and isolation
specifications.

5.1 Extensive Scalability Evaluation

The scalability of model checking tools depends on
the size of the problem in terms of the state space
and the number of transitions. In our case, the size
of the problem depends on multiple network parame-
ters, such as the network size and the length of flow
tables. Due to the lack of real large-scale networks
configurations, we synthesized a number of network
instances with given parameters based on tree topo-
logy, where the leafs are hosts and the inner nodes
are OF switches. In all the generated networks, the
core switches do not constitute more than 15% of the

total nodes in the network. We then generate the con-
straints satisfaction problem and solve it using the Z3
SMT solver. We record the time and memory required
to solve the problem. As presented in Sections 3 and
4, both the resistance specifications and properties are
translated into some form of reachability queries with
varying number and structure of app-specific varia-
bles. Hence, the following evaluation applies on each
of the mission requirements, the resistance specifica-
tions, and the properties.

The Impact of Network Size. In this experiment, we
study the impact of the overall number of network no-
des. We generated a number of networks whose sizes
varied from 75 to 2100 nodes. For each of them, we
report the average time and space of verifying 20 re-
achability properties between random pairs of hosts.
We conducted the experiment under two different set-
tings of the bound k. In one setting, the bound k va-
ries based on the number of flow tables. It was set to
a constant value in the other setting regardless of the
network size. Each switch in these experiments con-
tains up to two flow tables with an average length of
50 flow rules. Figure 3 shows the results of this expe-
riment. We can see that in the case of fixed bound, the
time and space requirements are linear with respect
to the network size. However, in the case of varying
bound, the performance is affected by both: the net-
work size and the bound and it is best described by a
quadratic polynomial with respect to network size.

The Impact of the Flow Table Size. In this experi-
ment, we generated various networks with the same
number of nodes (300 nodes), but with varying flow
table sizes measured by the number of rules. All the
rules have the same structure (i.e. the same number of
instructions and the same length of actions lists). As
reported in Figure 4, the total number of rules ranged
from 1.4 to 33.5 thousand rules. The results show that
the growth in time and space tends to stabilize after a
threshold (i.e. increasing the flow table size does not
significantly increase the requirements). We believe
this behavior is due to the compact representation of
assertions in Z3 that merges similar expressions to-
gether.

The Impact of the Bound k. The bound determines
the number of steps to consider in the bounded model.
For each step, a new set of variables and a replica of
the transition relation is added. To study the impact
of the bound value, we generated two networks: Net-
work 1 that consists of 300 nodes and Network 2 that
consists of 600 nodes. Each switch in the network
has up to 2 tables and an average of 50 flow rules per
table. For each network, we ran our experiment mul-
tiple times, selecting a different bound each time. The
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bounds ranged from 50 to 600. Figure 6 shows that in
both networks the time and space requirements incre-
ase linearly with respect to the bound.

The Impact of App-specific Variables. We con-
ducted an experiment to study the impact of app-
specific variables, which depends on the QoS para-
meters, diversity attributes, and the number of coun-
termeasures. For this purpose, we ran our framework
against a network of 300 nodes with a varying num-
ber of app-specific variables that ranged from zero to
5000. Moreover, we defined two types of app-specific
variables, namely simple and complex. The simple va-
riables were defined as additive operations (e.g., sum
of delays over a path), while the complex includes
non-linear multiplication. Figure 5 reports the time
and space for both types. We can see that the number
of app-specific variables of both types has a very mi-
nor impact on the time and space requirements. They
remain almost constant even with a large number of
app-specific variables.

5.2 Real Network Case Study

In this case study, we evaluate the performance of
our framework on the Stanford backbone network, a
mid-size enterprise network whose entire configura-
tion has been made public for researchers (Zeng and
Kazemian, ). The network consists of 14 zones con-
nected to two backbone routers via ten layer-2 swit-
ches with a total of 240 hosts in the 14 zones and a
total of 3840 flow rules distributed over 16 switches.

We ran more than 50 reachability requirements
with quality of service constraints on the number of
hops between random pairs of hosts in the network.
The source and destination of each pair were selected
from different zones. For both the satisfied and not
satisfied requirements, the measured time ranged bet-
ween 6 and 18 seconds with a mean of 14.34 seconds.
This case study shows the applicability of our verifi-
cation framework for verifying real requirements on
real networks. We believe that the running time is
acceptable as our verification is conducted offline and
does not interfere with the live operation of the net-
work.
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6 RELATED WORK

The verification of network invariants has attracted
a significant body of research in both enterprise and
software defined networks. In this literature review,
we focus on the data plane verification tools for
OpenFlow-based Software Defined Networks. Flow-
Checker (Al-Shaer and Al-Haj, 2010) and HSA (Ka-
zemian et al., 2012) are offline configuration analysis
tools. FlowChecker encodes the OpenFlow flow ta-
bles using Binary Decision Diagrams (BDD) and uses
model checking to verify security properties. HSA
verifies tha data plane correctness by modeling the
network as a geometric model to discover reachability
violations, forwarding loops, and traffic isolation. Ve-
riFlow (Khurshid et al., 2012), FLOVER (Son et al.,
2013), NetPlumber (Kazemian et al., 2013), and Flo-
wGuard (Hu et al., 2014) are real time policy verifi-
cation tools. VeriFlow proposes to slice the OF net-
work into equivalence classes to efficiently check for
reachability violations. FLOVER is a model checker
that checks the OpenFlow configuration for security
violations using Yices SMT solver. NetPlumber is a
real time policy checking tool based on HSA that uti-
lizes a dependency graph between flow entries to in-
crementally check for loops, black holes, and reacha-
bility properties. FlowGuard examines dynamic flow
updates to detect firewall policy violations. Flow-
Guard also provides violation resolution approaches.
Although these works can check the compliance of
OpenFlow network updates with specific invariants.
Their applications are limited to reachability or re-
lated analyses in (Kazemian et al., 2012; Kazemian
et al., 2013; Son et al., 2013) and to firewall policy
verification in (Hu et al., 2014).

ConfigChecker (Al-Shaer et al., 2009) (BDD-
based model checker) and Anteater (Mai et al., 2011)
(SAT-based model checker) are two model checking
frameworks that allow the specification of system pro-
perties using temporal logics. They both employ si-
milar configuration abstraction as our framework, but
they are targeting traditional networks configuration
and they use binary analysis platforms (BDD and
SAT), which make it hard to verify properties with
arithmetic constraints. SecGuru (Bjorner and Jayara-
man, 2014) is another tool that is based on the bit-
vectors theory in Z3 solver for checking network in-
variants. Since SecGuru is also built using Z3, there
may be a potential for extending it to apply bit-vector
arithmetic. However, this has not been demonstrated
in the applications presented in (Bjorner and Jayara-
man, 2014).

The aforementioned related works provide mul-
tiple platforms to verify the end-to-end reachability

in enterprise and software defined networks, but they
do not focus on resistance verification. None of them
provides the ability to express properties for indirect
reachability and reason about multi-step attack paths.
They also have very limited support for QoS requi-
rements verification, which is required to ensure the
network mission integrity. In this bounded model
checking framework, we utilize the arithmetic theory
in SMT to verify end-to-end reachability with QoS
credentials and we model the indirect reachability be-
tween network hosts in order to verify the resistance
specifications and their effectiveness against multi-
step attacks.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we propose a model checking approach
to model the complete configuration of networks and
verify that (i) given mission requirements and resis-
tance techniques specifications are properly enforced
in the network and (ii) they are effective in resisting
certain attacks. We also demonstrated how to achieve
this using our model checker utilizing the linear and
nonlinear arithmetic theories of SMT solvers. Our
evaluation shows that we can verify the effective-
ness of resistance measures against worms/APT at-
tacks propagation. Although the performance evalua-
tion reveals that the framework needs relatively large
time to verify resiliency requirements for large net-
works, the verification is conducted offline. Thus, it
will not affect the live operation of the network. We
believe that the result are comparable to other tools
that have been presented recently for SDN configu-
ration verification. We plan to extend our framework
by integrating more middle-boxes that support advan-
ced functions and modeling other categories of cyber
attacks. We are also investigating the feasibility of
using hierarchical verification techniques by dividing
the network and the properties into groups and in-
vestigate optimization and expression simplification
techniques to enhance the performance of our frame-
work.
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