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Abstract: Algebraic Side-Channel Attacks allow an attacker to exploit single trace leakages in an automated way. The
literature mentions the fact that these attacks have the potential to defeat the masking countermeasure. Though,
this context has not been explored a lot and the lack of experiments makes it difficult to evaluate the feasibility
of these attacks in practice. We set-up a framework to perform such attacks and made new experiments
on state-of-the-art masking schemes. We focused on the number of leakages required for an attack, and
considered realistic leakage points. Our experiments and analyses allow to precisely estimate the minimal
number of leakages required for a successful key recovery.

1 INTRODUCTION

Algebraic Side-Channel Attacks (ASCA) have been
introduced by (Renauld and Standaert, 2009). Their
idea was to combine the techniques used in alge-
braic cryptanalysis (Courtois and Pieprzyk, 2002)
with side-channel analysis, with the intent of exploit-
ing the leakages from a limited number of executions.
Indeed, few leakages may bring too little information
for classical side-channel analysis. ASCA proposes to
use an improved, more elaborated offline cryptanaly-
sis step, in an attempt to fully exploit the available
information. The principle is to write the target ci-
pher as a system of equations, and to add equations
related to the leakages. For instance, equations stating
the Hamming weight of some intermediate results,
as recovered by the side-channel analysis step. This
system of equations is then solved during the offline
phase. In most cases, the system is converted into
a Boolean satisfiability (SAT) problem and a SAT-
solver is used to automatically recover the key bytes,
as described in e.g. (Bard et al., 2007), (Courtois and
Bard, 2007). Other types of solvers have also been
analysed. For instance, (Carlet et al., 2012) consid-
ered solvers based on Gröbner bases.

ASCA allow the exploitation of information ex-
tracted from as little as a single trace. Such extrac-
tions can be achieved via profiling side-channel at-
tacks: the adversary is allowed to use an open copy on
the final target to tune his attack. He then tries the at-
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tack on the target device to extract information on ma-
nipulated data. Template attacks (Chari et al., 2003)
are a typical example. This field has recently been
given a second wind by the use of machine learning
techniques. For instance, (Heuser and Zohner, 2012)
showed that the use of machine learning techniques
improves the attacks in the case of highly noisy traces.
Many recent papers are devoted to this field, and the
improvements they bring to template attacks argue in
favour of ASCA.

In addition to requiring fewer observations to
succeed, ASCA presents several interesting aspects.
First, they can potentially exploit leakages from any
intermediate variable, in any round. Furthermore,
they can succeed in an unknown plaintext/ciphertext
adversarial model. Another particularly interesting
feature of ASCA is their capacity to defeat masking.
Few papers in the literature have studied this point:
(Renauld and Standaert, 2009) and (Renauld et al.,
2009) present some results on PRESENT and AES re-
spectively. However, no deep analysis has been con-
ducted. In particular, no extensive experiments have
been made to determine the conditions when these at-
tacks work, and the efficiency of ASCA in the masked
context has thus not been thoroughly evaluated.

In this article, we aim at exploring deeply the ca-
pabilities of ASCA on masked implementations of
AES. To this end, we have set-up a framework to per-
form ASCA on AES. We consider the best attacker
model, where the leakages measured are always cor-
rect. The progresses currently made in the template
analysis field speak in favour of considering this con-
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text. Thus, we did not use data from any actual de-
vice, but rather used simulation to generate leakages.
We have validated our set-up by first reproducing
attacks on unmasked implementations by (Renauld
et al., 2009) and (Mangard, 2003). We then use our
framework on various state-of-the-art, masked ver-
sions. We analyse how each masking scheme impacts
ASCA, look for the best leakage points, and try to find
the minimal number of leakages required to break the
masked implementation with ASCA. Furthermore,
we also consider the whole attack, i.e.including the
profiling phase. To this end, we tried ASCA with a
limited number of different leakage points, and with
leakage points that would be easier to characterize.

The remaining of this document is organised as
follows. Section 2 provides a survey of the works
published in the field of ASCA, and gives a focus
to ASCA on masked implementations. Section 3 ex-
plains the choices we have made for our study, the
tools we have used and how we have worked. Sec-
tion 4 gives the results we obtained without any mask-
ing, and Section 5 the results on masked implementa-
tion. Section 6 concludes this document and gives
some perspectives.

2 CONTEXT

2.1 ASCA

ASCA have been introduced by (Renauld and Stan-
daert, 2009). They use the principle and the tech-
niques of algebraic attacks (Courtois and Pieprzyk,
2002), but in a side-channel analysis context. Using
algebraic techniques in the offline cryptanalysis step
allows one to take advantage of a wider range of leak-
ages. In particular, these attacks can take advantage
of leakages in intermediate rounds, and they can suc-
ceed in an unknown plaintext/ciphertext adversarial
context. Additionally, they proved to require fewer
observations than traditional side-channel attacks to
succeed.

The first (offline) step of ASCA, is to describe the
target algorithm as a set of equations with the key bits
as variables. Given such a representation, recovering
the key bits amounts to solving the system of equa-
tions. In order to limit the degree of the equations
and to get a system exploitable in practice, techniques
similar to the ones by (Courtois and Pieprzyk, 2002)
are used: additional, internal variables are introduced.
Furthermore, the non-linear substitution is also repre-
sented in a way that limits the degree of the equations,
for instance with the process described in (Biryukov
and De Cannière, 2003).

Then, in the online phase, the target algorithm
is executed and side-channel leakages are gathered.
The additional information (plaintext values, cipher-
text values, Hamming weights of intermediate vari-
ables) is written as equations and added to the existing
system.

The offline phase consists in trying to solve the re-
sulting system. In order to do so, various techniques
might be used and the system of equations might have
to be modified in order to fit the chosen technique.
For instance, using SAT solvers requires converting
the system into Conjunctive Normal Form (CNF) for-
mulas.

The first work (Renauld and Standaert, 2009) fo-
cused on the cryptosystem PRESENT and was ex-
tended to AES in (Renauld et al., 2009). Several
improvements regarding the algebraic representation
of the leakages where proposed in (Mohamed et al.,
2012; Oren et al., 2012; Carlet et al., 2012). The pos-
sibility to handle erroneous leakages has also been ex-
plored, either by describing this situation as an opti-
mization problem (Oren et al., 2010; Oren and Wool,
2012), or by considering the leakages as a set of val-
ues (Song et al., 2014; Mohamed et al., 2012; Zhao
et al., 2012). A different error-tolerant approach has
been introduced in (Veyrat-Charvillon et al., 2014),
that uses a code in place of algebraic equations. This
method has been compared to ASCA in the case of
error-free leakages in (Grosso and Standaert, 2015).
In (Banciu and Oswald, 2014; Banciu et al., 2015),
the authors compare the performances of ASCA and
other single-trace attacks in the presence of faulty
leakages.

2.2 Masking

Side-Channel Analysis takes advantage of statistical
dependencies that exist between a physical leakage
(e.g., the power consumption, the electromagnetic
emanations) produced during the execution of a cryp-
tographic algorithm, and the intermediate values ma-
nipulated. In particular, the principle of Differen-
tial Side-Channel Analysis (DSCA) is the following:
the attacker executes the cryptographic algorithm sev-
eral times with different inputs and gets a set of, say,
power consumption traces, each trace being associ-
ated to one value known by the attacker. At some
points in the algorithm execution, sensitive variables
are manipulated: variables that can be expressed as a
function of a secret variable and the known variable.
The principle of DSCA is to make hypotheses on the
value of the secret and deduce hypotheses on sensitive
values. Statistical tools are then used to compute the
correlation between the predictions and the acquired
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power traces. They allow the attacker to (in)validate
his hypotheses, and recover the value of the secret.

Masking is the state of the art countermeasure
against DSCA. This section gives some details re-
garding the different implementation techniques that
one might encounter.

2.2.1 Generalities

A masked implementation is an implementation
where every sensitive variable v is manipulated in a
masked form, v⊕m, where m is a uniformly dis-
tributed random number. Doing so, the correlation
with the secret value is lost, and DSCA fails. Note
that higher order-DSCA can be used to defeat mask-
ing: the attacker gets traces of both the manipulations
of v⊕m and m and combines them to recover the se-
cret value. A countermeasure to a DSCA targeting d
intermediate values is to split v into d +1 values, us-
ing d random masks. In this work, we limit ourselves
to first-order masking, where one mask is used.

The challenge of masking is to succeed in com-
puting the expected result, while maintaining masks
on sensitive variables. Any linear function L is eas-
ily implemented on masked data by using an additive
masking, as L(v⊕m) = L(v)⊕L(m). Masking non-
linear parts is more challenging, and as a consequence
a variety of techniques has been proposed. They are
summarized in Section 2.2.2.

When masking a whole en/de-cryption process,
different strategies might be applied regarding the
number of masks and their management. We list here-
after some aspects of these strategies.

Mask Propagation vs Mask Correction. In a
mask propagation scheme, the algorithm is applied
to the masked variable without any change; the value
of the resulting mask is computed separately, at each
step. This often amounts to (at least) double the ex-
ecution time of the algorithm. In a mask correction
scheme, the mask is corrected at some step. This
allows to save some computation time using pre-
computation related to the mask that can be used at
each step.

Single-mask Protection vs Multi-mask Protection.
A k-bit CPU will only manipulate k-bit values at once.
This means that a single mask with k-bit entropy is
enough to mask a whole state at a given time. The
single-mask protection uses the same k-bit value to
mask separately all k-bit chunks of a state. This
pushes the mask correction one step further as the
pre-computations can be performed only once. In the
multi-mask protection mode a whole state is masked

with a full entropy mask. Note that, it does not make
sense to use the single-mask protection with mask
propagation as the propagation occurs on the whole
state in a cipher. The three other combinations are
possible.

All Rounds Masking vs Partial Rounds Masking.
After each new round, every bit in the intermedi-
ate state depends on more key bits, forcing a stan-
dard DSCA to make more hypotheses. As masking
schemes are resource and time consuming, one can
consider removing the masking in the inner rounds.
This is assumed safe when the number of key hypoth-
esis is above a certain value. This strategy has been
followed for constrained devices in, e.g. (Tillich et al.,
2007).

2.2.2 Masking Non-linear Operations

Now we examine the different methods to manage
masked variables in non-linear operations.

Table Re-computation Methods. Here, the non-
linear operation is described as a substitution box
(S-box) and one or several masked tables are com-
puted, based on the standard S-box S and the additive
mask. For instance, methods in (Chari et al., 1999),
(Messerges, 2001) or (Akkar and Giraud, 2001) in-
volve the pre-computation in RAM of a new table T
such that T (x) = S(x⊕m)⊕ r, where m is the input
mask and r is the output mask (possibly equal to m).
Each time the S-box has to be applied on the masked
input x′ = x⊕m, the table T gives the masked re-
sult: T (x′) = S(x)⊕ r. A variant has been proposed
by (Prouff and Rivain, 2008), where the table is com-
puted on-the-fly each time it has to be accessed. This
method can use different input and output masks at
virtually no cost, so it can be used in single-mask
and multi-mask modes. One can note that both pre-
sented methods actually implement a mask correc-
tion. Another table-based countermeasure has been
proposed in (Goubin and Patarin, 1999). It involves
the pre-computation of two tables associated to the
function (x,y) 7→ (A(x,y),S(x⊕ y)⊕A(x,y)), where
A is a randomly chosen secret transformation. Ac-
cessing both tables with (x⊕m,m) as an input gives
the new mask A(x⊕m,m) and the new masked value
S(x)⊕A(x⊕m,m). The paper proposes several vari-
ants to reduce the memory consumption.

S-box Secure Computation. In this case, the
masked value S(x)⊕ r is computed from the pair
(x⊕m,m) via an algorithm parametrized by the 3-
tuple (x⊕ m,m,r). The computation of S is split
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into masked elementary operations (bitwise opera-
tions, addition, multiplication,. . . ), and possibly by
accessing one or several look-up table(s). In (Os-
wald et al., 2004; Oswald et al., 2005; Oswald and
Schramm, 2006), composite field arithmetic is used:
each element of GF(256) is represented as a polyno-
mial over GF(16), and the AES S-box is computed
with masked operations in GF(16) only. As the AES
S-box can be decomposed as a linear operation and a
power function (actually, the inversion), another ap-
proach is to use multiplicative masking. Masking
schemes based on this approach have been proposed
by (Akkar and Giraud, 2001; Golic and Tymen, 2003;
Trichina et al., 2003), but showed to be imperfect
protections against DSCA. This method has been im-
proved in (Genelle et al., 2010).

ISW-based Computation. In (Ishai et al., 2003),
the authors introduced a generic method to mask a
multiplicative operation that can be generalized at any
order. Combined with a bit-sliced representation of
the SBox (Rebeiro et al., 2006; Goudarzi and Rivain,
2016), this method allows to securely compute the
AES SBox. For first-order masking on 8-bit devices,
this method is less efficient and hence we do not con-
sider it.

2.3 Masking and ASCA

ASCA have the theoretical power to defeat masking,
as they apply to a single-trace setting. Indeed, the
masking can be represented in the system of equa-
tions by adding some variables and equations for the
masks. However, only few papers have considered
making experiments with masked implementations.

The target of (Renauld and Standaert, 2009) is the
block cipher PRESENT (Bogdanov et al., 2007). Dif-
ferent attack scenarios are considered: leakages for
consecutive intermediate values, leakages for random
intermediate values, known/unknown plaintext or ci-
phertext, and masked implementation. The masking
scheme considered in the paper is a variant of the
“duplication method”, as proposed in (Goubin and
Patarin, 1999). Let S from {0,1}n to {0,1}m be the
S-box of the target algorithm. The technique consists
in pre-computing the table associated to the function
A : (x,y) 7−→ S(x)⊕S(x⊕ y). Then, the new interme-
diate value x′ = S(x) can safely be computed via the
standard S-box, the new mask m′ being given by A:
m′ = A(x⊕m,m) = S(x⊕m)⊕ S(x). One can notice
that this amounts to applying the cipher algorithm un-
modified on a masked input, while maintaining the
mask value at each step. As far as ASCA is con-
cerned, this is equivalent to considering the standard

algorithm with unknown plaintext and ciphertext. An
alternative approach is to build a system of equations
that includes the masking scheme and to solve it with
known plaintext and ciphertext. (Renauld and Stan-
daert, 2009) shows that both strategies succeed in a
single trace scenario.

Masked implementations of AES are mentioned in
(Renauld et al., 2009), two different masking schemes
are considered. The first one is the one proposed by
(Oswald and Schramm, 2006), where the AES S-box
is computed using a table for the multiplicative in-
verse in GF(16). A multi-mask strategy is used, so
that each byte of the state is masked with a differ-
ent mask. Assuming they can obtain the Hamming
weights of all intermediate computations, the attack
succeeds. Due to the large amount of data available,
the success is even greater than with an unmasked im-
plementation. The second one is the one proposed by
(Herbst et al., 2006). This method uses a table recom-
putation to mask the AES S-box, with different values
to mask inputs and outputs. The same masks are used
for every invocation of the S-box. This implementa-
tion is also vulnerable to ASCA, but the attack turned
out to be more time consuming.

To our knowledge, no other experiments have
been done on masked implementations. In particu-
lar, no detailed figures have been given regarding the
minimal number of leakages required by the attack,
or the best leakage points.

3 IMPLEMENTATIONS

In our experiments to evaluate the efficiency of ASCA
against masked implementations, we make the fol-
lowing assumptions:

• The target runs on an 8-bit micro-controller.

• The target leaks the Hamming weight (HW) of the
manipulated (8-bit) variables.

• The measures always give the exact HW with no
noise.

The third assumption may seem unrealistic in general.
However, on 8-bit platforms, this kind of precision
has been showed to be achievable with enhanced tem-
plate analysis or machine learning.

As a reference and to evaluate our framework, we
will consider the key schedule (KS) of the AES, and a
non-masked AES implementation. We will then con-
sider three different masking schemes for the AES.
We focus on the most relevant first-order masking
schemes for AES, most widely found on embedded
8-bit implementations. We consider thus different
implementations, that we summarize hereafter and
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which are described in detail in the following sec-
tions.

KS: The standard implementation of the key sched-
ule. The modelling of this implementation is de-
tailed in Section 3.1.

plain: No masking. The modelling of this imple-
mentation is detailed in Section 3.2.

1Mask: Each byte of the state is masked with
the same byte throughout the execution. The
SubBytes part is implemented with a table re-
computation using the same mask as output, the
MixColumns uses an additional temporary 1-byte
mask, to avoid unmasking sensitive bytes. The
modelling of this implementation is detailed in
Section 3.3.1.

1MaskGF16: Each byte of the state is masked with
the same byte throughout the execution, but the
computation of the inverse is made in GF(16).
This is similar to the previous masking scheme,
but the SubBytes part is decomposed as a map-
ping to GF(16)2 and the inverse is performed in
GF(16) with a table re-computation of the inverse
function with masked output. The modelling of
this implementation is detailed in Section 3.3.2.

16MaskGF16: 16 bytes masking scheme with in-
verse computation in GF(16). As the recomputed
table is smaller in GF(16), it is possible to pre-
compute the inverse table for all possible values.
In this case, no need to add a temporary mask dur-
ing the MixColumn part, and a mask propagation
is used for this step.

In the algorithms presented in this section, the po-
tential leaking steps are indicated by the symbol ◦(X-
or) or •(table lookup), and the total number of leak-
ages in bytes (b), or in nibbles (n), is summarized for
each operation.

3.1 Key Schedule (KS)

Attacking the key schedule of AES when Hamming
weights of intermediate results can be extracted from
the power trace of the device has been considered in
(Mangard, 2003). We aim here at comparing the re-
sult of our ASCA framework to the ad-hoc method of
the referred paper. The algorithm to derive one round
key from the preceding is detailed in Alg. 1.

Our modelling of the key scheduling process uses
128× 10 = 1280 extra variables for all the subkeys.
Each subkey bit is simply described by the algebraic
combination of the previous subkey.

Algorithm 1: Operations and leakages for the Key Schedul-
ing of AES.

k0← k0⊕S[k13]⊕RCr . ◦
k1← k1⊕S[k14] . ◦
k2← k2⊕S[k15] . ◦
k3← k3⊕S[k12] . ◦
for i = 4 to 15 do . leak ×12b

ki← ki⊕ ki−4 . ◦
return k

3.2 Unprotected AES (plain)

As said, for reference we consider modelling the
plain, unprotected AES. The algorithm is detailed
in Alg. 2. It takes as input a 16-byte plaintext
(msgi)(i=0..15) and a 16-byte key (keyi)(i=0..15). The
AES is implemented straightforwardly with the stan-
dard operations: AddRoundKey (ARK), SubBytes
(SB), ShiftRows (SR) and MixColumns (MC). The
leaked values are:

• each byte at the output of ARK,

• each byte at the output of SB,

• each intermediate byte during the MC computa-
tion.

Algorithm 2: Operations and leakages for the plain version
of AES.

for i = 0 to 15 do
si←msgi
ki← keyi

for r = 1 to 10 do . Rounds main loop
for i = 0 to 15 do . ARK: leak ×16b

si← si⊕ ki . ◦
k← NextSubKey(k,r)
for i = 0 to 15 do . SB/SR: leak ×16b

si← S′[si] . •
s′i← sρ(i)

if r < 10 then
for i = 0 to 12 by 4 do . MC: leak ×52b

t← s′i⊕ s′i+1⊕ s′i+2⊕ s′i+3 . ◦
for j = 0 to 3 do

u← s′i+ j⊕ s′i+( j+1 mod 4) . ◦
u← 2u . ◦
si+ j← t⊕ s′i+ j⊕u . ◦

for i = 0 to 15 do
ciphi← s′i⊕ ki

return ciph

The algebraic modelling of this algorithm only
adds extra variables for the state at the beginning of
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each round which amounts to 128× 10 = 1280 ex-
tra variables. As for the key scheduling, we describe
the algebraic relation of each state bit as an algebraic
equation of the bits of the previous step. The degree of
the equation does not exceed 8, the algebraic degree
of the S-Box. This approach is quite different from
previous works, where the S-Box is often modelled
to minimize the overall degree of the equations at the
expense of high degree relations between the output
bits (Renauld et al., 2009). Our approach leaves the
output bits of the S-Box independent from one an-
other.

However, the equations representing the Ham-
ming weight of the leakages also have to be included.
The problem is that these equations also have max-
imum degree 8. Plugging directly the S-Box output
(degree 8) into these equations would result in equa-
tions with too large an amount of monomials. We de-
cided to add extra variables for the intermediate val-
ues of the MixColumns, that is 52×8×9 = 3744 ex-
tra variables. To link these new variables to the other
ones, we also added some extra equations that repre-
sent each extra bit in function of the previous state,
and each bit of the next state in function of the extra
bits.

This modelling technique will also be used for
masked implementations.

3.3 Masking Schemes

In this section, we review the three considered mask-
ing schemes. We present the modelling and the con-
sidered leaking points.

3.3.1 One Byte Masking Scheme (1Mask)

This masking scheme uses the single-mask protection
in a mask correction setting. The algorithm imple-
menting this masking scheme is detailed in Alg. 3. It
takes as input a 16-byte plaintext (msgi)(i=0..15) and a
16-byte key (keyi)(i=0..15). An initialization step con-
sists in picking at random two masks. The first one,
m1, is the main mask. It is used to mask the input
state, and to mask the inputs and outputs of the S-Box.
A second mask m2 is needed: it is used only temporar-
ily in MixColumns, to prevent unmasking. The value
m3 = m1⊕m2 is computed and stored, so that it can
be used at the end of MixColumns to recover values
masked with m1.

The modelling for this implementation is no dif-
ferent from the previous one. We only had to add
16 extra variables to represent the masks m1 and m2.
These extra bits will appear in the equations describ-
ing the leakages.

Algorithm 3: Operations and leakages for the 1Mask version
of AES.

m1← rand . mask 1
m2← rand . mask 2
m3← m2⊕2m2 . mask correction MC
S′← x 7→ S[x⊕m1]⊕m1 . masked S-Box gen.

for i = 0 to 15 do
si←msgi⊕m1 . mask msg
ki← keyi

for r = 1 to 10 do . Rounds main loop
for i = 0 to 15 do . ARK: leak ×16b

si← si⊕ ki . ◦
k← NextSubKey(k,r)
for i = 0 to 15 do . SB/SR: leak ×16b

si← S′[si] . •
s′i← sρ(i)

if r < 10 then
for i = 0 to 12 by 4 do . MC: leak ×52b

t← m2⊕ s′i⊕ s′i+1⊕ s′i+2⊕ s′i+3 . ◦
for j = 0 to 3 do

u← m2⊕ s′i+ j⊕ s′i+( j+1 mod 4) . ◦
u← 2u⊕m3 . ◦
si+ j← t⊕ s′i+ j⊕u . ◦

for i = 0 to 15 do
ciphi← s′i⊕ ki⊕m1 . unmask ciph

return ciph

3.3.2 GF(16) Masking Scheme (1MaskGF16)

This masking scheme also uses the single-mask pro-
tection in a mask correction setting. The algo-
rithm implementing this masking scheme is detailed
in Alg. 4. It takes as input a 16-byte plaintext
(msgi)(i=0..15) and a 16-byte key (keyi)(i=0..15). The
S-Box step is here implemented via an inversion in
GF(16). To this end, a mapping from GF(256) to
GF(16) and its inverse are used.We combine it with
the affine part of SubBytes Aff and use two tables
to implement these steps: mapGF16 and mapGF256.
Four precomputed tables that operate in GF(16) are
also needed:

Td1 : ((x⊕m),m) 7→ x2× p0⊕m
Td2 : ((x⊕m),(y⊕m′)) 7→ ((x⊕m)⊕ (y⊕m′))× (y⊕m′)
Tm : ((x⊕m),(y⊕m′)) 7→ ((x⊕m)× (y⊕m′))
Tinv : ((x⊕m),m) 7→ x−1 ⊕m

where p0 is the constant that defines the composite
field arithmetic.

Here again, the initialization step consists in pick-
ing at random two masks. The first one, m1, is the
main mask. It is used to mask the input state, and
to mask the inputs and outputs of the S-Box. A
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second mask m2 is needed for the same reason as
in the previous scheme: it is used temporarily in
MixColumns to avoid unmasking. Some additional
values are computed: m3 = m2 ⊕ 2m2, m4 = m1 ⊕
Aff(m1), (ml ,mh) = mapGF16(m1), mhl = mh⊕ml ,
y = Tm[mh,ml ] and z = Tm[mhl ,ml ]. The mask m3 is
used as before at the end of MixColumns to recover
values masked with m1. The other values are used in
the computation of the non-linear part of SubBytes,
here again to recover values masked with m1. The
computation of the inverse potentially leaks 13 nib-
bles in addition to the resulting byte, amounting to
208 leakages on nibbles and 16 leakages on bytes per
round.

The algebraic modelling for this scheme is the
same as for Alg. 3 for the MixColumns step. The
SubBytes step requires some extra variables to repre-
sent the leakage equations. There are 208× 4 extra
bits that are linked to the other ones with the straight-
forward algebraic relation on the bits.

3.3.3 GF(16) Full Masking Scheme
(16MaskGF16)

This masking scheme is very similar to the previ-
ous one. The only difference is that the state is now
masked with a 128 bit mask. The algorithm is very
similar to Alg. 4. We refer to this description for the
leakage points.

The algebraic modelling of this masking scheme
is identical to the 1MaskGF16 masking scheme, ex-
cept that it requires 128 extra bits to represent the
mask.

3.4 Software Framework

Generally speaking, the CNF format only use AND
and OR operations. When modelling cryptographic
function, the XOR operation appears very often.
Converting an XOR operation into CNF leads to an
increased number of clauses which can be blocking
for the solver. In our software framework, we
chose the CryptoMiniSat (Soos et al., 2009) solver
(version 2.9.6) it has been especially designed to
handle so-called XOR-clauses. XOR-clauses are
an extension to the CNF format that is efficiently
processed by CryptoMiniSat.

To perform the experiments, we have developed a
full software framework which allows to

• Generate the equations for the AES cipher in al-
gebraic form using Magma (Bosma et al., 1997),
and convert those equations into CNF format with
XOR clauses.

Algorithm 4: Operations and leakages for the 1MaskGF16
version of AES.

m1← rand . mask 1
m2← rand . mask 2
m3← m2⊕2m2 . mask correction MC
m4← m1⊕Aff(m1) . mask correction SB
(ml ,mh)←mapGF16(m1) . mask mapping
mhl ← mh⊕ml . mask correction SB
y← Tm[mh,ml ] . mask correction SB
z← Tm[mhl ,ml ] . mask correction SB

for i = 0 to 15 do
si←msgi⊕m1 . mask msg
ki← keyi

for r = 1 to 10 do . Rounds main loop
for i = 0 to 15 do . ARK: leak ×16b

si← si⊕ ki . ◦
k← NextSubKey(k,r)
for i = 0 to 15 do . SB/SR: leak ×208n, ×16b
(ãl , ãh)←mapGF16(si)
w← Tm[ãl ,mh] . •
x← Tm[ãh,ml ] . •
ud ← Td1[ãh,mh] . •
vd ← Td2[ãh, ãl ] . •
fd ← ud⊕ vd⊕w⊕ x⊕ z . ◦
f ′d ← Tinv[ fd ,mh] . •
f ′′d ← f ′d⊕mhl ,m . ◦
uh← Tm[ f ′′d , ãh] . •
vh← Tm[ f ′′d ,mh] . •
fah ← uh⊕mh⊕ vh⊕ x⊕ y . ◦
ul ← Tm[ f ′d , ãl ] . •
vl ← Tm[ f ′d ,ml ] . •
fal ← ul⊕ml⊕ vl⊕w⊕ fah ⊕mh⊕ y . ◦
si←mapGF256(ãl , ãh)⊕m4 . •
s′i← sρ(i)

if r < 10 then
for i = 0 to 12 by 4 do . MC: leak ×52b

t← m2⊕ s′i⊕ s′i+1⊕ s′i+2⊕ s′i+3 . ◦
for j = 0 to 3 do

u← m2⊕ s′i+ j⊕ s′i+( j+1 mod 4) . ◦
u← 2u⊕m3 . ◦
si+ j← t⊕ s′i+ j⊕u . ◦

for i = 0 to 15 do
ciphi← s′i⊕ ki⊕m1

return ciph

• Generate extra equations for newly introduced
variables (e.g. the masks), for each implementa-
tion (i.e. each masking scheme). These equations
have to bind the new variables to the cipher equa-
tions.

• Generate the equations for the leakages of the cor-
responding intermediate values (e.g. HW(a) = h),
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for each instance (i.e. key/message pair).

• Run the solver with selected equations for a given
number of leakages. The leakages position can
also be specified.

• Record the timing and the result of the solver
(correct key found, incorrect key found, time-
out/error). We set the timeout to 2 hours.

Our framework allows to generate several ran-
domly generated instances to study the variance of the
solving times.

4 GENERAL RESULTS

We applied ASCA to unprotected AES (plain im-
plementation) to validate that we can reproduce the
results found in the state of the art. We describe in
this section our experiments on plain AES.

In this section and the next one, results are given
in tables with the following notations: the first col-
umn shows the rounds that were observed, the second
one gives the number of leakages. The column “Fin-
ish” gives the proportion of executions that finished
before the time-out, and the column “Rate” gives the
proportion of finished executions that output the right
solution. The symbol ? indicates that equations en-
forcing a ciphertext value have been added to the sys-
tem (known ciphertext case).

4.1 Leakages from Key Scheduling

In (Renauld and Standaert, 2009), the authors state
that if the key scheduling leaks information, the attack
of (Mangard, 2003) can be applied directly with 81
leaking bytes. Still, we tried the ASCA approach on
the key scheduling leakages to see whether ASCA can
perform better than Mangard’s approach. The results
are given in Table 1.

Table 1: Results on Key Scheduling leakages.

Rnds Leakages Finish Rate
1–4 64 100% 0%
1–5 80 100% 100%
1–4 ? 64 100% 100%
1–5 ? 80 100% 100%

We see that only 64 leaking bytes are required
for the attack to succeed instead of 81 when a plain-
text/ciphertext pair is available. The ASCA approach
allows to recover the key more efficiently by automa-
tizing the solving task.

In implementations secure against DSCA, as the
key scheduling step does not involve any input data,

it is not necessary to add masking. Thus, this attack
applies directly to masked implementations. Though,
as noted in (Renauld and Standaert, 2009), the key
scheduling could have been pre-computed, and no
leakages are available from this step. That is why,
in the next sections, we will consider that no leakage
from the key scheduling is available in our measure-
ments.

4.2 Unprotected AES

For sake of completeness, we tried our framework on
an unprotected AES implementation. A summary of
the results obtained is given by Table 2. For MC, we
consider two different settings: a first one where only
the 16 results of MC leak, and another one where each
intermediate result leaks, giving in this case a total of
52 leakages.

First, we tried the attack by feeding the leakages
of the output of SB only. Indeed, template attacks
work by profiling specific operations. Each time a
different operation is considered, new templates must
be constructed (and possibly, new curves have to be
observed). As the look-up table of SB might be more
visible than other operations because of the repeated
memory accesses, assuming the attacker has only pro-
filed this table access makes sense. The first two lines
of Table 2 show that this attack fails, whether the ci-
phertext is available or not.

Next, we aimed at finding which is the minimal
number of leakages required for the attack. We found
out that the attack works with good probability when
it is given 48 leakages from the first round and the
ciphertext. This is better than the results by (Renauld
et al., 2009). If we add the full MC leakage, then the
attack works with probability one.

When the ciphertext is not available, the attack
succeeds with good probability with 84 leakages from
the first round, and with probability 1 with 96 leak-
ages on two rounds.

Table 2: Results of the attack on an unprotected implemen-
tation.

Rnds Leakages Finish Rate
ARK,SB,MC Total

1 16,16,16 48 100% 0%
1 16,16,52 84 100% 62.5%
1–2 16,16,16 96 100% 100%
1–2 16,16,52 168 100% 100%
1 ? 16,16,16 48 100% 100%
1 ? 16,16,52 84 100% 100%
1–2 ? 16,16,16 96 100% 100%
1–2 ? 16,16,52 168 100% 100%
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5 MASKED IMPLEMENTATIONS

5.1 Partially Masked Implementation

The first attack that we performed is on a partially
masked implementation. As already said, leakages
from the middle rounds are harder to exploit with
DSCA and it is commonly admitted that DSCA can be
efficiently prevented by masking only the first three
and the last four rounds of AES. It is particularly
interesting for constrained devices, as mentioned in
(Akkar et al., 2004), (Akkar and Goubin, 2003) or
(Tillich et al., 2007).

In this setting, the plain modelling can be used to
attack such implementations, by using only the leak-
ages from rounds 4 to 6.

Table 3 summarizes the results obtained with leak-
ages from the middle rounds of AES with the plain
implementation. Results show that a reasonable suc-
cess rate can be achieved with the observation of only
rounds 4 and 5, when MC leaks all intermediate val-
ues and the ciphertext is available. Full success rate is
achieved as soon as leakages from rounds 4, 5 and 6
can be observed, even if MC leaks only 16 bytes and
the ciphertext is unavailable.

It is interesting to note that when using middle
rounds leakages, adding the information from the ci-
phertext is not only unnecessary, it also makes the
solving time longer. This caused timeout in our ex-
amples.

Table 3: Results of the attack on partially masked imple-
mentations.

Rnds Leakages Finish Rate
ARK,SB,MC Total

4,5 16,16,16 96 100% 100%
5,6 16,16,16 96 100% 100%
4,5,6 16,16,16 144 100% 100%
4,5 16,16,52 168 100% 100%
5,6 16,16,52 168 87.5% 100%
4,5,6 16,16,52 252 100% 100%
4,5 ? 16,16,16 96 0% t/o
5,6 ? 16,16,16 96 0% t/o
4,5,6 ? 16,16,16 144 100% 100%
4,5 ? 16,16,52 168 37.5% 100%
5,6 ? 16,16,52 168 100% 100%
4,5,6 ? 16,16,52 252 100% 100%

5.2 One Byte Masking Scheme

This section summarizes the results of the attacks
on the 1Mask version of AES, as described in Sec-
tion 3.3.1. As described in Section 3, the modelling

adds 16 new variables for the mask. We expected the
system to require more leakages than the plain im-
plementation to be solvable. We experimented several
variants of the attack, their results are summarized in
Table 4.

Results show that in some cases, the attack would
succeed with only 48 first round leakages if the ci-
phertext is known. This is quite rare, we cannot rely
on this in a single trace/message scenario, but it is
worth mentioning that if the attacker has access to
several traces, only 48 leakages may lead to a key re-
covery.

With unknown ciphertext, the solver will find a
key candidate that fits the constraints from the first
rounds, without being the expected key.

We reach a good success probability with either
leakages from two consecutive rounds, or leakages
from one round including leakages from MC inter-
mediate values.

The results are similar when we add the leakages
of the third round, but the execution takes longer. At
this point, the more leakages we add, the longer take
the execution, until it eventually reaches the time-
out. This is because adding too many information
forces the system to solve more equations, whilst it
has enough information too find the right solution.

Table 4: Results of the attack on 1Mask implementation.

Rnds Leakages Finish Rate
ARK,SB,MC Total

1 16,16,16 48 100% 0%
1 16,16,52 84 62.5% 100%
1–2 16,16,16 96 25.0% 100%
1–3 16,16,16 144 37.5% 100%
1–4 16,16,16 192 0% t/o
1 ? 16,16,16 48 12.5% 100%
1 ? 16,16,52 84 87.5% 100%
1–2 ? 16,16,16 96 62.5% 100%
1–3 ? 16,16,16 144 62.5% 100%
1–4 ? 16,16,16 192 75.0% 100%

5.3 GF(16) One Byte Masking Scheme

This section summarizes the results of the attacks on
the 1MaskGF16 version of AES, as described in Sec-
tion 3.3.2.

In this implementation, during the S-Box compu-
tation, most of the operations are performed on 4-bit
nibbles, especially table-lookups. Knowing the Ham-
ming weight of a nibble gives a lot of information.
Thus we expected the attacks on such implementation
to be easier with ASCA.
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In our experiments summarized in Table 5, we fo-
cused on leakages coming from table-lookups only.
This is suitable for situations where the profiling
phase is done only for these operations.

We first tried to minimize the number of neces-
sary leakages by exploiting the leakages from the 4-
bit table-lookups in the order of the algorithm (see
Alg. 4), and the final 8-bit table lookup. First lines
show that 64 leakages from the first round are enough,
provided that the ciphertext is available and used.
Otherwise, the system is under-defined, and the SAT
solver finishes its computation with erroneous solu-
tions.

The attack succeeds without the ciphertext with as
little as 160 table access leakages in the first round.
We can conclude that this masking scheme is very
weak against ASCA due to the manipulation of 4-bit
values.

Table 5: Results of the attack on 1MaskGF16 implementa-
tion.

Rnds Leakages Finish Rate
ARK,SB,MC Total

1 0,48,0 48 100% 0%
1 0,64,0 64 100% 0%
1 0,80,0 80 100% 12.5%
1 0,96,0 96 100% 37.5%
1 0,112,0 112 100% 75.0%
1 0,128,0 128 100% 100%
1 0,144,0 144 100% 100%
1 0,160,0 160 100% 100%
1 ? 0,48,0 48 0% t/o
1 ? 0,64,0 64 100% 100%
1 ? 0,80,0 80 100% 100%
1 ? 0,96,0 96 100% 100%
1 ? 0,112,0 112 100% 100%
1 ? 0,128,0 128 100% 100%
1 ? 0,144,0 144 100% 100%
1 ? 0,160,0 160 100% 100%

5.4 GF(16) Full Masking Scheme

This section summarizes the results of the attacks on
the 16MaskGF16 version of AES, as described in Sec-
tion 3.3.3. For the same reasons as 1MaskGF16, we
chose to focus only on table lookups leakages for this
implementation. The results are summarized in Ta-
ble 6.

Attacking this masking scheme is significantly
more difficult than the one with only 1 mask: with
known ciphertext, the attack is not possible with less
than 128 leakages. Finally, 160 leakages are not
enough anymore to reach the 100% success rate with

unknown plaintext. Regarding the known plaintext
case, the same amount of leakages is more difficult to
handle, resulting in more unfinished computations.

Table 6: Results of the attack on 16MaskGF16 implementa-
tion.

Rnds Leakages Finish Rate
ARK,SB,MC Total

1 0,48,0 48 100% 0%
1 0,64,0 64 100% 0%
1 0,80,0 80 100% 0%
1 0,96,0 96 100% 0%
1 0,112,0 112 100% 0%
1 0,128,0 128 100% 0%
1 0,144,0 144 100% 12.5%
1 0,160,0 160 100% 79.1%
1–2 0,160,0 320 100% 100%
1 ? 0,48,0 48 0% t/o
1 ? 0,64,0 64 0% t/o
1 ? 0,80,0 80 0% t/o
1 ? 0,96,0 96 0% t/o
1 ? 0,112,0 112 0% t/o
1 ? 0,128,0 128 12.5% 100%
1 ? 0,144,0 144 87.0% 100%
1 ? 0,160,0 160 75.0% 100%
1–2 ? 0,160,0 320 100% 100%

6 CONCLUSION

In this work, we adopted an experimental approach to
test the resistance of masked implementations against
ASCA. Our approach is slightly different than in other
papers as we focused on finding the minimal num-
ber of leakages required to break a given implemen-
tation, and we limited leakage types to suit the pro-
filing stage. Our work not only confirms the results
provided in previous works, but also gives more ex-
perimental evidences that the choice of the mask-
ing scheme has a direct impact on the feasibility of
ASCA, even if those masking schemes have the same
level of security regarding DSCA.

Our experiments confirm the intuition that the
more variables are necessary to model the encryption,
the more difficult the solving step will be. In partic-
ular, this makes masking scheme that use a 128-bit
mask quite resistant to ASCA. Our experiments also
highlight that the Hamming weight leakages on nib-
bles gives a lot of exploitable information for ASCA,
making the GF(16) based masking schemes an easy
target.
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Koç, Çetin Kaya., and Paar, C., editors, CHES 2002,
volume 2523 of LNCS, pages 198–212. Springer.

Goubin, L. and Patarin, J. (1999). DES and differential
power analysis (the “duplication” method). In Koç,
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