
Developing a Taxonomy for Software Process Context

Diana Kirk1 and Jim Buchan2

1Technology Academy, EDENZ Colleges, 85 Airedale Street, Auckland 1010, New Zealand
2Software Engineering Laboratory (SERL), Auckland University of Technology (AUT),

Private Bag 92006, Auckland 1142, New Zealand

Keywords: Software Process Context, Taxonomy, Evidence Accumulation.

Abstract: When developing software intensive products, practitioners adapt software practices to suit their specific en-
vironment. In order to evaluate and compare practices in an evidence based way, researchers must report the
context in which the practice was enacted. This is problematic, as the discipline lacks an agreed classification
structure for software context. In this paper, we re-position earlier investigations into software context for
the purpose of practice evaluation by mapping the evolved framework as a taxonomy. The purpose of the
taxonomy is to support discussions about situated software practices with a view to guiding researchers in the
specification of context. We conducted an initial evaluation by classifying existing context structures into the
taxonomy, and by implementing a small trial study. In future work, we will refine the taxonomy in conjunction
with software researchers and practitioners, and use the taxonomy for evidence accumulation.

1 INTRODUCTION

There are many different approaches to creating com-
puter software, each comprising a set of specified
practices. The need to more deeply understand the
relationships between a practice and the context in
which it is enacted is a pressing one. This need arises
from the established fact that practitioners do not fol-
low software methodologies as architected, but rather
adapt these to suit the project environment (Avison
and Pries-Heje, 2008; MacCormack et al., 2012).
Lengnick-Hall and Griffith identify risks in such ad-
hoc practice adaptation. They suggest that applying
knowledge in an intuitive or experimental way intro-
duces a lack of fit between type of knowledge and
how it is applied. The implication is that many organ-
isations are functioning with reduced effectiveness at
best (Lengnick-Hall and Griffith, 2011).

If we are to mitigate the risks inherent in adap-
tation, it is clear that empirical studies investigat-
ing software practices must specify the study’s con-
text (Avison and Pries-Heje, 2008; Fitzgerald, 1997;
Hansson et al., 2006; MacCormack et al., 2012). This
is problematic because our understanding of the fac-
tors that must be included in context is immature.
Thus, researchers who carry out formal experiments
are unable to confidently interpret the scope of appli-
cability of their results because the role of contextual

factors is insufficiently understood (Basili et al., 1999;
Carver et al., 2004; Runeson et al., 2014; Sjøberg
et al., 2005). The goal of amalgamating studies to
achieve a more holistic understanding of a technique
is compromised by a lack of contextual information
(Basili et al., 1999; Kitchenham et al., 2002). The
number of possible contexts is immense, perhaps in-
finite. The problem is exacerbated by the informal
use of terms within the industry. For example, it is
extremely difficult to establish in an exact way what
commonly-used terms such as ‘agile’ and ‘global
software development’ (S̆mite et al., 2014) actually
mean. In order to address these issues, the problem
space must be abstracted in a way that is both mean-
ingful and useful. A taxonomy supports classification
of items according to stated characteristics, i.e. mean-
ing, and thus is suitable for abstraction. In this paper,
we present the first phase of the development of a tax-
onomy for software process context. The taxonomy
represents a re-positioning of our earlier work (Kirk
and MacDonell, 2014a; Kirk and MacDonell, 2016),
where we evolved a candidate framework for software
process context. The aim was to complete the ex-
ploratory, model-building phase of a three-phase ef-
fort to conceptualise, refine and apply a framework
for context (Routio, 2007) i.e. we aimed to create “a
starting point (e.g. a framework) that identifies as-
pects of a topic” (Stol and Fitzgerald, 2015). As this

312
Kirk, D. and Buchan, J.
Developing a Taxonomy for Software Process Context.
DOI: 10.5220/0006885303120319
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 312-319
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



phase involved both empirical observation and hu-
man experience, we adopted a research world view of
pragmatism (Creswell, 2014). The pragmatic view-
point considers theories as “the products of a consen-
sual process ... to be judged for their utility” (East-
erbrook et al., 2008). We intend that our proposed
taxonomy, based on the candidate framework, will
next enter the refinement phase in conjunction with
researchers and practitioners (Routio, 2007) Key un-
derstandings from our previous research are a) terms
commonly named in the literature as describing con-
text in fact relate to different kinds of context, and b)
we need to be really clear about scoping. For a), we
found that factors named as contextual related to or-
ganisation level strategies (for example, ‘globalise’),
project objectives (for example, ‘user acceptance’),
aspects of the process (for example ‘tool support’)
and local operational context (for example, ‘devel-
oper experience’). We also exposed that many named
terms are simply not sufficiently detailed. For ex-
ample, ‘user participation’ may mean the user helped
in requirements definition, is available throughout the
project, carried out beta testing, etc. ‘Non-colocated
team’ may mean testers are in a different country or
the team is split between two locations in the same
building, etc. ‘Company size’ may involve all of con-
straints on local process choices, staff satisfaction lev-
els and locational organisation. Each meaning has dif-
ferent connotations for practice tailoring. For b), we
understood that, for evaluation of practices, the focus
must be on local operational context i.e. we are al-
ways interested in local effect. A factor such as ‘glob-
alise’ certainly may have an impact on the project,
but in an indirect way, for example, by causing teams
to be set up remotely or placing external constraints
on the project. These then become the local context
for the project. We applied the taxonomy develop-
ment method proposed by Nickerson et al. (Nick-
erson et al., 2013) and mapped the taxonomy to the
design structure suggested by Usman et al. (Usman
et al., 2017). Our contribution is an initial taxonomy
for software process context for the purpose of sup-
porting discussions about situated software practices.
In section 2, we overview related work. In section 3
we present the taxonomy design and in section 4 we
define the taxonomy. In section 5, we discuss initial
evaluation efforts. In section 6, we summarise the pa-
per and discuss future work.

2 RELATED WORK

There are two areas of related work for this paper,
research to categorise context and taxonomy design.

2.1 Categorising Context

Many researchers have proposed frameworks that cat-
egorise software contextual factors along various di-
mensions. We overview a selection here.

Avison and Pries-Heje aimed to support selection
of a suitable, project-specific methodology (Avison
and Pries-Heje, 2008). For a given project, the au-
thors plotted position along each of eight dimensions
on a radar graph and inferred an appropriate method-
ology from the shape of the graph. We see two lim-
itations. First, the abstraction is based on a specific
organisation, resulting in missing contexts, for exam-
ple, temporal distance. Second, its scope is the project
and so is inapplicable to, for example, a ‘customer-
driven’ environment, where the on-going relationship
between development group and customer becomes
key (Dingsøyr and Lassenius, 2016; Munezero et al.,
2017; Stuckenberg and Heinzl, 2010).

Clarke and O’Connor propose a reference frame-
work for situational factors affecting software devel-
opment (Clarke and O’Connor, 2012). The frame-
work includes eight classifications: Personnel, Re-
quirements, Application, Technology, Organisation,
Operation, Management and Business, further di-
vided into 44 factors. Our critique of this framework
again relates to semantically inconsistent classifica-
tions. For example, the factor ‘Cohesion’ includes
“team members who have not worked for you”, “abil-
ity to work with uncertain objectives” and “team ge-
ographically distant”, each of which would suggest
different kinds of practice.

Petersen and Wohlin provide a checklist for rep-
resenting context for the purpose of aggregating stud-
ies in industrial settings (Petersen and Wohlin, 2009).
The facets of the structure include Product, Pro-
cesses, Practices, People, Organisation and Market.
The facets and context elements are presented as a
given, without justification. While likely useful, there
appear to be missing contexts, for example, relating
to cultural mis-matches between and within teams.

2.2 Developing Taxonomies

The main related area concerns taxonomy develop-
ment within the industry. For reasons of space, we
limited our coverage. However, Usman et al. effec-
tively summarise the work in this area.

Usman et al. carried out a systematic mapping
study of taxonomies in SE and applied insights to re-
vise an earlier taxonomy development approach (Us-
man et al., 2017). Discovered taxonomies spanned the
software life-cycle, software management and sup-
porting processes. Context for software practices was

Developing a Taxonomy for Software Process Context

313



not represented. Our main interest in this work was
the revised structure for developing taxonomies. We
apply this structure in section 3.

Nickerson et al. proposed a method for taxonomy
development (Nickerson et al., 2013). Key aspects
of the method include the need for a Design Science
approach i.e. iteration with specified ending condi-
tions, determination of the over-riding characteristic
to be applied for classification based on the expected
purpose and user base, and support for different de-
velopment approaches. The authors state the need for
providing insight into the nature of the items to sup-
port explanation and warn against a purely descrip-
tive classification. We follow this advice by aiming
for clarity of conceptual meaning in the categories of
our proposed taxonomy, and by planning an iterative
refinement as future work.

Britto et al. extended an earlier taxonomy for
global software engineering (GSE) (Britto et al.,
2016). Extensions address the recognition that cul-
tural and process-related characteristics are relevant
in a GSE setting. This work is highly relevant as GSE
represents a subset of the space of software engineer-
ing and this means our taxonomy should be applicable
for GSE projects. We address this in future work.

3 TAXONOMY DESIGN

The term ‘taxonomy’ was originally applied to the
naming and classification of organisms in the natural
sciences. The term has more recently been applied in
a broader sense. We adopt the definition of “... classi-
fication according to a predetermined system, with the
resulting catalog used to provide a conceptual frame-
work for discussion...” (TechTarget, nd). The rules
for inclusion in a category must be clearly stated i.e.
mutually exclusivity is indicated. Categories ideally
span the problem space.

Nickerson et al., state that the identification of
meta-characteristics for the taxonomy is a key issue.
The researcher should not examine a “large number
of related and unrelated characteristics ... in the hope
that a pattern will emerge” (Nickerson et al., 2013).
Meta-characteristics should be based on the purpose
of the taxonomy and this requires identification of the
expected users. The authors describe two develop-
ment methods. In the conceptual approach, dimen-
sions are conceptualised by the researcher. The em-
pirical approach involves selecting a subset of items
and establishing common characteristics.

We expect SE researchers and practitioners to use
the taxonomy when discussing situated software prac-
tices. Our meta-characteristic is contextual mean-

ing. As we are re-positioning an existing framework,
developed under a pragmatic world view (Routio,
2007), our approach is conceptual.

3.1 Design Mapping

Usman et al. proposed a taxonomy development
method for software engineering. The approach has
thirteen activities, shown in the first three columns of
table 1. The last column shows our mapping.

3.1.1 Planning

The SE knowledge area for the proposed taxonomy
is software process (A1). The objectives of the tax-
onomy are to support investigations into, and discus-
sions about, situated software practices (A2). The
scope thus includes all situational factors that may af-
fect practice efficacy. The subject matter of the taxon-
omy is context for situated software practices (A3).

Classification structures are informed by studies
into the role of classification in knowledge represen-
tation. Kwasnik suggests that “a good classification
functions in much the same way as a theory does,
connecting concepts in a useful structure” (Kwasnik,
1999). We summarise the options below.

Hierarchies: are a common form of representing
knowledge in fields that have theoretical founda-
tions such as biological evolution. The character-
istic relationship between entities is the is-a re-
lationship, with its connotations of inheritance,
transitivity and mutual exclusivity.

Trees: commonly capture a part/whole relationship.
In this representation, sibling entities may have
little in common, but rather the tree “lays out the
entities comprising a domain in a pattern that ...
makes evident the important or defining relation-
ships among them” (Kwasnik, 1999).

Paradigms: are appropriate for describing entities
by the intersection of two attributes.

Faceted analysis: adopts the viewpoint that a do-
main is constantly changing and must be viewed
from several perspectives. The example provided
by Kwasnik is that of material culture with one
entity described as “19th century, Japanese, ce-
ramic, vase”. Items are thus described by con-
catenating the description for each facet and this
means that new items may appear with as-yet un-
used combinations of facet values (for example,
“19th century, American, ceramic, vase”).

The initial thought would be that, as context has
many aspects with a huge number of possible varia-
tions, a facet-based classification would be most ap-

ICSOFT 2018 - 13th International Conference on Software Technologies

314



Table 1: Taxonomy development activities - Usman et al.
Phase Activity Description Kirk et al.’s taxonomy
Planning A1 Define SE knowledge area Software process

A2 Describe the objectives of the taxonomy Support discussions about situated practices.
A3 Describe the subject matter to be classified Context for situated software practices.
A4 Select classification structure type Tree
A5 Select classification procedure type Qualitative
A6 Identify the sources of information SE literature

Identification, A7 Extract all items Theory+data mapping+pragmatism
extraction A8 Perform terminology control Abstraction
Design, A9 Identify and describe taxonomy dimensions Software initiative
construction A10 Identify and describe dimension categories See figure 1, table 1 and section 4

A11 Identify and describe the relationships Part-whole
A12 Define the guidelines for using the taxonomy See Appendix

Validation, A13 Validate the taxonomy See section 5

propriate. However, the goal for the taxonomy is
not to provide a means of representing every possi-
ble contextual factor, but is rather to abstract the in-
formation in a meaningful way. Our taxonomy is best
described as a Tree (A4). The abstraction process we
applied is qualitative in nature (A5). The taxonomy
is based on concepts from the SE literature (A6).

3.1.2 Identification and Extraction

Extraction of terms from the source data was achieved
by a mix of theory, data mapping and pragmatism
(Kirk and MacDonell, 2014b; Kirk and MacDonell,
2014a; Kirk and MacDonell, 2016). The initial struc-
ture was based on early observations that tailoring re-
quires consideration of goals and environment (Basili
and Rombach, 1987), with environment characterised
by a set of mutually exclusive dimensions (conceptual
approach). As terms from the literature were mapped,
issues were encountered, and the result was a rethink-
ing of the dimensions and the introduction of new cat-
egories. For example, many commonly used terms
were found to be ambiguous with regard to contex-
tual meaning. Such terms must remain in the tax-
onomy if we are to successfully discuss context with
practitioners and researchers, and so a new category,
‘ambiguous’, was formed (A7). All found terms were
abstracted into one of the conceptual categories (A8).

3.1.3 Design and Construction

The top level of the taxonomy is the Software ini-
tiative (A9). The structure is presented in figure 1
and table 2 and structure elements are described in
section 4 (A10). Relationships are part-whole. For
example, a Software Initiative comprises some Ob-
jectives, an Operational Context, a Strategic Context
and a Process Solution (A11). Instructions for use by
researchers establishing context for situated software
practices are shown in the Appendix (A12).

3.1.4 Testing and Validation

See section 5 (A13).

4 TAXONOMY DESCRIPTION

In this section, we describe the categories included in
the taxonomy.

Figure 1: Taxonomy top level.

The taxonomy is depicted in figure 1 and table 2.

4.1 Software Initiative

A Software initiative is any endeavour that involves
defining, creating, delivering, maintaining or support-
ing software intensive products or services. It thus
encompasses the more recent client-focussed delivery
paradigm and subsumes the traditional ‘project’.

4.2 Objectives, Strategic Context,
Process Solution

Objectives represent the goals of the initiative at an
operational level. For example, as the result of a
strategic decision, a project manager may be tasked
with delivering a product within a short time-frame.
(S)he may also be expected to keep staff happy i.e. a
single initiative may have several objectives.

Developing a Taxonomy for Software Process Context

315



Table 2: Local operational context factors.
People Entity Capability High ... Low

Motivation High ... Low
Empowerment High ... Low
Cultural cohesion High ... Low

Interface Cultural cohesion High ... Low
Place Entity Physical distance Same room, same blg, same city, same country, different country

Temporal distance Same time zone, <4 hrs overlap, <6 hrs overlap, >= 6 hrs overlap
Availability High ... Low.

Interface Physical distance Same room, same blg, same city, same country, different country
Temporal distance Same time zone, <4 hrs overlap, <6 hrs overlap, >= 6 hrs overlap
Availability High ... Low.

Product Product type Safety critical; embedded; developer tools.
Lifecycle stage NPD, adolescence, maturity, old-age, in-retirement
Standards Safety; security; licencing.
Requirements Well-understood; changing/emergent; conflicting; missing.
Implemented Consistent; complete; quality; complexity.

External Client Specification; delivery.
Process Parent org

Legal
Financial

Strategic context includes the many factors that re-
quire decision makers to manipulate the Objectives or
Operational context for the initiative. Examples are
the organisation’s need to gain consumer trust, or to
expand into a global marketplace. The first may re-
sult in a project where product quality is stated as the
key objective. The second may result in the establish-
ment of off-shore teams (operational context). In both
cases, the affect on tailoring is indirect.

Process solution represents the set of practices and
techniques enacted within the initiative to meet the
stated objectives. This is the element to be tailored
according to Objectives and Operational context.

4.3 Operational Context

These are the contextual factors that apply at the op-
erational level and that are fixed for the initiative. Of
course, a factor that is fixed for one initiative (e.g. us-
ing an external test team) may be under project man-
agement control for another.

4.3.1 Secondary, Ambiguous

Secondary factors are factors that comprise multiple
ideas. An example is ‘outsourcing’, which has many
possible scenarios relating to what is outsourced by
whom, where.

Ambiguous factors require deeper consideration.
An example is ‘uncertain requirements’, which may
exist because the client is unclear about what is
wanted, client processes result in delays before re-
quirements decisions can be made, or the relevant
client isn’t available. Each of these meanings has dif-
ferent connotations for practice tailoring.

4.3.2 Local Context

These are the operational contextual factors that are
directly applicable i.e. are the real factors of interest
for process adaptation. The subcategories are People,
Place, Product and External Process.

People: relates to cultural characteristics which af-
fect how well a team performs. Identify the
culturally-disparate entities (for example, agile
team, analysts, client) and the interfaces between
entities. For each entity, establish

• capability - ability to perform.
• motivation - desire to perform well.
• empowerment - degree of autonomy.
• cultural cohesion - degree of shared under-

standing within the entity.

For each interface, we establish cultural cohesion.
For example, the shared understanding between
client and development team can be low.

Place: addresses the availability of people, affecting
practices relating to logistics and communication.
For all entities and interfaces, we establish

• physical distance.
• temporal distance.
• level of availability.

Product: relates to characteristics of the product that
may impact practice selection. By product, we
mean either the product to be built or the product-
as-is. Characteristics include

• product type (e.g. life-critical, embedded).
• maturity (for example, new product, stable).

ICSOFT 2018 - 13th International Conference on Software Technologies

316



• standards that impact the product.
• characteristics of product definitions (for exam-

ple, conflicting requirements) .
• characteristics of as-implemented product (for

example, consistency between representations).

Process: addresses constraints due to processes ex-
ternal to the software initiative. Sources include

• client (for example, delivery expectations).
• parent organisation (for example, cultural ex-

pectations on process).
• legal constraints (for example, licencing) .
• financial constraints (e.g. on tools).

Italicised and missing items in the last column of
table 2 represent unfinished branches. In some cases,
we are not confident that the sub-categories shown
exhibit orthogonality. In other cases, we believe the
branch is incomplete. These are areas for future work.

5 EVALUATION

Development of a taxonomy is expected to be itera-
tive (Nickerson et al., 2013). Approaches to demon-
strating utility include illustration (examples, scenar-
ios and cases), case studies, experiments and expert
opinion (Usman et al., 2017). S̆mite et al. suggest that
a taxonomy can be validated by “demonstrating or-
thogonality of its dimensions, benchmarking against
existing classifications and ... (classifying) existing
knowledge”. Britto et al. demonstrated utility of an
extended GSE taxonomy by classifying existing GSE
projects (Britto et al., 2016).

As a first iteration, and initial evaluation, we clas-
sified two context structures from the literature (Avi-
son and Pries-Heje, 2008; Petersen and Wohlin, 2009)
and implemented a small, informal trial study.

5.1 Classifying Existing Structures

In tables 3 and 4, we show the results of classifying
the elements of the target structures (columns 1 and 2)
into our taxonomy (column 3). We first note that the
source elements represent different kinds of meaning.
For example, Quality in table 4 classifies as an Objec-
tive and Time critical in table 3 as Strategic context
(as decisions concerning scope, manpower, etc. must
be made). Many elements classify as Ambiguous i.e.
cannot be used for practice tailoring without further
investigation. For example, Language in table 4 may
mean ‘the language the product is coded in affects de-
veloper capability’ or ‘there is an external constraint
on the language to be used for coding’.

Table 3: Classification - Avison and Pries-Heje.
Task Large Prod:Req

Unclear Prod:Req
Complex Prod:Req

Knowledge Domain Pple:Ent:Capablty
Development Pple:Ent:Capablty
Tools Pple:Ent:Capablty

Individual Project experience Pple:Ent:Capablty
Forced into project Pple:Ent:Motivn
Part time Place:Ent:Avail

Environmt Far apart Secondary
Interruptions Ambiguous
Spacial conditions Secondary

Team Large,backgrounds Pple:Ent:Cohesn
Personality mix Pple:Ent:Cohesn
Just met Pple:Ent:Cohesn
Calendar time Strategic context
Time critical Strategic context

Stakehldrs Conflicts Pple:IF:Cohesn
Many Ambiguous
Mgmnt attentn Ambiguous
Unclear decisions Ambiguous

Criticality Life threatening Prod:Type
Process constrained Process
User needs unknown Prod:Req
Complex req. Prod:Req

Table 4: Classification - Petersen and Wohlin.

Product Maturity Product:Lifecycle
Quality Objectives
Size Product:Req.
System type Product:Type
Customisation Product:Type
Language Ambiguous

Processes Activities Ambiguous
Work-flow Ambiguous
Artifacts Ambiguous

Practices CASE tools Ambiguous
Techniques Ambiguous

People Roles Pple:IF:Cohesn
Experience Pple:Ent:Capablty

Organisation Org model Secondary
Org unit Ambiguous
Certification Ambiguous
Distribution Secondary

Market Num customers Process:Client
Mkt segment Strategic context
Strategy Strategic context
Constraints Strategic context

We further observe that some of our taxonomy
categories are not represented. Examples are product
lifecycle stage in table 3 and the people motivation
and empowerment categories in table 4. It is possi-
ble that these categories are covered by the elements
classified as Ambiguous and Secondary.

Developing a Taxonomy for Software Process Context

317



5.2 Trial Study

Participants (industry practitioners) were provided
with instructions (see Appendix), to be read in con-
junction with the definitions above. In summary, they
were asked to

• Select a specific practice from a recent software
initiative and establish objectives.

• Identify factors believed to have contributed to-
wards success or failure.

• Classify the factors into the taxonomy.

Several practitioners were positive about the pos-
sibility of a decision support system to help with prac-
tice selection. However, most found it difficult to
align their thinking with the categories of the taxon-
omy. This is not surprising, as thus far there appears
to have been little thought given to exactly what is
meant by ‘context’, with the result that different kinds
of factor tend to be viewed in a generic way. This
caused us to understand that the taxonomy is primar-
ily a tool for researchers, at least until a common ter-
minology has been established.

One researcher, with expertise in the area of hu-
man aspects in agile projects, felt that the terms
‘cultural cohesion’ and ‘shared understanding’ in the
‘People’ category had two different meanings. He
suggested the term ‘team cohesion’ was a more appro-
priate one. He also suggested the addition of the term
‘willingness to change’ as having a different meaning
than ‘motivation’ i.e. both are required as basic ideas.

6 SUMMARY

In this paper, we have proposed a taxonomy for soft-
ware process context. The taxonomy represents a
repositioning of our earlier investigations and our
contribution is a preliminary conceptualisation of
context to support discussion and evidence accumula-
tion. We applied the taxonomy development method
proposed by Nickerson et al. (Nickerson et al., 2013)
and mapped the taxonomy to the design structure sug-
gested by Usman et al. (Usman et al., 2017). The
main limitation of this contribution is that, at present,
the taxonomy is in the conceptual stage and so eval-
uation thus far is minimal. We classified two existing
context models into the taxonomy and conducting a
small industry trial. In the next stage of our research,
we will formally and iteratively refine the taxonomy
(Nickerson et al., 2013; Routio, 2007) in collabora-
tion with researchers and practitioners.

REFERENCES

Avison, D. and Pries-Heje, J. (2008). Flexible informa-
tion systems development: Designing an appropriate
methodology for different situations. In Filipe, J.,
Cordeiro, J., and Cardoso, J., editors, ICEIS 2007,
pages 212–224. Springer.

Basili, V. R. and Rombach, H. D. (1987). Tailoring the Soft-
ware Process to Project Goals and Environments. In
Proc. Ninth International Conf. on SW Engineering,
pages 345–357. IEEE.

Basili, V. R., Shull, F., and Lanubile, F. (1999). Building
Knowledge through Families of Experiments. IEEE
Trans. on Software Engineering, 25(4):456–473.

Britto, R., Wohlin, C., and Mendes, E. (2016). An extended
global software engineering taxonomy. Jrnl. Software
Engineering Research and Development, 4:3.

Carver, J., Voorhis, J. V., and Basili, V. (2004). Understand-
ing the Impact of Assumptions on Experimental Va-
lidity. In Proc. ISESE’04, pages 251–260. IEEE.

Clarke, P. and O’Connor, R. V. (2012). The situational fac-
tors that affect the software development process: To-
wards a comprehensive reference framework. Infor-
mation and Software Technology, 54:433–447.

Creswell, J. W. (2014). The Selection of a Research Ap-
proach, pages 31–55. Sage Publications Inc.

Dingsøyr, T. and Lassenius, C. (2016). Emerging themes in
agile software development: Introduction to the spe-
cial section on continuous value delivery. Information
and Software Technology, 77:56–60.

Easterbrook, S., Singer, J., Storey, M., and Damian, D.
(2008). Selecting empirical methods for software en-
gineering research. In F. Shull and J. Singer and D.I.K
Sjøberg, editor, Guide to Advanced Empirical Soft-
ware Engineering, pages 285–311. Springer Interna-
tional Publishing, London, UK.

Fitzgerald, B. (1997). The use of systems development
methodologies in practice: a field study. Information
Systems Journal, pages 201–212.

Hansson, C., Dittrich, Y., Gustafsson, B., and Zarnak, S.
(2006). How agile are industrial software develop-
ment practices? Jnl. Systems and Software, 79:1295–
1311.

Kirk, D. and MacDonell, S. G. (2014a). Categorising soft-
ware contexts. In Proceedings of 20th Americas Con-
ference on Information Systems, AMCIS 2014.

Kirk, D. and MacDonell, S. G. (2014b). Investigating a con-
ceptual construct for software context. In Proceedings
of the Conference on Empirical Assessment in Soft-
ware Engineering (EASE), number 27.

Kirk, D. and MacDonell, S. G. (2016). An Ontological
Analysis of a Proposed Theory for Software Devel-
opment. In Software Technologies - ICSOFT 2015,
volume 586 of CCIS, pages 1–17. Springer Intl.

Kitchenham, B. A., Pfleeger, S. L., Hoaglin, D. C., El
Emam, K., and Rosenberg, J. (2002). Preliminary
Guidelines for Empirical Research in Software Engi-
neering. IEEE Trans. on SW Eng., 28(8):721–734.

Kwasnik, B. H. (1999). The role of classification in knowl-
edge representation and discovery. Library Trends, 48.

ICSOFT 2018 - 13th International Conference on Software Technologies

318



Lengnick-Hall, C. A. and Griffith, R. J. (2011). Evidence-
based versus tinkerable knowledge as strategic assets:
A new perspective on the interplay between innova-
tion and application. Journal of Engineering and
Technology Management, 28:147–167.

MacCormack, A., Crandall, W., Henderson, P., and
Toft, P. (2012). Do you need a new product-
development strategy? Research Technology Man-
agement, 55(1):34–43.

Munezero, M., Yaman, S., Fagerholm, F., Kettunen, P.,
Mäenpää, H., Mäkinen, S., Tiihonene, J., Riungu-
Kalliosaari, L., Tuovinen, A.-P., Oivo, M., Münch, J.,
and Männistö, T. (2017). Continuous Experimentation
Cookbook. DIMECC Oy, Helsinki, Finland.

Nickerson, R. C., Varshney, U., and Muntermann, J. (2013).
A method for taxonomy development and its applica-
tion in information systems. European Journal of In-
formation Systems, 22:336–359.

Petersen, K. and Wohlin, C. (2009). Context in Industrial
Software Engineering Research. In Proc. ESEM 2009,
pages 401–404, Orlando, Florida. IEEE.

Routio, P. (2007). Models in the Research Process.
http://www2.uiah.fi/projects/metodi/177.htm.

Runeson, P., Stefic, A., and Andrews, A. (2014). Variation
factors in the design and analysis of replicated con-
trolled experiments. Empirical Software Engineering,
19:1781–1808.

Sjøberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B.,
Karahasanovic, A., Liborg, N.-K., and Rekdal, A. C.
(2005). A Survey of Controlled Experiments in Soft-
ware Engineering. IEEE Transactions on Software
Engineering, 31(9):733–753.

Stol, K.-J. and Fitzgerald, B. (2015). Theory-oriented soft-
ware engineering. Science of Computer Program-
ming, 101:79–98.

Stuckenberg, S. and Heinzl, A. (2010). The Impact of
the Software-as-a-Service concept on the Underly-
ing Software and Service Development Processes. In
Proc. PACIS 2010, pages 1297–1308.

TechTarget (n.d.). Definition - Taxonomy.
Usman, M., Britto, R., Börstler, J., and Mendes, E. (2017).

Taxonomies in software engineering: A Systematic
mapping study and a revised taxonomy development
method. Inf. and SW Technology, 85:43–59.

S̆mite, D., Wohlin, C., Galviņa, Z., and Priladnicki, R.
(2014). An empirically based terminology and taxon-
omy for global software engineering. Empirical Soft-
ware Engineering, 19:105–153.

APPENDIX

Scope the Study

• Select a recent or current software initiative (for
example, a project).

• Select a specific practice from the initiative.

• Establish the objectives for the initiative. Classify
as ‘Objectives’. Note that these are the local, op-
erational objectives.

Classify named factors
For the selected software initiative and practice, ask
the practitioner (or ascertain from the literature) the
factors believed to have been important in the success
or failure of the practice in meeting one of the objec-
tives. For each named factor, establish:

• If the factor refers to an organisation level strat-
egy, (for example, ‘increase market share’), clas-
sify as ‘Strategic context’. Discuss with the prac-
titioner what this means locally for the initiative
and identify any local factors.

• If the factor represents a local objective, classify
as ‘Objectives’.

• If the factor describes the attributes of a process
or practice, classify as ‘Process solution’. Some
examples are ‘tool support’, ‘agile process’.

• If the factor is believed to directly affect the effi-
cacy of the named practice in meeting one of the
objectives, classify as ‘Operational Context’ and
continue with classify operational factors, below.

• If the factor does not classify as any of the above,
report back to the taxonomy owner, as this may
indicate a gap in the taxonomy.

Classify operational factors
An ‘Operational Context’ factor must be classified
into one of the four base dimensions (‘People’,
‘Place’, ‘Product’, ‘Process’ ) and then sub-classified
according to the structure shown in Table 2. Elements
with italicised or missing values in the last column
represent ‘unfinished’ elements.

• If the factor does not have a clear classification ac-
cording to the descriptions in section 4, analyse it
as a possible secondary or ambiguous factor, and
classify as such.

• Classify the factor according to table 2. For ele-
ments with uncertain values, ascertain any values
that are believed to be relevant, using the exam-
ples to support identification.

• Analyse all secondary and ambiguous factors in
conjunction with the practitioner, and add emerg-
ing factors to the list of factors to be analysed.

• Create two diagrams for the selected initiative, ob-
jective and practice, one for the context that sup-
ported practice efficacy, and the other for the con-
text that was detrimental to practice efficacy. In
each, show values for all context leaf nodes that
have emerged during the analysis.

Developing a Taxonomy for Software Process Context

319


