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Abstract: As cyber-physical systems are becoming more human independent any anomaly or system failure should be 
detected and solved in an autonomous way. In the last decade significant research was performed to find 
more intelligent and accurate anomaly detection methods. Most of these methods are analyzing only the 
output(s) of a system hoping to find some inconsistencies in the data stream. Our attempt is to consider the 
system’s model as well and develop an anomaly detection methodology that tries to identify slight changes 
in the behavior of the system, detectable through model changes. The key part of our detection method is 
the system identification step through which we compute the system’s model considered as a differential 
equation between input and output signals or as an autoregression formula. We demonstrate the feasibility 
of the proposed method through a simulated and a real-life example. 

1 INTRODUCTION 

In cyber-physical systems anomalies may have 
various causes like natural ones as environmental 
noise, communication errors or device faults as well 
as artificial ones caused by malicious attacks (e.g. 
virus attacks). In each case an automated method 
should discriminate between correct and abnormal 
data. In case of computer controlled systems, 
incorrect parameter values will produce wrong 
control decisions which may bring the physical 
system in an unstable, even dangerous state. 
Therefore, the measured values should be analyzed, 
and outlier values should be eliminated before a 
control decision is made.  

There are different kinds of anomalies that 
should be detected: 

• statistically detectable anomalies  
• single value outliers (in time series and 

spatially distributed data) 
• abnormal signal shapes or patterns 
• system behavior changes 

This article is focused mainly on the detection of 
anomalies from the last category where a slight 
change in the behavior of a system may be 
interpreted as an anomaly. As it will be shown in the 
next paragraphs, the problem of anomaly detection 
can be solved using system identification techniques. 
We measure continuously the input and output of a 

given system and compute the coefficients of the 
system’s model described as a differential equation 
or as an auto-regression. Any significant change in 
these coefficients is considered an anomaly. This 
detection technique is based on the supposition that 
a given physical system is not changing its 
mathematical model in time.  

This method can detect anomalies that are not so 
evident for a human observer. Also, some other kind 
of anomaly detection methods based only on the 
continuity or statistical parameters of the output 
signal may fail to detect changes in the system 
model. This method also eliminates some false 
anomalies (that may be detected by other methods) 
that may occur because of some significant change 
in the input signals.  

The rest of the paper is organized as follows: the 
next section presents some related work in the area 
of anomaly detection; section 3 explains the basic 
idea behind our method, it gives the mathematical 
background and demonstrates the feasibility of the 
method through some experiments; the conclusions 
of this research are summarized in the last chapter. 

2 RELATED WORK 

In the last decade, a lot of research was performed 
(Barnett et al., 1994) (Cateni et al, 2008) (Gupta et al, 
2014) in the direction of developing new anomaly 

482
Sebestyen, G. and Hangan, A.
Anomaly Detection using System Identification Techniques.
DOI: 10.5220/0006888604820487
In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2018) - Volume 1, pages 482-487
ISBN: 978-989-758-321-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

detection methods that assure higher accuracy and 
precision in different domains on interest: economy 
and business, industry, social sciences, weather and 
environmental prediction, etc.  

One tendency (Agrawal et al, 2015) is to find 
general methods that work well on a wide range of 
datasets. These methods exploit some inherent 
correlations and redundancies present in the 
collected data, without analyzing the technical 
significance of the different attributes present in the 
datasets.  For instance, the same clustering method 
used for anomaly detection may work well on 
financial data as well as on environmental data or 
data collected from an industrial process. 

The other tendency (Rassam et al, 2013) (Zhang et 
al, 2010) is toward a more specialized approach 
where the method and its configuration depend on 
the applications’ domain, the type of data (e.g. 
statistical data, time series, sensorial data, etc.) and 
the kind of anomaly taken into consideration. In 
(Estevez-Tapiador et al, 2014) the authors present a 
taxonomy of anomaly detection methods based on 
the above-mentioned criteria. 

In principle, any anomaly detection method 
(Chandola et al, 2009) is built upon some kind of 
correlation between the samples of some measured 
parameters (or signals); the correlation may be found 
in the continuity of a signal (e.g. for time series) or 
as a functional correlation between different 
parameters (e.g. given by a physical law). An 
anomaly is broking these correlation rules, offering 
the ground for the automated detection process.  

Our proposed method tries to go “behind the 
scene” in the sense that it does not look only on the 
collected data, it tries to build the model of the 
system that generates the data. In our approach any 
change in the system model (e.g. behavior) is an 
indicator of a possible anomaly. In this sense we 
consider that this kind of anomaly detection 
technique is a different approach and it may solve 
some cases when more traditional methods fail to 
detect the anomaly.   

3 ANOMALY DETECTION AS A 
SYSTEM IDENTIFICATION 
PROBLEM 

Most of the anomaly detection techniques used for 
datasets containing time series try to analyze the 
output of a given system in order to identify an 
abnormal value or sequence of values. In these 
cases, the anomaly detection is based on the 

supposition that there is a time correlation between 
consecutive samples of the same (process) 
parameter. The graphic of the time series should be a 
continuous function over time. Any sample that 
breaks this correlation is considered an anomaly of 
some kind. Sometimes also spatial correlation (e.g. 
present in data collected through a distributed sensor 
network) or any kind of functional correlation 
between multiple parameters may be used for this 
purpose.  

Unfortunately, in all these cases a significant 
change in the evolution of the output signal(s) is 
considered an anomaly. But there are justified cases 
when the output of a system changes significantly 
without it being an anomaly.  

For instance, in a temperature regulated room a 
door/window is opened, and the temperature is 
dropping fast, or in the case of an electric motor the 
speed varies significantly if the input voltage of the 
load changes. Therefore, in such systems also the 
input signal(s) that may produce a change in the 
output signal(s) has to be considered, eliminating 
those cases when the drastic change of the output 
was caused by a justified change in the input.  

There are also cases when a system is changing 
its behavior without a significant change in the 
output signal. As it will be shown in figures 2 and 3 
it is hard even for the human eye to determine the 
moment when such a change happened. These cases 
should also be considered as anomalies in the 
behavior of a system. 

The goal of our research was to find an anomaly 
detection approach that covers both cases: to 
eliminate false alarms if a change is caused by 
natural causes and to detect slight changes in the 
behavior of a system as an indicator for an anomaly. 

Figure 1 shows the basic setup of our 
experiment. We consider that there is a given system 
(a black box) who’s input and output parameters are 
measurable. A component, called the estimator, tries 
to build the mathematical model of the given system, 
based on the measured input and output signals. Any 
significant change in the system’s model detected 
during the time may be considered as an abnormal 
behavior or an anomaly. 

 

Figure 1: The setup scheme. 
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3.1 The Mathematical Approach 

In most cases a real (physical) system may be 
approximated with a first order or second order 
differential equation. This assumption is based on 
the fact that most real systems have one or maybe 
two dominant time constants that correspond to 
some inertial (or energy accumulating) components.  
For instance, in electronics an RC filter (resistor 
condenser) is described with a first order differential 
equation and a circuit with a resistor a condenser and 
an inductor as a second order equation (the 
condenser and the inductor are the energy 
conserving components). In a similar way in 
mechanics a suspension system composed of a 
spring and a dumper may be modelled with a second 
order equation. 

A first order differential equation has the 
following form: ݀ݐ݀/ݕ = ܣ ∗ (ݐ)ݕ + ܤ ∗  (1)   (ݐ)ݔ

Where: y(t) is the output signal and x(t) is the 
input signal; A, B are the constants that define the 
the system model. 

In digital domain, the equation becomes: ݕ(݊) = ܽ ∗ ݊)ݕ − 1) + ܾ ∗  (2)  (݊)ݔ

Where: y(i), x(i) are the nth sample of the output 
and input signals; a,b are constants that describe the 
first order system. 

In a similar way, a second order system is 
described in digital domain as: ݕ(݊) = ܽ ∗ ݊)ݕ − 1) + ܾ ∗ ݊)ݕ − 2) + ܿ ∗  (݊)ݔ

       (3) 

In order to model a given physical system with 
an acceptable precision a first or a second order 
differential equation is adopted and then the constant 
parameters of the equation should be determined.   
This process is called system identification. There 
are many methods that can be used for this purpose. 
For instance, one method works as follows: a step 
signal is applied at the input of the system; the 
corresponding values measured at the output of the 
system will give the integral of the system’s 
transformation function. By differentiating the 
output signal, we obtain the transformation function 
of the system. 

In our case the above method cannot be applied 
because the identification process should be 
continuous, and the input signal is not controlled. 
Another issue is the noise which affects the signals 
and consequently the correctness of the equation (2).  
In the presence of noise equation (2) becomes: ݕ(݊) = ܽ ∗ ݊)ݕ − 1) + ܾ ∗  ɛ(n)  (4)+(݊)ݔ

Where: ɛ(n) is the error experienced because of 
the noise 

Therefore, we compute the constants of the first 
or second order equations using the measured values 
of the output (y) and input (x) signals. In the first 
stage we also ignore the error generated by noise.  
Its effect will be reduced later using a low-pass-
filter. For instance, in the case of the first order 
equation we generate a system of 2 linear algebraic 
equations with „a” and „b” as unknown variables. 

(݊)ݕ = ܽ ∗ ݊)ݕ − 1) + ܾ ∗ ݊)ݕ	 (5)          (݊)ݔ − 1) = ܽ ∗ ݊)ݕ − 2) + ܾ ∗ ݊)ݔ − 1)  

In this way in every sampling moment we obtain 
a pair of values a(n) and b(n). In the case of a stable 
physical system and without noise the a(n) and the 
b(n) values are constant and represent the theoretical 
model of the physical system. But because of the 
noise the a(n) and b(n) are strongly affected by 
noise.  Therefore, in order to obtain a “close to 
constant” value for “a” and “b” we have to apply a 
low pass filter. The length of the median low pass 
filter should be adjusted in accordance with the 
magnitude of the noise.  Another, more accurate 
method of determining the „a” and „b” constants 
would be to apply a „least square method” that tries 
to minimize the sum: Σɛ2(n). But in the case of 
differential equations this procedure is not a trivial 
one. As it will be showed through a practical 
example the simpler method proposed here generate 
satisfactory results for the anomaly detection 
purpose. 

The next step in the anomaly detection process is 
to follow the evolution of the filtered „a” and „b” 
values and determine the moment when the two 
parameters change their values in a significant 
(detectable) way. The change in the values signifies 
a change in the model and consequently a change in 
the behavior of the system. This change may be 
interpreted as an anomaly. 
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3.2 Experimental Demonstration 

To show the effectiveness of the proposed anomaly 
detection method we present an experimental 
simulated case study of a first order physical system. 
The experiment considers a RC (resistor condenser) 
low pass filter as an example of a first order physical 
system. For a more realistic case we consider that 
the output signal (the voltage on the condenser) is 
affected by a white noise. For a unit step input 
signal, the output is given by the equation: (ݐ)ݕ = ݉ܣ ∗ (1 −  noise   (6)+((	(ܥܴ/ݐ)−)^݁

Where: Amp=5V is the amplitude of the input 
signal; 1/RC=150s is the time constant of the system 

 
In digital domain the equation of the system 

(derived from the analog formula) is: ݕ(݊) = ܽ ∗ ݊)ݕ − 1) + ܾ ∗ (݊)ݔ +  (7) ݁ݏ݅݊

Where:     a=0.860707976 

            b=0.139292024 

            noise=0.05*(0.5-Random(0÷1)) 

            sample period T=0.002s 

Figures 2 and 3 show the chart of the input and 
output signal for a sinus input and a square digital 
signal.  

What is not so obvious in figures 2 and 3 is the 
fact that in both charts the system changed its 
behavior two times: once at sample time 90 and 
again at sample time 146. First the 1/RC changed 
from 150 to 200 and the second time to 250. These 
changes are reflected in parameters „a” and „b”. 

 
Figure 2: The input and output signals for an RC circuit 
with sinus input. 

 
Figure 3: The input and output signals for an RC circuit 
with digital input. 

Figure 4 represents the raw values of „a” and „b” 
computed using the equation system (5), for each 
sampling point. It can be seen that the „constant” 
values are strongly affected by the noise. Therefore, 
in order to obtain an average value for a and b a 
median low-pass-filter is applied. After a number of 
experiments the best results were obtained for a 
median filter computed on 15 consecutive samples. 
Figure 4 shows the filtered values of a, b, (a_LPF 
and b_LPF). It can be seen that the filtered values 
show a change whenever the system change its 
behavior (at approximately 85-95 and 143-150). 
These changes may be detected and considered as 
anomalies.  

 

Figure 4: Values of a, b and low-pass filterred a_LPF and 
b_LPF. 

In order to identify the position of the anomaly 
(of the change) we applied the following sequence 
of operations: 

• Modified derivate of the a_LPF and b_LPF with 
the formula:   

• ܽ_݂݂݀݅(݊) = ൫ܽ_ܨܲܮ(݊ − 2) + ݊)ܨܲܮ_ܽ −1)൯ − ൫ܽ_ܨܲܮ(݊ + 1) + ݊)ܨܲܮ_ܽ + 2)൯       (8) 
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• ܾ_݂݂݀݅(݊) = ൫ܾ_ܨܲܮ(݊ − 2) + ݊)ܨܲܮ_ܾ −1)൯ − ൫ܾ_ܨܲܮ(݊ + 1) + ݊)ܨܲܮ_ܾ + 2)൯       (9) 
• Threshold the a_diff and b_diff with values 

between the min and max of the two signals, 
obtaining a_thr and b_thr 

• Detect the points of change with the condition: 

• if(a_thr!=0)AND(b_thr!=0) than detect(n)=1 
else detect(n)=0 

Figure 5 shows the filtered values (a_LPF, 
b_LPF) as well as the result of the detection process. 

 

Figure 5: Detection of the anomaly. 

This experiment shows that it is possible to 
detect slight changes in the behavior of a system that 
may be considered as anomalies. For this purpose, 
we measured the input and output signals, computed 
the momentary model of the system (coefficients a 
and b in the first order differential equations) and 
detected a significant change in the computed 
model. As the simulated experiment shows, some 
parameters of this method (e.g. filter length, 
threshold values) must be configured in accordance 
with some characteristics of the analyzed system 
(e.g. noise level, sampling rate, etc.). 

In a very similar way, if the real system has two 
dominant time constants a second order differential 
equation may be used for the detection (as presented 
in equation 3). In this case using a system of 3 
equations (similar with 5) we can compute the 
coefficients a, b and c. Then any significant change 
in these coefficients will indicate a possible 
anomaly. 

3.3 Variation to the Proposed Detection 
Method 

In a case when the input signal is not available (not 
known), only the output one is measured (e.g. 
temperature variations in a given environment, or a 
vibration on a mechanical device) the system model 
may be approximated as an autoregression model,  
 

using the following equation: ݕ(݊) = ∑ ܿ ∗ ݊)ݕ − ݇)ேଵ + ܿ      (10) 

Where: ܿ݇ are the coeficients of the model that 
must be computed 

 N- the order/length of the regression 
In case of more complex systems different 

variations of autoregression models may be used 
such as ARMA, ARIMA or ARMAX. In these cases 
the execution time of the detection method may 
increase significantly.  

In the followings, we present an example of an 
anomaly detection on a real case: the problem was to 
identify any damages on the bearing of an electric 
motor. For this purpose, we measured the vibrations 
on the chassis of the motor using an acceleration 
sensor.  Figure 6 shows the acceleration signal 
measured on a motor with damaged bearing. The 
high frequency signals on the acceleration indicate 
an anomaly in the bearing. 

 

Figure 6: Acceleration signal measured on a faulty motor 
bearing.  

In this case we used the following equation: ݕ(݊) = ܿଶ ∗ ݊)ݕ − 1) + ܿଵ ∗ ݊)ݕ − 2) + ܿ   (11) 

 

Figure 7: The variation of the c1 coefficient. 

We observed that the coefficient that best 
reflects the anomaly is in this case ܿ1. Figure 7 
shows the variation of coefficient c1 over the 
original signal. 
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Figure 8: Labeled anomaly regions. 

The next step was to apply a thresholding 
method in order to identify regions with faulty 
signals. The value of the threshold is determined in 
this case automatically from the histogram of the C1 
values: the threshold value is the lowest point of a 
„valley” that separate the normal and abnormal c1 
values. Figure 8 shows the final result with the 
labeled values. 

4 CONCLUSIONS 

This paper showed that anomaly detection methods 
may be derived from a system identification method. 
The first example considered a system that may be 
described with a first order differential equation. The 
coefficients a and b of the discrete equation show 
variations that can be exploited for anomaly 
detection. The second example considered a system 
where the input signal is not known. In this case an 
autoregression model was computed. Again, one of 
the coefficients of the discrete formula could be used 
for anomaly detection. 

In both cases the actual sequence of processing 
steps needed for an accurate detection had to be 
adjusted with the specific characteristics of the 
analyzed system.  So, from this point of view a 
single method cannot be generally applied to any 
real-life problems. But, with some adjustments the 
proposed method may solve a wider range of 
applications. 

As it was demonstrated, the proposed anomaly 
detection method can detect slight changes in the 
behavior of a given system, that can be interpreted 
as anomalies and which may not be detected by 
more traditional methods or even by a human 
observer. The proposed method also eliminate false 
anomaly alerts which are caused by significant 
changes in the input signal that affect also the 
output; usually other anomaly methods ignore the 
input signal and its effect on the output signal.  

The proposed method is rather simple and may 
be implemented on embedded devices with limited 

computing or storage capabilities, such as 
microcontrollers or DSPs. It is also recommended 
for on-line anomaly detection. 

As future work, we intend to apply pattern 
recognition and classification methods (e.g. neural 
networks and SVM) on the graph of the computed 
model coefficients in order to discriminate between 
normal and abnormal system behaviors.   
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