
A Monitoring based Multi-Agent Filtering Approach for Web Service
Selection

Raja Bellakhal1, Fatma Siala1 and Khaled Ghédira2
1National School of Computer Science, University of Manouba, Manouba, Tunisia

2Higher Institute of Management, University of Tunis, Tunis, Tunisia

Keywords: Web Services Filtering, Multi-Agent System, Monitoring, Quality of Service (QoS), Negotiation, SOAP
Messages.

Abstract: During Web services selection processes based on the negotiation approaches, systems initially search for
services that comply with the users’ functional requirements. Then, based on the retrieved set of
functionally similar services, the negotiators start negotiation in order to come up with an agreement about
the QoS parameter preferences. Here the problem occurs when the number of services retrieved during the
first step is huge. In such case, the performance of the Web service selection process based on the QoS
requirements can be degraded. Examining the specifications of all retrieved services is certainly a waste of
time. Instead, it is more reasonable to remove all services that are unavailable and under the users’
requirement expectations before the start of the negotiation. To deal with this issue, in this paper we propose
a multi-agent based filtering approach that adopts a Web service monitoring method allowing the filtering
and the selection of the best candidate Web services for the selection process. The results of the conducted
experimentations demonstrate that adopting an agent-based filtering process decreases the CPU time of the
overall Web service selection process.

1 INTRODUCTION

With the growth in the number of functionally
similar Web services, efficient systems become
primordial to assist the users during the selection of
the suitable services that comply with their specific
requirements including the QoS parameters. Since
Web services are operating in dynamic and changing
environments, their QoS parameters change quite
frequently. Actually, these parameters are dynamic
and out of the providers’ control as for example, the
response time would depend on the bandwidth, the
transmission delay, the packet size, etc.

A series of Web service selection systems that
support the search for Web services based on the
users’ preferences in terms of the QoS parameters
has been presented. The dominating system among
them considers that QoS parameters are static
(Bentahar et al., 2008; Karray et al., 2013). Once the
quality of services is defined in the description and
published in the UDDI (Universal Description
Discovery and Integration) registry, they remain
unchangeable. In order to solve the problem of static
parameters, approaches based on statistic (Zhou and

Chen, 2009) network based techniques (Chen et al.,
2010; Benaboud et al., 2016) and negotiation
(Napoli et al., 2013; Linlin et al., 2013) are
proposed. Network and statistic based approaches
have the inconvenience of over resources
consumption, and the occurrence of conflicts
between the clients’ and providers’ preferences. The
negotiation has the advantage of solving
discrepancies among the clients’ and the providers’
conflicting preferences observed during the
aforementioned approaches.

The negotiation is a two-step process. During the
first step, the system searches for services that match
the clients’ functional requirements, while during the
second step, the best service is selected from the set
of the functionally similar services. A huge number
of candidate Web services selected during the Web
services discovery step can affect the selection
system performance during the selection step.
Imagine that during the second step, all the
discovered candidate providers go through many
rounds negotiation processes with the client.
Certainly, this will take a long time. Moreover,
implementing a negotiation system that simulates

Bellakhal, R., Siala, F. and Ghédira, K.
A Monitoring based Multi-Agent Filtering Approach for Web Service Selection.
DOI: 10.5220/0006900301450152
In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST 2018), pages 145-152
ISBN: 978-989-758-324-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

145

the human real negotiation interactions and that
considers all discovered services is not an easy task.
The idea is to filter out the services that are
unavailable, and do not fit the users’ preferences. In
order to deal with the aforementioned problems, we
extend the negotiation system by adopting a filtering
approach based on a monitoring method. Before the
start of the negotiation process, the system must
search for the best candidate services.

The filtering process is based on monitoring
steps and evaluation of QoS parameters. Monitoring
of the Web services involves collecting information
about the real Web services performances during
runtime. After each monitoring step, a set of services
are filtered out based on their QoS values, and only
adequate services are retained.

The reminder of this paper is organized as
follows. Section 2 reviews related work. Section 3
describes the negotiation framework and the filtering
process. Section 4 presents and reports the
experimental results. Finally, the paper is concluded
in section 5.

2 RELATED WORK

There is a wide range of research around the Web
service selection systems based on QoS parameters.
Some of it is introduced to enhance the matching
techniques, the number of returned results, and to
optimize the selection system complexity. However,
these approaches consider that the QoS parameters
are static. Actually, Web services operate in a
changing environment, and systems designed to
discover them must consider the QoS parameters
dynamic. To tackle the problem of static parameters,
two series of approaches are proposed. The first
series is founded on network techniques and statistic
methods (Zheng et al., 2012), (Huang, 2013) and
(Benaboud et al., 2016). The disadvantages of these
approaches are mainly related to the over resource
consumption, the occurrence of conflicts between
the clients and the providers, and the lack of Web
service selection models. The second series is based
on negotiation models.

In (Napoli et al., 2013) a market based
negotiation mechanism among providers and users
that request a QoS aware service is presented. The
advantage of such a system is to consider the
dynamic aspect of the QoS parameters. The
providers may change the QoS values according to
their provision strategies. The authors describe the
negotiation as a bilateral process between two
agents. During the negotiation, agents exchange

offers and counter-offers. In the aforementioned
approach the negotiation could end without any
agreement since the process can terminate if a
deadline expires. Moreover, only providers are able
to generate offers whereas the clients can only
evaluate them. The contract net iterative protocol is
adopted. The authors note that this protocol has a
communication overhead, so its performance
degrades drastically. In (El-Awadi et al., 2014) the
authors present an SLA based negotiation approach.
The SLA contract must contain dynamically the
updated QoS values. In this work, a negotiation
engine is responsible for achieving an agreement.
Once the agreement is found, the monitoring system
checks whether the parameters related to the
retrieved services are equal, under, or over the
threshold defined in the SLA. Such a method may
not always guarantee an agreement between the
negotiators, since the generated SLA can be
withdrawn if the monitored QoS attribute does not
match the values defined in the SLA contract. In
(Bellakhal and Ghédira, 2016), an agent selection
system based on a hybrid negotiation is presented.
This system introduces new aspects that were
neglected by the existing systems. The first aspect
concerns the simulation of certain characteristics
observed during the real negotiation interactions
between negotiators. The second aspect relates to
making the negotiation dynamic by enabling the
negotiators to change their negotiation strategies
during the negotiation. The final aspect considers the
dependency between the concurrent negotiation
processes. The presented system is based on two
negotiation models, namely the argumentative and
the game-based negotiation models. In the presented
approach, a monitoring method that guarantees the
correspondence between the values generated by the
providers and the real Web services performance is
adopted. In (Ouadah et al., 2018), a hybrid approach
based on multi-criteria decision method to select the
best service from functionally similar services is
adopted. This approach is based on the reduction of
the decision space of the best candidate services for
the selection process. The adopted Web services
selection algorithm is based on aggregation of two
criteria namely, the user opinions about Web service
performance and the QoS parameters values
extracted from invocation history data.

The main issue with the aforementioned works is
related to the large number of candidate services that
are involved in the selection process. This may make
the process of finding the services that comply with
the specific users’ requirements longer and harder.
Moreover, in most of these works, the monitoring of

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

146

Web service performance is either conducted during
or after the selection process. On the one hand,
adopting a monitoring process during the selection
process can overload the system and postpone the
process termination. On the other hand, intercepting
the Web services performance after the selection
process termination can result in the process failure.
In this case, the real selected services performance is
different from the users’ preferences.

3 THE AGENT-BASED
FILTERING PROCESS

In this paper, we adopt an agent-based filtering
method over the set of discovered services in order
to come up with a final set of the best candidate Web
services for the agent-based negotiation process. In
the following, we start by describing briefly the
adopted negotiation framework as a basic element of
the proposed approach. Next, we focus on the main
objective of this paper, namely the presentation of a
novel filtering approach.

3.1 The Negotiation Framework

We adopt a multi-lateral negotiation framework
composed of concurrent sub-bilateral negotiation
processes. Several negotiation rounds are conducted
between competitive client agent’s instances and
provider agents. The client and provider agents are
in continuous competition in order to get the best
deal. They exchange offers and counter-offers while
adopting concession or trade off strategy. The
evaluation of the offers is based on the utility
function presented by Zheng et al., (Zheng et al.,
2012).

The adopted negotiation framework is based on
five agents namely, the provider agent, the client
agent, the intermediate agent’s instances, the client
agent’s instances and the coordinator agent.

 The provider agent

The provider agents involved in the
negotiation process represent the discovered
Web services. In the core of each provider
agent is implemented a negotiation model by
specifying its negotiation strategy and
protocol. The number of provider agents
depends on the discovered Web services. An
instance of the provider agent is run for each
retrieved Web services.

 The original client agent

The first role of the original client agent is to
provide to the client agent’s instances
information about the user’s preferences such
as QoS values and their related weights. Its
second role is to register offers resulting from
agreements between the provider and the
client agent’s instance.

 The intermediate agent’s instance

Dependencies among the concurrent sub-
bilateral negotiation processes are ensured by
the intermediate agent’s instances. They
communicate to the client agent’s instances
information about the offers of the competitor
providers. This information is exploited by the
provider in order to propose more interesting
offers for the client and get the deal.

 The client agent’s instance

The role of the client’s instances is to
represent concurrently the original client
agent’s behavior. They negotiate with the
provider agents by adopting different
negotiation models. Client agents are launched
as much as the provider agents. In the core of
each client instance agent is implemented a
negotiation model by specifying its
negotiation strategy and protocol.

 The coordinator agent

The first role of the coordinator agent is to
register each agreement concluded between
the client and provider agents. Its second role
is to inform the original client agent about the
offers resulting from agreements between the
negotiators.

3.2 The Filtering Process

Figure 1 depicts the filtering process and the agents
involved in it, namely the monitor agent, the
coordinator agent and the launcher agent. The
monitor agent has the role of intercepting
information about the real Web services
performance. This information is collected and used
by the coordinator agent in order to filter out
unavailable and inappropriate services. The
representation of the monitors as agents has the
advantage of gaining time. Once the monitor agents
are launched by the launcher agent, different
monitoring processes start by intercepting
simultaneously the Web services performance.

A Monitoring based Multi-Agent Filtering Approach for Web Service Selection

147

The filtering is a multi-step process based on a
multi-round monitoring method. The filtering
process and the monitoring processes are conducted
respectively in the core of the coordinator agent and
the monitor agents. The monitoring refers to the
control in runtime of the Web service performance
before the beginning of the negotiation process. This
has the effect of avoiding the overload of the system
by reducing the processing time. During each step, a
multi-round monitoring is adopted over the set of
services filtered during the previous step. Each Web
service belonging to the set of selected services will
be invoked according to λ rounds. The value of λ is
defined by the developer.

We focus on the selection of the candidate Web
services for the negotiation phase. We suppose that
SWS1 is the set of the initial Web services
discovered in response to the user’s request
expressed in terms of keywords and its initial QoS
requirements. The adoption of the keyword match
method during the discovery process seems too
simplistic here. Our main problem in this paper is
not to propose a full discovery and selection system,
but rather to study the impact of a filtering approach
over the overall CPU time related to the Web service
selection process.

The user’s requirements are defined by the
favorite QoS values and their related weights. The
set SWS1 will be the input of the first step in the
filtering process consisting in leaching out all
unavailable services. For this purpose, a monitoring
technique based on the SOAP1 message is adopted.
Since QoS parameters are dynamic and change over
time, a monitoring process is essential for measuring
their values in real time. The QoS parameters are out
under the control of the provider. They depend on
the network bandwidth, the propagation delay, the
transmission delay, etc. Actually, we are not
responsible for hosting the Web services, so it is
impossible to control their performances. In order to
solve this problem, we adopt the SOAP message
calls. When a service is invoked, a request is sent to
the service in the form of a SOAP message and the
response is sent back to the client as a SOAP
message too. According to these request and
response messages, the values of two QoS
parameters, namely the response time and the
availability2 are deduced. The equations (1) and (2)
are used to compute respectively their values.

1 http://www.soapuser.com/basics1.html
2 The Technical Guidance for the implementation of
INSPIRE View Services.

 Response time

The response time is the difference between
the time when the SOAP response is received
and the time when the user’s request is sent as
a SOAP message. Every time, a Web service
is called, the response time is computed.

Response Time = Time taken to complete the
response - Time taken for user request (1)

 Availability

Availability is the probability that the system
is ready for immediate consumption when
invoked. After a service call, when no
response is returned, the availability is set to
0.

 (2)

We also consider the price as a business parameter.
The price is proposed by the provider and we
assume that its value is constant.

n this paper, we focus on three parameters
namely, the response time, the availability and the
price. However, our system can be extended to
handle other parameters such as the reliability, the
integrity, and the accessibility of services. As is
mentioned in (Karthikeyan and SureshKumar, 2014)
these parameters can be estimated based on cost or
time. The monitor is a part of the Web service based
application. The system sends a service invoke, and
receives a reponse over the well-known XML and
SOAP messages. While invoking a given Web
service, the monitor records information about the
Web service invoking time.
When the service response is received, the monitor
records information about the Web service response
time, and the availability. A monitoring process is
launched over the services belonging to the initial
set SWS1. During the invocation of the Web
services, information about each service is recorded
in data storage. This information is used to deduce
the availability of each Web service. Based on the
computed availability values, the services are
classified into available and unavailable services.
The first step ends when all available services are
classified into the set SWS2.

unit
1

time

downtime
Availability = −

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

148

Figure 1: The agent based filtering process.

In the second step, the input of the filtering process
is the set SWS2, and its output is SWS3, the set of
services having a high and medium quality. In the
course of this step, services with poor quality are
filtered out. By definition, poor quality is related to
QoS parameters that are far from the users’
expectations expressed in terms of QoS parameters.
Since these parameters change over time and depend
on external factors, it is necessary to intercept their
values continuously. Thus, a second monitoring
process over the selected services belonging to the
set SWS2 is required. The problem here is set when a
single monitoring process round is adopted. In this
case, the choice of the services that must be removed
can be modified. A single monitoring process round
is when the service is intercepted only at a unique
time t. Actually, the QoS parameters change
frequently. During a small fraction of time, their
values continuously fluctuate. For example, we
consider two services WS1 and WS2. The response
time of each service is recorded at two different
times t1 and t2. The response time values of WS1
and WS2 at t1 are equal respectively to 2s and 6s.
However, at t2, the response time are 5s for WS1
and 3s for WS2. We conclude that at t1, WS1 is
better than WS2; however by comparing their values
at t2, WS2 performs better than WS1. So, when
applying the filetring process at t1, WS2 will be
filtered out although of it is better than WS1. To
avoid such mis-evaluation of the Web service

performance, a multi-round monitoring process is
needed to assess the real Web service performance.
Each service belonging to the set SWS2 is called
repeatedly in order to record and store the values of
the QoS parameters. These values are then
compared, sorted and used to deduce the minimum
and maximum QoS values related to each Web
service.
 In order to compute the users’ utility generated
by the overall QoS parameters, we adopt the utility
function presented by Zheng et al., (Zheng et al.,
2012). A weighted sum function noted as U(m)
represented by equation 3 is adopted to compute the
general utility of a given offer m containing n
negotiation objects (QoS parameters).

1

() ()
n

i i
i

U m W u x
=

= × (3)

We consider that x is the value of a given QoS
parameter, and xbest and xworst are respectively their
best and worst values. ui(x) the normalized value of x
is defined by equation 4.

()
()

()
worst

i
best worst

x x
u x

x x

−=
−

 (4)

By comparing the utility generated by the maximum
and minimum QoS values with the user’s utility
generated by its preferred values, the system will
categorize the services according to their
performance into mediocre, medium and best
services.
 We note by Minresp and Maxresp respectively, the
minimum and the maximum values of the response
time recorded during the repetitive monitoring
process, while Minavai and Maxavai are the minimum
and the maximum values related to the availability.
We also consider Valresp and Valavai the preferred
users’ values of respectively the response time and
the availability. We note by Umin, Umax and Upref the

user’s utilities generated repectively by the user’s
worst, best and preferred QoS values. Here, we
assume that the user’s utility increase (resp.
decrease) when the web service reponse time and
price values decrease (resp. increase) and when the
avalability value increase (resp. decrease). The
minimum utility of the client (Umin) will be equal to
the sum of the weighted maximum response time
and price values with the weighted minimum
availability value. Howerver, the maximum utility of
the client (Umax) will be equal to the sum of the
minimum weighted response time and price values
with the maximum weighted availability value.

The set of the mediocre (worst) services are
determined by comparing the utilities generated by

A Monitoring based Multi-Agent Filtering Approach for Web Service Selection

149

the users’ QoS preferred values with the utility
generated by the maximum response time and price
with the minimum availabiltiy value recorded during
the monitoring process. Here, we assume that the
price does not change during the monitoring rounds.
A service is a part of the set of the worst services
only if Umin is lower than Upref. If the user’s utility
generated by the user’s worst values of QoS
parameters recorded during the monitoring is lower
than the utiliy generated by the preferred user’s
parameters, then the chance that such a service does
not match the user’s expectation in the future will be
high.

During the third step, if the performance of
services belonging to the set SWS3 is quite similar,
another criterion must be considered in conjunction
with Umin and Umax in order to distinguish between
the services.
 The second criterion is related to the variation of
the QoS parameters values. The reliability of the
Web service depends on the variation of its QoS
parameters. If the variation of these parameters is
high, then the service is considered as unstable and
not reliable. However, when this variation is
minimal the service is qualified as stable and
reliable. The lower the variability of the QoS
parameters, the better the service is considered.
During a many rounds of monitoring process,
different values of response time and availability are
recorded. Many variation values coresspond for each
Web service. The worst variation is determined for
each service by comparing the different variation
values. The worst value matches the maximum
variation.

 The variation

The variation is the difference between a QoS
value recorded during a current monitoring
round, and another QoS value recorded during a
previous monitroing round.

We note by VarRtresp and VarRtavai the maximum
variation rate of respectively the response time and
the availability. Medresp and Medavai are the medians
of the maximum variation values respectively of the
response time and the availability. The services with
the worst variation values that are greater than the
median are considered of lower performance, while
the services with the worst variation values that are
lower than the median are of better performance.
 The categorization of Web services into medium
and high quality depends on two factors namely, the
variation, the Umin and Umax.

A Web service is ranked of a high performance
quality only if conditions 1, 2 and 3 are checked:

Condition 1: Upref is lower than or equal to Umin. The
user’s goal is to increase its own utility. The first
condition requires that the utility generated by the
preferred response time, availability and price is
lower than or equal to the utility generated by the
maximum service response time and price as well as
the minimum service availability recorded during
the monitoring.

Condition 2: Upref is lower than or equal to Umax.

Condition 3: VarRtresp and VarRtavai are lower than
or equal to respectively the Medresp and Medavai..

A Web service is regarded as having a medium
quality if condition 4 or condition 5 is checked.

Condition 4:
 Upref is lower than or equal to Umin
 VarRtavai is greater than or equal to Medavai

Condition 5:
 Upref is lower than or equal to Umax
 VarRtresp is greater than or equal to Medresp

4 EXPERIMENTATION

To get an in-depth investigation of the proposed
approach, we have implemented a negotiation
system considering the filtering process based on the
Java programming language and the multi-agent
platform MADKIT. We have deployed our system
in a Toshiba satellite L775 version with Intel(R)
Core (TM) i5 2410M CPU 2.3 GHz CPU and 4GM
RAM to simulate the environment. By these
experiments, we want to highlight three aspects.
First, we prove the role of the proposed filtering
approach in decreasing the CPU time of the Web
service discovery process. Second, we demonstrate
that an increase of the monitoring rounds has no
negative effect on the CPU time of the selection
process. Third, we prove the scalability of the
implemented system. In order to implement the QoS
monitoring process in the core of each monitor
agent, we adopt the SOAP message calls. We use the
framework SAAJ3 (SOAP with Attachments API for
Java) in order to implement the SOAP message
calls. We design a user interface that enables the
user to sets its preferences in terms of the values and
weights of the QoS parameters as is presented in the
previous section. According to these initial
preferences, the set of functionally similar Web
services is selected. Information about the URL of
each service is extracted from the UDDI registry and
they are communicated to the launcher agent. The

3 http://docs.oracle.com/javaee/5/tutorial/doc/bnbhg.html

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

150

first role of the launcher agent is to create for each
Web service a monitor agent. Each monitor agent
has as attribute the URL of a Web service. The
second role of the launcher agent is to create an
instance of the coordinator agent. The monitor
agents start the interception of the Web services by
invoking them simultaneously.

In order to invoke a given Web service, an
instance of the soapConncetion class is created.
Then, the method call is applied over the latter
instance. The line code that represents the call
method is as follows: SOAPMessage soapResponse
= soapConnection.call(createSOAPRequest(), url).
The method createSOAPRequest() creates a SOAP
request message envelop which contains the HTTP
address of each Web service. This method returns a
SOAP message. When the SOAP response is
received, the printSOAPResponse(soapResponse) is
used in order to de-serialize the content of the SOAP
envelop. When a monitor agent terminates the
monitoring process, it sends the collected
information to the coordinator agent. The latter has
the role of making the filtering process or to launch
another monitoring process as is explained in the
previous section.

In the first series of tests, we set the number of
Web services and the monitoring rounds
respectively to 30 and 5. Here, the choice of the
number of monitoring rounds is independent of Web
services number. In Figure 2, we have reported the
CPU time produced by varying the user’s QoS
preferences in terms of the values and the weights.
In these tests, we consider three QoS parameters
namely, the price, the response time and the
availability. The results show that when the filtering
method is adopted, the values of the CPU time range
between 2.1 and 3.21 minutes. However, in the
opposite case the values exceed 5 minutes. In fact,
during the filtering, the services with QoS
parameters that are far from the user’s preference are
filtered out. In case the filtering is omitted, these
services can make the negotiation process longer.

Figure 2: Comparison of the CPU time (λ=5 and 30
available and unavailable WSs).

Indeed, the gap between the real Web service
performance and the user’s preference causes
conflicts and makes the negotiation process longer.
Moreover, during the normal negotiation,
unavailable services can result in an endless
negotiation process which prevents negotiators from
achieving an agreement. During the filtering process
such services are removed.

In the second series of tests, we change the value
of λ and we keep the same number of Web services
specified in the first test. We consider λ1=20. The
results are depicted in Figure 3. By comparing
Figure 2 with Figure 3 we deduce that the CPU time
increases slightly when the number of the filtering
rounds increases. However, it remains in most cases
lower than the CPU time recorded when the filtering
is ommitted. In fact, when the monitoring rounds
become higher, the filtering process takes more time
to come up with the best candidate services. In
overall, the increase of the filtering rounds has no
great consequences on the CPU time.

In the third series of tests, we launched our
system by varying the initial number of Web
services. We consider in the initial set of Web
services 10, 20 and 30 Web services respectively in
the first, the second and the third tests. The results
are reported in Figure 4.

Figure 3: Comparison of the CPU time (λ1=20 and 30
available and unavailable WSs).

We note that in the case where 10 Web services are
considered, the CPU time values range between 0.5
and 1.89 minutes. When 20 Web services are
considered, the CPU time values range between 1
and 2 minutes whereas, in the case of 30 Web
services the values range between 2 and 3 minutes.
We conclude that when the number of services
passes from 10 to 20, the CPU time was not greatly
influenced. However, when the number passes from
20 to 30, we notice that the CPU time has generally
increased by around 1 minute. From these results,
we conclude that the increase in the CPU time and
the Web services number are not proportional. This

A Monitoring based Multi-Agent Filtering Approach for Web Service Selection

151

means that an increase in the Web service number
by a given value x will not always result in an
increase in the CPU time by a fixed value y. Other
factors influence the CPU time such as the
performance of the selected services, the distance
between the user’s preferences and the Web services
QoS parameters as well as the number of unavail-
able services. The fewer the unavailable services are,
the better the CPU time will be. In the favourable
cases, when all services are available in the set of
initial Web services, the first step of filtering process
will be omitted. This will speed up the negotiation
process and makes shorter the CPU time.

Figure 4: The System Scalability.

5 CONCLUSIONS

With the rapid growth of Web services providing
functionally similar services, advanced discovery
systems based on the QoS parameters must be
adopted. The challenge is to come up with an
efficient system while keeping its generated results
reliable. Actually, the existing discovery systems
generate a huge number of candidate services for the
selection process. Considering all these services will
be a waste of time. To deal with this problem we
have presented a Web service filtering method based
on a multi-round QoS monitoring method. The idea
is to filter out services that are unavailable and under
the users’ expectations in terms of QoS
requirements. Actually the QoS parameters are
dynamic and change frequently depending on
external factors. Adopting a multi-round monitoring
process ensures an overview of the services
performance. In order to distinguish between the
Web service performance qualities, we introduced in
the filtering process the variation criteria. The
services that are characterized by a high fluctuation
of their QoS parameters are considered unstable
whereas those that have low fluctuations are
considered stable. Future work is related to

enhancement of the monitoring concept. In this work
we consider the monitor is part of the WS based
application. This can make sometime problems
when resources are limited and the requests cannot
be sent to the Web service. The latter issue needs to
be addressed.

REFERENCES

Bentahar J., Maamar Z., Wan W., Benslimane D., Thiran P.,
and Subramanian S., (2008), Agent-based communities
of Web services: An argumentation driven approach,
Service Oriented Comput. Appl., Vol.2, no. 4, pp. 219–
238.

Benaboud R., Maamri R., Sahnoun Z., (2016), PrefWS3:
Web Services Selection System Based on Semantics
and User Preferences, Informatica, Vol 40, No 2.

Bellakhal R., and Ghédira k., (2016), A multi-agent-based
negotiation system for web service selection. I. J.
Knowledge and Web Intelligence 5(4): 253-286.

Chen H-P., Zhang C., and. Yang G., (2010), A Model for
Managing and Discovering Services Based on Dynamic
Quality of Services. Journal of Networks, Vol 5, No 8,
pp.888-895.

El-Awadi R., Esam M., Rizka M., Hegazy A., (2014), A
Framework for Selecting Cloud Service Providers
Based on Service Level Agreement Assurance,
Proceedings of the International Conference on Grid
Computing and Applications (GCA).

 Huang. X (2013), UsageQoS: Estimating the QoS of Web
Services through User Communities, ACM
Transactions on the Web (TWEB), Vol8 n.1, pp.1-31.

Karray A., Teyeb R., Ben Jemaa M., (2013), A heuristic
approach for web-service discovery and selection,
International Journal of Computer Science &
Information Technology (IJCSIT), Vol 5, Issue 2.

Karthikeyan, J & M, SureshKumar. (2014), Monitoring
QoS parameters of composed web services. 2014
International Conference on Information Communica-
tion and Embedded Systems, ICICES 2014.

Linlin. W, Saurabh. K. G, Rajkumar. B, (2013), Automated
SLA Negotiation Framework for Cloud Computing,
Cluster, Cloud and Grid Computing (CCGrid), 13th
IEEE/ACM International Symposium.

Napoli C. Di, Pisa P., and Rossi S., (2013). A market-based
negotiation mechanism for QoS-aware service selection,
The 15th International Workshop on Agent-Mediated
Electronic Commerce.

Ouadah, A., Hadjali, A., Nader, F. et al. (2018), SEFAP: an
efficient approach for ranking skyline web services,
Journal of Ambient Intelligence and Humanized
Computing, pp 1–17.

Zhou C., and Chen H., (2009), An Objective and Automatic
Feedback Model for Qos Evaluation, ICIS '09
Proceedings of the 2nd ICIS.

Zheng, X., Martin, P. and Brohman, K. (2012), ‘Cloud
service negotiation: concession vs. tradeoff approaches’,
Proceedings of the 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGRID), IEEE Computer Society, pp.515–522.

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

152

