
Cloud Software Engineering:
Traditional or Innovative – The Choice Is Yours

Christoph Bussler
Oracle Corporation, Redwood City, CA 94065, U.S.A.

Keywords: Cloud Software Engineering, IaaS (Infrastructure as a Service), PaaS (Platform as a Service).

Abstract: Cloud environments provide different levels of resource abstractions, most commonly categorized as IaaS
(Infrastructure as a Service) and PaaS (Platform as a Service) as well as SaaS (Software as a Service –
which is not relevant for this position paper). A detailed discussion of the difference between the IaaS and
PaaS abstractions in this paper will lead to the following position: a single cloud software engineering
process will not be sufficient for software development in the cloud. Depending on the target abstraction
(IaaS or PaaS), the software engineering process will have to be different. It is predicted that the target
abstractions of PaaS will dominate those of IaaS in the long run.

1 SOFTWARE ENGINEERING
FOR THE CLOUD

1.1 Software Engineering Definition

According to the ISO/IEC/IEEE International
Standard the term software engineering is defined as
"application of a systematic, disciplined, quanti-
fiable approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software" (IEEE, 2017).

This definition is important as it not only covers
the software construction (development) part of
software engineering, but also includes operation
and maintenance in production.

This is extremely relevant in the cloud context as
the trend is going towards the total ownership of the
code life cycle by engineering teams. This trend is
called DevOps (AWS DevOps, 2018) and means
that a single team is responsible for its software and
owns all aspect as outlined in the software
engineering definition above: not only development,
but also operation and maintenance.

A DevOps model makes the complete software
lifecycle the focus of the engineering teams that in
the past only owned the software development part
of it, not the operation or maintenance aspect.

Once the operational difficulties are known to
the engineering teams they will most likely make
different technology and engineering process

choices of how to develop a cloud service or a set of
cloud services once they are also responsible for the
operations and maintenance in production.

This will be a major aspect in the following
discussion and plays into the position of the author
on software engineering in the cloud: Cloud
Software Engineering – one size fits nobody.

1.2 Questions in Context of Cloud
Computing

A term not explicitly mentioned in above definition
of software engineering is “deployment”.
Deployment is the process of installing the outcome
of the development process – the software artefacts
– to the target system resources, meaning,
computing resources like (virtual or bare metal)
machines as well as the required middleware like
databases or queuing systems.

Deployment is implicitly included, however, in
the above definition of software engineering, as
without deployment the operation and management
is impossible. Deployment becomes a crucial
process in context of the cloud: until the existence of
the cloud concept the activity of software
engineering was for on-premise infrastructure, aka,
deployment of software artefacts in data centers that
are in control of the organizations themselves.

Organizations determined on their own how their
data centers are designed, and what resources are

Bussler, C.
Cloud Software Engineering: Traditional or Innovative – The Choice Is Yours.
DOI: 10.5220/0006912408710878
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 871-878
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

871

being made available to their engineering teams. It is
safe to say that every organization’s data center was
designed differently and therefore shaped the
individual software engineering process of that
organization to significant extent.

In a cloud the available target system resources
are defined by the owner of the cloud (not the
customer) and are the same for all customers that are
deploying software artefacts into this cloud. Some
interesting questions are for a given cloud:

 Given a cloud, and its provided target system
resources, what software artefacts does a
software engineering process have to develop?

 Given target system resources, how are
software artefacts deployed?

 Once deployed, how are the deployed
software artefacts operated and maintained in
the cloud?

Not all clouds are the same. Different cloud
providers made different design choices of how to
structure their cloud, and what target system
resources to provide. Major cloud provides are
Amazon (AWS, 2018), Google (Google, 2018),
Microsoft (Microsoft, 2018), and Oracle (Oracle,
2018), to name a few.

1.3 Cloud Software Engineering

The term “cloud software engineering” refers in this
position paper to software engineering for a specific
cloud with software artefacts developed for that
cloud’s target system resources first and then
subsequently deployed, operated and maintained.

The development phase has many parts to it,
including use case analysis, requirements analysis,
functional design, non-functional design, imple-
mentation or testing. It might follow an agile process
or a more rigorous process, depending on the
industry or domain within an industry.

In the following, the cloud software engineering
process is not discussed to this level of detail as only
the outcome in terms of the produced artefacts is
relevant for the focus of the discussion.

1.4 Outline of the Position Paper

The remainder of the position paper addresses in
Section 2 a very important necessary differentiation
when it comes to the target system resources of a
given cloud: the customary distinction between IaaS
and PaaS. Section 3 provides an example that
illustrates the difference of developing for IaaS vs.
PaaS target resources. The author’s position is stated

and elaborated in Section 4. Related work and a
conclusion is provided in Section 5 and Section 6,
respectively.

2 CLOUD COMPUTING:
ALTERNATIVE DEPLOYMENT
TARGET SYSTEM
RESOURCES

While clouds are different from each other, all cloud
providers distinguish IaaS (Infrastructure as a
Service), PaaS (Platform as a Service) and SaaS
(Software as a Service – not relevant for the
discussion in this position paper).

2.1 Resource Centric (IaaS) versus
Functionality Centric (PaaS)
Target System Resources

IaaS can be referred to as a resource centric
(“traditional”) target system. This is the same
approach as in a traditional on-premise data center
only that the system resources are in the cloud
instead of on-premise and have to be taken as
provided (no customization possible beyond what
has been foreseen by the cloud provider). Typical
examples of system resources are (virtual or bare
metal) servers, networks as well as block storage;
see (Oracle IaaS, 2018), for example, for IaaS
resources provided by the Oracle Cloud.

PaaS, in contrast, can be referred to as a
functionality centric (“innovative”) target system.
This is very different from traditional on-premise
data centers as it does not expose any infrastructure
system resources, but only provides for the
specification and use of functionality (often termed
serverless architectures). Infrastructure system
resources are abstracted away and not accessible by
users. Examples are functions, API gateway or
database as a service; see (AWS Reference
Architecture, 2018) for various example resources.
An overview discussion of serverless architectures is
in (Roberts, 2018). The following Table 1 shows the
difference between IaaS and PaaS in form of
examples.

An example use case will be discussed below
that shows the difference of developing the same
solution on a detailed level: the software artefacts
that need to be developed and the process of
deployment into the different target system classes.

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

872

Table 1: Target System Resources for Resource Centric
and Functionality Centric Classification.

Target
System
Classification

Target System Resources in Cloud
(Examples)

Resource
centric
(“IaaS”)

• Virtual or bare metal machines
• Storage
• Network

Functionality
centric
(“PaaS”)

• Functions
• API gateway
• Database as a service

On a very abstract level, both alternatives are
fine and choosing to develop for one or the other is
an acceptable choice – nothing is fundamentally
wrong with one or the other. However, as always,
specific details will make one choice superior over
the other.

From a development viewpoint, the following
Table 2 shows the difference in the software
artefacts as well as the deployment implications; the
concrete example use case (below) will discuss the
requirements for each in more detail.

Table 2: Development and Deployment for Resource
Centric and Functionality Centric Classification.

Target
System
Classification

Development and Deployment

Resource
centric
(“IaaS”)

Software artefacts to be developed
• Executables to run on virtual or

bare metal machines
Deployment activities
• Create virtual or bare metal

machines, install web servers and
databases, deploy executables,
setup networks and configure
storage

Functionality
centric
(“PaaS”)

Software artefacts to be developed
• Functions, API gateway

configurations, database access
Deployment activities
• Upload functions, API gateway

configurations, create database
account

The examples in Table 2 show very clearly that
the artefacts to be developed and their deployment is
very different when IaaS resources are targeted
versus PaaS resources.

From an operations and maintenance
perspective, the following Table 3 shows the
difference for a select set of life cycle management
operations.

Table 3: Operation and Maintenance for Resource Centric
and Functionality Centric Classification.

Target
System
Classification

Operation and Maintenance

Resource
centric
(“IaaS”)

• Scale servers (scale-out and
scale-in)

• Restart failed processes and
servers

• Monitor resource utilization and
saturation

• Monitor executables for failures
• Monitor database for proper

functioning

Functionality
centric
(“PaaS”)

• Monitor execution of functions
for failures

• Monitor database for proper
functioning

Table 3 shows that the effort to operate and to
maintain software deployed to IaaS is a lot higher
and more resource intensive than software deployed
to PaaS. Since the basic infrastructure resources are
abstracted away in the PaaS case they are
consequently not part of the operations or
maintenance a DevOps team has to perform.

2.2 Fundamental Choices

An engineering team developing software artefacts
for deployment in a cloud has to make a choice and
a decision very early on in the software engineering
process if the service artefacts are designed and
developed for IaaS target system resources or PaaS
target system resources (or both).

The distinction between IaaS and PaaS (as
discussed above) poses a fundamental and
consequential choice impacting the engineering and
maintenance activities of DevOps teams:

 IaaS: Is the cloud viewed as an infrastructure
resource provider of (virtual or bare metal)
machines, network and storage?

 PaaS: Is the cloud viewed as functionality
provider of higher level functionality like, for
example, functions or persistence services
abstracting from infrastructure resources?

Cloud Software Engineering: Traditional or Innovative – The Choice Is Yours

873

CaaS (Container-as-a-Service) (Kubernetes
CaaS, 2018) will be discussed in Section 3.3 after
the paper outlines the detailed software engineering
activities as those are needed as a basis for the
discussion how CaaS fits into the discussion.

2.3 Impact to Devops Teams

The choice and decision has not only an extremely
high impact for the software engineering process,
but also for the DevOps model where operations and
maintenance will have to be done on an
infrastructure or higher level functionality level,
depending on the choice of IaaS or PaaS. The above
Tables 1, 2 and 3 show the fundamental difference.

To emphasize, once engineering teams are
responsible for the whole software engineering
process, from development to maintenance (DevOps
teams), the above discussion shows that the
functionality centric (PaaS) target system might be
advantageous as the level of abstraction is
significantly higher, and the deployment, operations
and maintenance effort a lot less compared to the
resource centric (IaaS) target system.

This is significant as team resources devoted to
deployment and maintenance in context of IaaS
could be redirected to functionality development in
the PaaS context. This is a huge difference as from a
client viewpoint, additional functionality is always
desired. From a development viewpoint,
functionality usually differentiates from the
competition.

To be complete in the discussion, a mixed use
case might exist as well, where an engineering team
decides to develop some of the software using PaaS
resources, and some using IaaS resources.

While this use case cannot be excluded, of
course, the choice ideally is made very carefully
since this mix will permeate all phases of the cloud
software engineering process.

3 EXAMPLE USE CASE FOR
CLOUD SOFTWARE
ENGINEERING

An example use case will illustrate in the following
how the choice of an engineering team to develop
for IaaS or PaaS resources will influence the cloud
software engineering process.

The software will address a specific requirement:
compute the lead time for the outstanding parts of an
order as part of a supply chain management system

(Wikipedia 2018a). A single function suffices that
given the input order identifier computes the lead
time for all parts to be available as output in
expected number of days. This simple application is
chosen in order to avoid distraction from the cloud
software engineering aspects. This function will be
named “LeadTime()” in the rest of the paper as a
shorthand notation.

For both cases the programming language Java is
chosen, as well as the GIT version control system.
The goal is a scalable system that can scale out and
scale in as the load requires. Database access is not
required (simplification for discussion).

3.1 Leadtime() for IaaS

The following Table 4 structures the activities of the
engineering team by the cloud software engineering
process phases. The activities are described to
sufficient detail in order to demonstrate the
distinction between targeting IaaS or PaaS. As an
architecture solution Kubernetes (a container
management system) is chosen for its ability to
provide scaling as well as failure mitigation for
failing processes (Kubernetes, 2018) with Helm as
the package manager (Helm, 2018).

Table 4: Software Engineering Activities for IaaS.

Cloud
Software
Engineering
Process
Phase

Activities

Development Develop Java code implementing
LeadTime()
Develop Docker image running
LeadTime() Java code
Develop Helm charts to deploy the
LeadTime() image into Kubernetes

Deployment Create VMs
Install Kubernetes software
Create Kubernetes cluster
Upload Docker image to registry
Upload Helm charts
Create the supply chain application by
running Helm charts

Operations
and
Maintenance

Monitor Kubernetes cluster for failures
Monitor LeadTime() code for failures
Scale by changing Helm charts and
reapplying those

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

874

The skill set of the engineering team must be
quite diverse as it has to deploy, operate and
maintain IaaS resources, the Kubernetes system
(including Docker and Helm) as well as the
application itself (which is simplified here in form of
the LeadTime() function). This skill set is the same
as in the case if the application were to be developed
for an on-premise data center.

3.2 Leadtime() for PaaS

The effort to target a PaaS system is a lot less due to
the higher level of abstraction removing the various
IaaS resources. The following Table 5 shows the
various engineering team activities for deploying a
function like LeadTime() according to the AWS
reference architecture (AWS Reference
Architecture, 2018).

Table 5: Software Engineering Activities for PaaS.

Cloud
Software
Engineering
Process
Phase

Activities

Development • Develop Java code implementing
LeadTime()

Deployment • Create function and upload Java
code in prescribed packaging
model

• Configure API gateway

Operations
and
Maintenance

• Monitor function execution
• Monitor gateway health

The difference is striking as all activities around
creating, deploying, operating and maintaining
infrastructure resources as well as the Kubernetes
system (with Docker and Helm) are not necessary at
all. This is not a surprise as this is the declared goal
of providing a higher level of abstraction.

The skill set required by an engineering team is a
lot less as the sole focus can be (mostly) on the
application functionality, not on infrastructure
resources and additional (middleware) software
required like Kubernetes, Helm and Docker.

3.3 Caas (Container-as-a-Service)

A service called CaaS (Container-as-a-Service) is
being made available by many cloud providers

(Kubernetes CaaS, 2018) and very often, if not
always, CaaS is being put into the PaaS category.
CaaS is briefly characterized in the following and
discussed in context of the LeadTime() engineering
activities.

CaaS is a service that supports the ability to
create one or more Kubernetes clusters without
having to create VMs and install the Kubernetes
container management software onto the VMs itself.
Once a cluster is created, the required Docker
images and Helm charts must be uploaded in order
for the cluster to configure and start up the various
Docker images accordingly.

Having discussed the engineering activities for
Kubernetes in Section 3.1 the question arises, what
would CaaS simplify across all activities?

Examining Table 4 it becomes clear that two
activities are not necessary anymore: the creation of
VMs, and the installation of the Kubernetes
software. All other activities remain.

While creating VMs and installing the
Kubernetes system itself is a significant effort, it
does not really affect the development activities or
maintenance activities at all; and from the
deployment activities it only removes the initial one-
time setup.

Therefore, from the viewpoint of the activities of
a DevOps model, CaaS really is more like an IaaS
service that provides Kubernetes as the
infrastructure instead of VMs.

3.4 Microservice Architecture

An architectural style called “Microservice
Architecture” has been discussed. According to
(Lewis et al. 2018), “The term ‘Microservice
Architecture’ has sprung up over the last few years
to describe a particular way of designing software
applications as suites of independently deployable
services.”

A more detailed architecture discussion from an
implementation perspective is outline in (Newman
2015). In this book Kubernetes is referred to as a
possible execution infrastructure for microservices
architectures as Docker containers alone are
insufficient to provide the required functionality like
scheduling, allocation, or load balancing.

(Balalaie et al. 2016) describe experiences in
their work migrating an application to a
microservices architecture executing on a
Kubernetes infrastructure.

While implementing a microservices architecture
on Kubernetes is not the only approach or option,

Cloud Software Engineering: Traditional or Innovative – The Choice Is Yours

875

the references clearly show that the target is the IaaS
layer and not the PaaS layer.

4 POSITION: CLOUD
SOFTWARE ENGINEERING –
ONE SIZE FITS NOBODY

Based on the above discussion on the difference and
distinction between IaaS and PaaS resources
provided by various clouds there is not a single
cloud software engineering process but several
forms that have to be distinguished based on the
target system resource cloud offerings (aka, IaaS or
PaaS).

4.1 Resource Centric “Traditional”
Cloud Software Engineering (IaaS)

The resource centric, or “traditional” cloud software
engineering process is very similar to software
development for on-premise data centers. The main
difference is that the resources that are available for
deployment like VMs or bare metal machines reside
in the cloud instead of in on-premise data centers.

Aside from the added complexity of operating
those resources remotely, from a software
engineering perspective there is no significant
difference as the same principles, same techniques,
same architecture trade-offs and same software
technologies apply. The similarity of the software
engineering applies also for the deployment,
operation and maintenance activities, not just for the
development aspect. Some slight differences exist in
terms of latency and throughput considerations,
locality, jurisdictions, but no real or fundamental
differences.

The focus of the cloud software engineering
approach for IaaS is two pronged:

 Infrastructure. The software engineering
process has to develop the artefacts required to
setup the infrastructure like executables,
Docker containers, queue system
configuration specifications, and so on.

 Functionality. As a second focus, the
software engineering process has to develop
the functionality of the application that is
executed on the infrastructure. A proper
design and decomposition has to take place in
order to ensure that the application runs on the
infrastructure in terms of correctness, latency,
throughput, and so on.

4.2 Functionality Centric “Innovative”
Cloud Software Engineering (PaaS)

Clouds are providing and continuing to provide
higher level functionality that at the same time
abstracts away infrastructure resources completely.
For example, AWS Lambda functions can be
defined and executed without having any visibility
(meaning, deployment, operations, and maintenance)
of the underlying infrastructure resources.

Software engineering processes that target higher
level functionality are very different from traditional
software engineering processes as they have to
follow and to match the abstraction provided by the
cloud. Most or even all aspects of system
architecture, infrastructure resource creation and
management, scaling, failure recovery, etc., do not
have to be addressed by the software engineering
process at all anymore. Instead, the focus will solely
reside on the application’s functionality, and how it
will be structured, in terms of granularity, efficiency
of algorithms, reuse techniques, etc.

In context of functions, for example, the
granularity of functions will have to be decided on,
how functions are implemented for reuse, common
parameter data types, etc.

The cloud software engineering approach for
PaaS is single pronged (compared to the two-
pronged approach in case of IaaS). The only focus is
functionality, and the artefacts to be developed by
the software engineering process have to fit the
target resources that the cloud PaaS implementation
requires, e.g., functions, events, or subscriptions.

4.3 “Transitionary” Cloud Software
Engineering (Mixed Case of IaaS
and PaaS)

As long as clouds provide both, IaaS as well as PaaS
target system resources, use cases might exist that
require to address both. For example, it might be that
a special database management system is required
that no cloud provider makes available in their cloud
by default as a PaaS service. In this example IaaS
resources have to be created in order to install the
special database management system.

The application functionality, however, can be
implemented using PaaS resources like functions,
for example. These functions are executed in the
PaaS abstraction, while the special database
management system is executed in the IaaS
abstraction.

From a software engineering perspective the
question arises if there is a separate software

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

876

engineering approach for the mixed case, or if the
mixed cases are treated as two separate projects, one
following the traditional process, and one the
innovative process. This decision will reside in the
eye of the beholder as both approaches are possible.

4.4 Prediction: PaaS–based Cloud
Software Engineering Will Prevail

The DevOps movement will steer teams toward the
functionality centric model of software engineering
due to reduced operations and maintenance work,
hence less opportunity for failure, errors or bugs. At
the same time tools will be easier to use as
infrastructure resources will not have to be made
available for operations and maintenance.

At the same time an interesting question arises:
is there any long-term value from a cloud provider’s
viewpoint to continue to provide the IaaS abstraction
in addition to the PaaS abstraction? If the PaaS
abstraction will provide all necessary functionality
for software development in general then why
providing IaaS resources?

The case of the special database management
system resurfaces here that is not available in a
cloud. One possibility is that a cloud provider
enables the special database management software
to be implemented within the cloud and made
available as PaaS service instead. This approach
would create an eco-system that allows 3rd parties
(aka, companies different from the cloud provider)
to provide services directly in the cloud of the cloud
provider. From a customer’s viewpoint there would
be no distinction between functionality provided by
the cloud provider itself or a 3rd party.

The prediction is: IaaS will disappear, and PaaS
will become extremely expressive in terms of
functionality, operations and maintenance.

5 RELATED WORK

The term cloud engineering was coined a while back
(see (Wikipedia, 2018b) for details). However, the
term based on searches did not take hold in
academia or the industry – therefore, in the paper the
term cloud software engineering was used.

In the special issue Software Engineering for the
cloud (Grundy et al., 2012) the distinction between
IaaS and PaaS is recognized, however, not in context
of the software engineering process as such, only
from a functional and architectural perspective in
context of software architecture. No discussion takes

place on how the software engineering process has
to be specialized for the target system resources.

(Da Silva et al., 2012) goes a step further and
discusses briefly that the artefacts are different for
the IaaS target abstraction compared to the PaaS
target abstraction. In this discussion, however, no
implication to the software engineering process as
such is discussed, nor the necessity of different
software engineering approaches. The DevOps
model is not considered in this discussion at all.

(Sommerville, 2012) goes even a step further
and asks in the slide set if the cloud software
engineering process is any different for the cloud
compared to on-premise data centers. However, the
question is never answered. And while the slide set
makes the continued distinction between IaaS and
PaaS from an architectural point of view, software
engineering approaches for those are never
discussed.

(Balalaie et al. 2016) describe experiences in
their work migrating an application to a
microservices architecture executing on a
Kubernetes infrastructure (IaaS layer). Their section
on lessons learned clearly shows the challenges in
designing for an IaaS layer due to the visibility of
the infrastructure elements.

(Kratzke et al. 2016) propose a cloud reference
model (CloudNS) that assumes the visibility and
accessibility of a complete stack, including IaaS. It
recognizes different abstractions, however, it does
not clearly outline the abstractions themselves. The
position paper argues show that is is possible to
build a service without having to manage resources.
In CloudNS this would mean that layers 1 - 4 are not
applicable, plus, that CloudNS layer 5 does not have
resource management aspects. CloudNS would not
be able to support the architecture of this position
paper.

(Kratzke et al. 2017) contains a survey of
engineering publications, however, based on their
own opinion that a cloud application architecture
must be microservices based the survey fails to
include the category what is termed in this position
paper as “Innovative Cloud Engineering”.

The conference series titled “IEEE International
Conference on Cloud Engineering” (IC2E, 2013 –
2107) does not contain any paper whatsoever that
discusses the role of software engineering in the
cloud and how it relates to the various layers of
abstractions provided (aka, IaaS or PaaS).

Cloud Software Engineering: Traditional or Innovative – The Choice Is Yours

877

6 CONCLUSIONS

The main conclusion is that a single cloud software
engineering approach is insufficient in context of
clouds that provide different layers of abstractions
like IaaS or PaaS (or SaaS). Due to the difference in
abstraction, separate customized cloud software
engineering approaches are required that are tailored
towards the target system abstractions the cloud
layers provide, aka, IaaS vs. PaaS target system
resources.

Over time it is expected that not all layers that
are currently provided by clouds will have the same
emphasis. One expectation is that PaaS abstractions
will by far dominate the IaaS abstractions in the
future and the latter might become relevant as niche
only if it at all exist in the long run.

ACKNOWLEDMENT

I want to thank the reviewers whose review
comments and suggestions improved the position
paper.

REFERENCES

AWS, 2018. Amazon Web Services (AWS) - Cloud
Computing Services. https://aws.amazon.com/ (last
accessed 5/6/2018)

AWS DevOps, 2018. What is DevOps? https://aws.
amazon.com/devops/what-is-devops/ (last accessed
5/6/2018)

AWS Reference Architecture, 2018. https://s3.amazon
aws.com/awslambda-reference-architectures/web-app/
lambda-refarch-webapp.pdf (last accessed 5/6/2018)

Balalaie, A., Heydarnoori, A. and Jamshidi, P., 2016.
Microservices architecture enables devops: Migration
to a cloud-native architecture. IEEE Software, 33(3),
pp.42-52.

Da Silva, E., Lucrédio, D., 2012. Software Engineering for
the Cloud: a Research Roadmap. 2012 26th Brazilian
Symposium on Software Engineering (SBES).

Google, 2018. Google Cloud. https://cloud.google.com/
(last accessed 5/6/2018)

Grundy, J., Kaefer, G., Keong, J., Liu, A., 2012. Software
Engineering for the Cloud. IEEE Software,
March/April 2012

Helm, 2018. Helm. https://helm.sh/ (last accessed
5/6/2018)

IC2E, 2013 – 2017. IEEE International Conference on
Cloud Engineering. https://dblp.uni-trier.de/db/conf/
ic2e/ (last accessed 5/6/2018)

IEEE, 2017. ISO/IEC/IEEE 24765:2017(E) -
ISO/IEC/IEEE International Standard - Systems and

software engineering -- Vocabulary (https://
standards.ieee.org/findstds/standard/24765-2017.html,
last accessed 5/6/2018)

Kubernetes, 2018. Kubernetes. https://kubernetes.io/ (last
accessed 5/6/2018)

Kubernetes CaaS, 2018. Containers as a Service, the
foundation for next generation PaaS. https://kuber
netes.io/blog/2017/02/caas-the-foundation-for-next-
gen-paas/ (last accessed 6/24/2018)

Kratzke, N., Peinl, R., 2016, September. Clouns-a cloud-
native application reference model for enterprise
architects. In Enterprise Distributed Object
Computing Workshop (EDOCW), 2016 IEEE 20th
International (pp. 1-10). IEEE

Kratzke, N., Quint, P.C., 2017. Understanding cloud-
native applications after 10 years of cloud computing-
A systematic mapping study. Journal of Systems and
Software, 126, pp.1-16.

Lewis, J., Fowler, M., 2014. Microservices. https://www.
martinfowler.com/articles/microservices.html (last
accessed 6/24/2018)

Microsoft, 2018. Microsoft Azure. https://azure.microsoft.
com/en-us/ (last accessed 5/6/2018)

Newman, S., 2014. Building Microservices. O’Reilly,
2015

Oracle, 2018. Oracle Cloud. https://cloud.oracle.com/
home (last accessed 5/6/2018)

Oracle IaaS, 2018. Oracle Cloud IaaS. https://cloud.
oracle.com/iaas (last accessed 5/6/2018)

Roberts, M., 2018. Serverless Architectures. https://
www.martinfowler.com/articles/serverless.html (last
accessed 6/24/2018)

Sommerville, I., 2012. Challenges for Cloud Software
Engineering. Slide set, 2012. https://www.slide
share.net/sommervi/cloud-software-engineering (last
accessed 5/6/2018)

Wikipedia, 2018a. Supply Chain Management. https://
en.wikipedia.org/wiki/Supply_chain_management
(last accessed 6/24/2018)

Wikipedia, 2018b. Cloud Engineering. https://en.wiki
pedia.org/wiki/Cloud_engineering (last accessed
5/6/2018)

DISCLAIMER

The views expressed here are my own and do not
necessarily reflect the views of Oracle.

SE-CLOUD 2018 - Special Session on Software Engineering for Service and Cloud Computing

878

