
Towards a Visualization of Multi-level Metamodeling Techniques

Sándor Bácsi and Gergely Mezei
Department of Automation and Applied Informatics, Budapest University of Technology and Economics,

Magyar tudósok krt. 2., H-1117 Budapest, Hungary

Keywords: Multi-level Modeling, Metamodeling, Dynamic Instantiation, Visual Language, Visualization.

Abstract: In the recent decade, a wide range of tools and methodologies have been introduced in the field of multi-level
metamodeling. One of the newest approaches is the Dynamic Multi-Layer Algebra (DMLA). DMLA incor-
porates a fully self-modeled textual operation language above the tuple-based model entity representation.
This textual language simplifies editing the models, but it has its drawbacks especially in following evolv-
ing requirements. In this paper, we introduce a visualization concept, which can support the more effective
manipulation of the particular model and facilitate the process of multi-level metamodeling within DMLA.

1 INTRODUCTION

In the software industry, the development of applica-
tions routinely begins with setting up the most rele-
vant design aspects based upon the main requirements
of the given project. Stakeholders and customers try
to specify their needs and expectations at the begin-
ning of the project, but in most cases these initial re-
quirements change during later phases of the devel-
opment. Nevertheless, the most relevant design deci-
sions must be made at this early stage of the develop-
ment leaving concrete implementation later.

In the early phase of the development, the soft-
ware model is flexible because of the high-level speci-
fication. As the project evolves, the requirements may
change, thus new constraints and properties may re-
duce the original flexibility of the software model. In
many domain problems, it would be useful to support
this evolutionary nature of software development by
applying model-based solutions.

Mainstream metamodel based methods and tech-
niques have been applied in real industrial cases sev-
eral times, for example in the field of IoT and manage-
ment of telecommunication systems. It turned out that
these approaches may have their drawbacks, since
several problem settings cannot be solved expres-
sively and flexibly with classic metamodeling tech-
niques. Most of the current metamodel based solu-
tions have difficulties with supporting the evolution
of the domain-model during the lifecycle.

One of the new branches of metamodeling focus
on multi-level metamodels. By increasing the num-

ber of modeling levels, we can obtain an environ-
ment, where the definition of domain concepts are
composed of fine graded steps simplifying thus the
customization of the domain. However, there is no
consensus in the literature on the exact meaning of the
methodology and there are no widely accepted prin-
ciples, which makes practical application hard.

In the recent years, several new approaches and
methodologies have been introduced or suggested
by researchers to support the process of multi-level
metamodeling. One of these approaches is the Dy-
namic Multi-Layer Algebra (DMLA), which is a flex-
ible, self-validation and formal multi-level modeling
framework. In DMLA, all model elements are stored
as 4-tuples and all operations are applied on these tu-
ples. DMLA incorporates a fully self-modeled textual
operation language (DMLAScript) above the 4-tuple
representation, which provides a user-friendly inter-
face to reach and manipulate the tuples. Due to the
initial concepts and the textual representation, DM-
LAScript has its drawbacks in the effective manipu-
lation of the domain model, especially when focus-
ing on realistic, evolutionary model editing. In this
paper, we point out these drawbacks and introduce a
visualization concept, which can facilitate the process
of multi-level metamodeling on a higher abstraction
level. Although the concept is related to DMLA, the
main principles are more general and can be benefi-
cial for any multi-level visualization environment.

The paper is organized as follows: Section 2
presents the background and the related work. Sec-
tion 3 introduces the DMLA approach in order to give

Bácsi, S. and Mezei, G.
Towards a Visualization of Multi-level Metamodeling Techniques.
DOI: 10.5220/0006915603550362
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 355-362
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

355



clear and precise understanding of the main concepts.
Section 4 elaborates our method, while concluding re-
marks are outlined in Section 5.

2 RELATED WORK

In this section, we summarize the most relevant ap-
proaches in the field of multi-level metamodeling and
we give a general overview on advantages of visual
languages in different problem domains. We also
summarize existing visualization approaches regard-
ing multi-level metamodeling.

2.1 Multi-level Metamodeling
Approaches

OMG’s Meta-Object Facility (OMG, 2005) (MOF)
is often referred to as the de-facto standard for imple-
menting metamodel based solutions. MOF provides
a four-layer architecture, which can be satisfying for
most of the problems. However, alternative as multi-
level solutions pointed out (Atkinson et al., 2014), it
is not always enough neither in flexibility nor focus-
ing on the preciosity. To overcome the weaknesses
of MOF, n-level metamodeling has gained increasing
popularity in the last decade. Here, it is worth to ex-
plicitly differentiate between linguistic and ontologi-
cal metamodeling based upon separate linguistic and
ontological instance-of relations. Several approaches
also differentiate between shallow and deep instanti-
ation. Shallow instantiation means that the domain
information is available exactly one modeling layer
below its definition. In opposition to shallow instanti-
ation, deep instantiation means that the domain infor-
mation may be used at layers below as well according
to its parametrization.

One of the most relevant deep instantiation tech-
niques is the so called potency notion (Atkinson and
Kühne, 2001). Here, a potency is assigned to each
model entities. The assigned potency value represents
the number of model levels the certain element can
get through before reaching its fully instantiated state.
Melanee (Atkinson and Gerbig, 2016), (Gerbig et al.,
2016) is a deep modeling tool based upon the concept
of orthogonal classification and potency notion.

Another remarkable deep modeling methodol-
ogy is the Lazy Initialization Multilayered Modeling
Framework (Golra and Dagnat, 2011). This frame-
work provides an object oriented modeling language,
which is based on lazy instantiation. Lazy initializa-
tion can facilitate to manage the instance-of relation-
ships between the layers and their classification.

The (metaDepth (de Lara and Guerra, 2010) and
XModeler (XModeler, 2014)), are also multi-level
metamodeling approaches. Besides the modeling
structure, they provide an operation language as well,
which allows the creation of operations within the
multi-level metamodeling workbench. In metaDepth,
both Java and EOL (EOL, 2007) can be used to spec-
ify actions and constraints. XModeler provides an ex-
ecutable programming language, XOCL (Clark and
Willans, 2012), which is based on OCL.

2.2 The Benefits of Visualization

Domain-specific languages (DSLs) are specialized
modeling languages that allow the effective manage-
ment of the behavior and the structure of software
programs and systems in a specific domain. DSLs
provide an improved abstraction of the problem that
allows the rapid development of the targeted domain.
Visual DSLs, compared to textual DSLs, can further
improve the expressiveness and the usability of the
model.

There are several advantages of using a visual
DSL. The richness of the visual representation can
simplify the modeling process and increase flexibil-
ity, thus visual DSLs can be intuitively usable even for
complex language constructs. Visual DSLs also pro-
vide high-level abstractions to manipulate the struc-
ture and the functioning of the given model. On the
other hand, visualization can facilitate to understand
the concepts and the main relations in the targeted do-
main. It can be easier to explain the main characteris-
tics of a domain problem by using visual notations.

There are visual DSLs e.g., (Simon et al., 2017),
(Bottoni and Ceriani, 2015) which can ensure that
users without technical skills can be more closely
involved in the targeted domain. In other domains
(Wienands and Golm, 2009), it can be beneficial to
use the combination of a textual and a visual DSL.
The visual form of the well-known UML diagrams
can facilitate the customization of the modeling ele-
ments and interactions in a more flexible way, espe-
cially in design-time.

To sum up, a visual DSL can be beneficial to rep-
resent and manage existing abstractions. Each prob-
lem domain requires a different visual representa-
tion to meet the requirements of the targeted domain,
therefore it is essential to choose the most appropriate
representational concepts in design-time. Obviously,
not all domain problems can be solved expressively
and flexibly using visual DSLs. Hence, it is worth
considering the use of visual DSLs depending on the
characteristics of the targeted domain.

Recently, the demand for an appropriate visual-

ICSOFT 2018 - 13th International Conference on Software Technologies

356



ization has arisen also in the field of multi-level meta-
modeling. XModeler (Clark et al., 2015) provides
a visual editor to support the process of multi-level
modeling. As a concrete syntax, there is a named
box notation in XModeler’s visual editor, which rep-
resents the class of the given entity. Hence, it is pos-
sible to navigate among instances and class declara-
tions. XModeler has a color node notation as well in
order to be able to distinguish the levels of type ab-
straction. The header of each class has a specified
background color to express the appropriate level of
type abstraction.

Melanee provides a diagrammatic workbench to
facilitate the process of deep-modeling. The Mela-
nee workbench uses clabject (Gerbig et al., 2016) no-
tations and provides a wide range of tools to build
a deep-model. The main advantage of the Melanee
workbench is the dynamic display of the currently us-
able types. The deep-model can be edited by using
both the textual and the visual editor.

3 DMLA IN A NUTSHELL

Dynamic Multi-Layer Algebra (DMLA) (DMLA,
2015) is a multi-level modeling framework based on
the Abstract State Machines (ASM) (Egon Brger,
2003) formalism. DMLA consists of two major parts:
(i) the Core, a formal definition of the modeling struc-
ture and its management functions; (ii) the Boostrap,
an initial set of pre-defined modeling entities.

Each model is represented as a Labeled Directed
Graph, where all model elements have four labels. Ta-
ble 1 shows the labels with their short descriptions.

Table 1: 4-tuple representation.

Label Description
XID globally unique ID of model element

XMeta a reference to the meta of the element
XValues a list of concrete values

XAttributes a list of contained attributes

Besides the 4-tuples representing the model en-
tities, there exist functions to manipulate the model
graph, for example, to create new model entities.
These definitions form the Core of DMLA, which
is specified over an Abstract State Machine (ASM).
Thus, in DMLA, the states of the state machine are
snapshots of the dynamically evolving models, while
transitions (e.g. deleting a node) represent modifica-
tion actions between those states.

The elements of the Boostrap can facilitate the
adaptation of DMLA’s modeling structure to existing
domains. The main idea behind separating the Core

and the Bootstrap is to improve flexibility, but also to
keep the approach formal. This way, the Bootstrap
becomes swappable, thus even the semantics of valid
instantiation can be re-defined. Namely, each particu-
lar bootstrap seeds the metamodeling facilities of the
generic DMLA formalism.

The modeling entities of the current bootstrap
(Fig.1) can be categorized into four groups: (i) ba-
sic types (blue boxes) providing a basic structure for
multi-level metamodeling, (ii) built-in types (purple
boxes) representing the primitive types available in
DMLA, (iii) entities facilitating the introduction of
operations into DMLA (green boxes), and (iv) vali-
dation related entities (red boxes).

For the sake of compactness, we give only a short
overview of the modeling structure here. For more
details check the DMLA website (DMLA, 2015). Ba-
sic entities are the basic building blocks of the mod-
eling process. The most important among them is the
Base entity, which is at the root of the meta hierar-
chy. Hence, all other model entities are instantiated
from Base entity. ConstraintContainers (and the Con-
straints contained) are used to customize instantiation
validation. At this point, we should discuss the vali-
dation mechanism: whenever a model entity claims
another entity to be its meta, the framework auto-
matically validates if there is indeed a valid instan-
tiation between the two. The validation formulae can
be modularized by introducing them directly into the
Bootstrap. Since these formulae directly influence the
actual semantics of instantiation, every model valida-
tion gets modularized and DMLAs instantiation be-
comes effectively self-defined by the model per se.
The SlotDef entity is a direct instantiation of Base. It
is used to define slots, which represent substitutable
properties, in syntactically similar manner to class
members in OO languages. Slots can contain Con-
straintContainers, which grants them the capability
to attach constraints to the containment relations de-
fined by the slot. Base defines that entities can have
slots, thus any direct or indirect instance of Base will
inherit this behavior. The Entity entity is another di-
rect instance of Base. Entity is used as the common
meta of all primitive and user-defined types. Entity
has two instances: Primitive (for primitive types) and
ComplexEntity (for custom types).

The core entities needed to represent the universes
of ASM in the bootstrap are: Bool, Number and
String. All these types refer to sets of values in the
corresponding universe. For example, we create en-
tity Bool so that it could be used to represent Boolean
type expressions. Built-in types are relied on when
a slot is filled by a concrete value and that value is
not a reference to another model entity, however it is

Towards a Visualization of Multi-level Metamodeling Techniques

357



Figure 1: The elements of the current Bootsrap.

a primitive, atomic value. All built-in types are in-
stances of Primitive.

Operations are responsible for changing the be-
havior of the entities in their sub-branches of the
meta-tree. In other words, new entities within the
model may provide their own specialized definition
of valid instantiation, provided they do not contradict
the standard validation rules imposed by Base.

DMLA incorporates a fully self-modeled textual
operation language above DMLA’s 4-tuple represen-
tation, DMLAScript, which has its drawbacks in the
manipulation of the operations within DMLA. In this
paper, we introduce a visualization concept, which
can facilitate the process of multi-level metamodeling
in DMLA.

4 TOWARDS VISUALIZATION

In this section, we summarize the most relevant con-
cepts regarding the visual workbench for DMLA. In
the first subsection, we show the justification of the
visualization, while the main concepts are outlined in
the latter subsections.

4.1 The Justification of the Visualization

As the number of multi-level metamodeling ap-
proaches is increasing, there is growing debate in
the literature about the exact meaning of the multi-
level metamodeling methodology and there are no
widely accepted principles. Hence, there is no de-
facto standard for multi-level metamodeling and ev-
ery approach has different capabilities. This is the
main reason why the multi-level committee has cre-
ated the so called Bicycle challenge (MULTI 2017,
2017) to investigate the strengths and drawbacks of

the different multi-level approaches. The challenge is
also intended as a basis for demonstrating the benefits
of multi-level modeling. Recently, we have resolved
the Bicycle challenge, to investigate the capabilities
of DMLA. While working on this challenge with DM-
LAScript, we have realized several drawbacks of the
practical application of DMLAScript. Different sce-
narios show different problems regarding the use of
the textual DMLAScript. In the following, we sum-
marize the relevant scenarios and drawbacks which
we have investigated.

The drawbacks can be categorized into two
groups: (i) The management of the relations among
entities; (ii) Refactoring and editing of certain enti-
ties. Group (i) contains drawbacks which affect the
management and the manipulation of the relations
among entities. Group (ii) contains drawbacks regard-
ing the effective editing of certain entities.

4.1.1 Managing the Relations Among Entities

Here, we present the drawbacks regarding the man-
agement of the relations among entities:

• Lack of fragmentation: In a textual description
document of the model, it can be inconvenient
to trace relations between modeling entities based
upon specification or the containment because of
the lack of fragmentation and structuralism.

• Navigation through meta-hierarchy: In design-
time, it can be essential to navigate up or down
on the relevant part of the hierarchy in order to
get more information about a certain entity. In
a textual description, it is not possible navigat-
ing through the meta-hierarchy in a seamless way,
therefore the modeling process can be uncomfort-
able in design-time.

ICSOFT 2018 - 13th International Conference on Software Technologies

358



• Semantics based grouping: Having met with a
large number of modeling entities can be confus-
ing and impenetrable. It would be advantageous
to have a precise view of the relevant entities in
design-time.

A visual DSL can provide a set of features to solve
the problems mentioned in this section. The Lack
of fragmentation and the Navigation through meta-
hierarchy can be easily resolved, because a well-
established concrete syntax of a visual DSL can pro-
vide structuralism and facilitate the seamless navi-
gation through the meta-hierarchy. Different views
and filters can display the expected set of modeling
elements, thus Semantics based grouping can be re-
solved by applying appropriate views.

4.1.2 Refactoring and Editing Certain Entities

Here, we present the drawbacks regarding the refac-
toring and editing of certain entities:

• Relocating the features: In design-time, it can be
important to move some parts (e.g. the children of
a certain entity.) up or down on the hierarchy. It
can be uncomfortable to update references to meta
elements the children elements are defined at.

• Keep flexibility: It is easy to forget to keep the
ability to add any kind of children to entities es-
pecially in a deep meta-hierarchy.

• Mandatory in-between placeholders: There can
be elements, which must be cloned (or instanti-
ated) by a large number of meta-levels. It can be
inconvenient to manually copy these elements to
the appropriate meta-levels. It would be useful to
have a feature to extend particular elements to up-
per and lower levels.

Automation and refactoring can be used both in a
textual and visual DSL, thus all of these drawbacks
can be resolved. Nevertheless, these issues are rather
editor dependent problem settings.

4.2 The Visualization of the
Meta-hierarchy

Our first approach in creating the visual language to
edit DMLA models was to create a simple demon-
stration for the visualization of the meta-hierarchy by
constructing a tree of the model showing the instance-
of hierarchy. We created a visual DSL using the
Eclipse Modeling Framework (EMF, 2016) and Sir-
ius (Sirius, 2018). With the help of the modeling
framework of the EMF project we built the meta-
model of the visual DSL. Sirius allows to effectively

manipulate a certain part of the model graphically in
order to focus on what really matters. Sirius can sim-
plify the graphical representations and highlight the
elements of interest. These are the main reasons why
we decided to use Sirius, because these features can
facilitate the more effective manipulation of the par-
ticular model. Fig.3 shows the relevant part of the Bi-
cycle challenge.In this simple demonstration, we used
a rectangular box notation for each entity. The meta-
entity can be set for each entity (Entity:MetaEntity).
Besides the header label, the instantiation relationship
is visualized by an arrow as well. Slots of the enti-
ties are represented as Slot:MetaSlot. Note that the
metaslot is also important, since it determines the val-
idation rules of the slot.

Although it looks beneficial to visualize the whole
meta-hierarchy, it has its limitations and drawbacks.
Due to a large number of model entities, the depth of
the instance tree can be large, thus the diagram may
become over-complicated and it can make the model-
ing process harder in design-time. On the other hand,
there are containment relationships in the model as
well, which should also be visualized in order to get a
better overview of the model. By realizing the short-
comings of our first attempt, we re-built our visual
language from scratch.

Figure 2: Expansible visual pivot point.

4.3 Combining Meta-, and Containment
Hierarchy Views

We have created a new visualization concept which
supports both the meta-hierarchy view and contain-
ment view in a more flexible and expressive way. As
it is not usable to display the whole model in one in-
stance tree, visual pivot points are needed in order to
make the diagram extensible vertically by the meta-
hierarchy and horizontally by the ownership. Hence,
it is possible to navigate only on the relevant part
of the model by traversing the appropriate upper and

Towards a Visualization of Multi-level Metamodeling Techniques

359



Figure 3: The visualization of the meta-hierarchy.

lower levels and displaying entities by containment
relationships. Fig.2 illustrates the concept of com-
bining meta-hierarchy and containment views. We
believe that both Lack of fragmentation and Navi-
gation through meta-hierarchy drawbacks can be re-
solved with the combination of meta-hierarchy view
and containment view.

4.4 Package View

In order to make the visual representation more modu-
larized and structured, a new view is required. Instead
of following the structural connections as in case of
instantiation and containment relations, the package
view reflects a logical grouping among model ele-
ments. The following advantageous points can fa-
cilitate the modeling process by applying a package
view:

• The package view can be used to to categorize
particular entities in the model, therefore they can
be easily maintained and used.

• Built-in bootstrap entities and user-defined enti-
ties can be distinguished by applying the appro-
priate concrete syntax (i.e. using different color
notations)

• Logically related modeling entities can be encap-
sulated in a named package. Each package is easy
to understand, and the interface between packages
can be simple, clear, and well-defined.

• The relevant entities can be displayed easily, non-
relevant entities can be hidden.

To sum up, all of the aforementioned points

strengthen the need for package view. This is the rea-
son why we support the introduction of package view
in our visualization concept. The Semantics based
grouping drawback can be easily resolved by using
an appropriate package view.

4.5 Testing the Approach

In this subsection, we present a simple example to
give a better overview of the advantages of our vi-
sualization concept. Let us follow the process of de-
signing a domain step-by-step.

1. A bicycle is built of components. A component
is a bicycle entity. – We create an entity called
Component by instantiating the previously created
BicycleEntity entity.

2. There are several types of components, e.g.
Frame or Wheel. –We set our pivot to Component
and instantiate it to create the two entities.

3. The XZ32 frame is a concrete frame – We instanti-
ate Frame and create the new entity. Fig. 4 shows
the actual state of the process after the third step.

4. A Frame has a color. – We add a new slot to
Frame, but Component has no (meta)slots to be
instantiated to create the color slot. We have two
options: we can add a universal slot to Component
granting the ability to add any kind of slots to its
instances (including color), or we can add a spe-
cific Color slot to Component. In the latter case,
we say that all components can have colors. Now,
we choose this option. Note that we also need to
add the Color slot to Wheel and to XZ32. These

ICSOFT 2018 - 13th International Conference on Software Technologies

360



Figure 4: The actual state after adding XZ32 frame.

additions are applied automatically by the frame-
work as we used the features Keep flexibility and
Relocating the features. We can also specify that
XZ32 frame is always painted to red thus setting
the concrete value of the slot. Fig. 5 shows the
actual state of the process after the fourth step.

Figure 5: The actual state after adding Color slot.

5. The weight of the XZ32 frame is 10kg – We need
to create a new slot in XZ32 and similarly to the
previous case, we need to create its metaslot and
in this case also its meta-metaslot (in Component).
Note that Frame is a mandatory in-between place-
holder in this case. Adding the Weight slot to it
is only required because our validation is strict
and does not allow any element not enabled by
its meta-element.

It is worth to mention that in design-time, it can be
convenient to move the Color and Weight attributes
up or down on the hierarchy automatically by the de-
cisions of the user. Our visualization approach can
effectively simplify the process of defining and mov-
ing slots. Fig. 6 shows the end result of the process.

Figure 6: The end result of the process.

5 CONCLUSIONS

Model-driven development has become a feasible op-
tion to create and maintain complex systems. How-
ever, static modeling solutions are not always suffi-
cient any longer in the modern era of industrial appli-
cations. On the other hand, it is not always acceptable
to create a language definition first and create mod-
els conforming to it afterward. Models and even the
modeling languages evolve continuously. Thus, the
demand for dynamic modeling techniques became a
natural tendency in many fields. It is one of the chal-
lenges in supporting this trend is to facilitate the pro-
cess of dynamic modeling with the appropriate visu-
alization techniques. The richness of the visual rep-
resentation can simplify the modeling process and in-
crease flexibility.

Managing the complexity of the dynamic model-
ing requires breaking down a domain problem into
simpler parts. We believe that our visualization ap-
proach allows the user to easily manipulate sub-parts
of a model in order to focus on what really mat-
ters. The approach automatically simplifies several
key processes and graphically highlight the elements
of interest while editing a certain domain in design-
time.

Towards a Visualization of Multi-level Metamodeling Techniques

361



In this paper, we classified and identified the most
relevant difficulties that can occur in a particular
multi-level modeling design process. We also intro-
duced visualization solutions, which can support the
evolutionary nature of domain models and facilitate
the dynamic editing of certain models. Our visual-
ization approach can provide a flexible and expres-
sive way of multi-level modeling within DMLA. Al-
though the presented concept is related to DMLA, we
believe that the main principles are much more gen-
eral and can be beneficial for any multi-level visual-
ization problem settings.

In the future, we aim to finish the implementa-
tion based upon the new concepts we introduced in
this paper. We plan to create more detailed case stud-
ies to prove the utility of our visualization concept.
We plan to investigate our visualization concept in
the context of other relevant multi-level metamodel-
ing approaches by creating a comparison between the
proposed method and relevant existing methods in a
visual way. The comparison would provide a better
overview of the real advantages of our visualization
approach.

ACKNOWLEDGEMENTS

This work was performed in the frame of FIEK 16-
1-2016-0007 project, implemented with the support
provided from the National Research, Development
and Innovation Fund of Hungary, financed under the
FIEK 16 funding scheme. The research has been sup-
ported by the European Union, co-financed by the Eu-
ropean Social Fund. (EFOP-3.6.2-16-2017-00013).

REFERENCES

Atkinson, C. and Gerbig, R. (2016). Flexible deep mod-
eling with melanee. In Modellierung 2016 - Work-
shopband : Tagung vom 02. März - 04. März 2016
Karlsruhe, MOD 2016, volume 255, pages 117–121,
Bonn. Köllen.

Atkinson, C., Gerbig, R., and Khne, T. (2014). Comparing
multi-level modeling approaches. In CEUR Workshop
Proceedings, volume 1286.

Atkinson, C. and Kühne, T. (2001). The essence of mul-
tilevel metamodeling. In Gogolla, M. and Kobryn,
C., editors, łUML 2001 — The Unified Modeling Lan-
guage. Modeling Languages, Concepts, and Tools,
pages 19–33, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Bottoni, P. and Ceriani, M. (2015). Sparql playground: A
block programming tool to experiment with sparql. In
VOILA@ISWC.

Clark, T., Sammut, P., and Willans, J. S. (2015). Super-
languages: Developing languages and applications
with XMF (second edition). CoRR, abs/1506.03363.

Clark, T. and Willans, J. (2012). Software language engi-
neering with xmf and xmodeler. In Formal and Prac-
tical Aspects of Domain-Specific Languages: Recent
Developments, volume 2, pages 311–340.

de Lara, J. and Guerra, E. (2010). Deep meta-modelling
with metadepth. In Vitek, J., editor, Objects, Mod-
els, Components, Patterns, pages 1–20, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

DMLA (2015). Dmla website. aut.bme.hu/Pages/Research/
VMTS/DMLA. Accessed: 2018-04-20.

Egon Brger, R. S. (2003). Abstract State Machines.
Springer-Verlag Berlin Heidelberg.

EMF (2016). Emf. Accessed: 2018-04-20.
EOL (2007). Epsilon object language. http://www.eclipse.

org/epsilon/. Accessed: 2018-04-20.
Gerbig, R., Atkinson, C., de Lara, J., and Guerra, E.

(2016). A feature-based comparison of melanee and
metadepth. In MULTI 2016 : Proceedings of the 3rd
International Workshop on Multi-Level Modelling co-
located with ACM/IEEE 19th International Confer-
ence on Model Driven Engineering Languages & Sys-
tems (MoDELS 2016) Saint-Malo, France, October 4,
2016, volume 1722, pages 25–34, Aachen. RWTH.

Golra, F. R. and Dagnat, F. (2011). The lazy initializa-
tion multilayered modeling framework: Nier track. In
2011 33rd International Conference on Software En-
gineering (ICSE), pages 924–927.

MULTI 2017 (2017). Bicycle challenge multi 2017. https://
www.wi-inf.uni-duisburg-essen.de/MULTI2017/. Ac-
cessed: 2018-04-20.

OMG (2005). Omg metaobject facility. http://www.omg.
org/mof/. Accessed: 2018-04-20.

Simon, G., Palatinszky, D., and Mezei, G. (2017). Demon-
stration of using a domain-specific visual modeler for
building semantic queries. In Joint Proceedings of
the 2nd RDF Stream Processing (RSP 2017) and the
Querying the Web of Data (QuWeDa 2017) Workshops
co-located with 14th ESWC 2017 (ESWC 2017), Por-
toroz, Slovenia, May 28th - to - 29th, 2017., pages
51–54.

Sirius (2018). Sirius. https://www.eclipse.org/sirius/. Ac-
cessed: 2018-04-20.

Wienands, C. and Golm, M. (2009). Anatomy of a visual
domain-specific language project in an industrial con-
text. In Schürr, A. and Selic, B., editors, Model Driven
Engineering Languages and Systems, pages 453–467,
Berlin, Heidelberg. Springer Berlin Heidelberg.

XModeler (2014). Xmodeler website. https://www.wi-inf.
uni-duisburg-essen.de/LE4MM/xmodeler-ml/. Ac-
cessed: 2018-04-20.

ICSOFT 2018 - 13th International Conference on Software Technologies

362


