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Abstract: Abstract interpretation is a static analysis technique used mostly for non-functional verification of software. 
In this paper, we show the status of the technology that implements abstract interpretation which can help in 
GUI-based software verification. Specifically, we investigate the use of the Julia tool for the functional 
verification of a Graphical User Interface (GUI). 

1 INTRODUCTION 

Abstract interpretation was developed in the 
seventies and has since then been used in many 
aspects of computer science such as static analysis 
and verification (Cousot and Cousot, 2014). For a 
software S, it is impossible to write a software 
system S’ that computes all possible executions 
based on all possible inputs and to represent them 
mathematically (Cousot, 2016). This is an 
undecidable problem. Abstract interpretation can be 
used in the verification of undecidable properties of 
software. This is done by the use of mathematical 
approximations of the data structures and possible 
ranges of values (Cousot and Cousot, 2014). Hence, 
abstract interpretation is used in the formal 
description and verification of undecidable properties 
of software (Cousot and Cousot, 2014). It is a 
technique for automatic static analysis that consists in 
replacing a specific part of code by a less detailed 
abstraction in order to calculate some properties of 
the program (Boulanger 2013). This technique 
enables detecting runtime errors such as division by 0 
and overflow. It can also detect shared variables and 
dead code (Boulanger, 2013). 

In this paper, we study the flow of data provided 
by the user (input data) to the GUI, though the GUI 
up to the application logic. The GUI processes the 
data and passes it (output data) to the logic. We refer 
to this as an input-output relation in the rest of the 
paper. 

We try to use abstract interpretation to verify the 
Graphical User Interface of GUI-based software. 
This paper answers the research question: Is it 
possible to verify functional properties of the GUI of 

a GUI-based software using abstract interpretation 
applied on the GUI code?  

The rest of this papers is organized as follows. 
Section 2 presents background and related work 
about abstract interpretation. Section 3 presents the 
input-output relation. Section 4 explains the proposed 
solution. Section 5 presents the conclusions. 

2 BACKGROUND ON ABSTRACT 
INTERPRETATION AND 
RELATED WORK 

Abstract interpretation depends on using 
mathematical approximation concepts (Cousot, 
2016). It can be defined as follows: “a unified model 
for static analysis of programs by approximation of 
fixpoints” (Cousot and Cousot, 1977). An invariant is 
a property which holds for all trajectories of the 
software, i.e., all software execution paths (Cousot, 
2016). Abstract interpretation analyzes software 
trajectories (Cousot and Cousot, 2010) and identifies 
safe zones and forbidden zones. When a trajectory 
does not lead to an error it is called a safe zone. A 
forbidden zone is a part of a trajectory that may lead 
to an error (Cousot and Cousot, 2010). An example 
of an error that leads to a forbidden zone is an 
overflow in a condition of a while loop. Abstract 
interpretation builds global variables for the state of 
the software in those trajectories and then partitions 
those trajectories into stages that represent similar 
behaviours of the trajectories (Cousot and Cousot, 
2010). If the abstraction is safe, then each abstract 
invariant represents a superset of the concrete states 
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after each instruction. In the presence of a loop, the 
repeated interpretation of loop instructions leads to 
the abstract invariant getting stabilized, a fixpoint 
having been reached  (Boulanger, 2013). 

We did not notice the use of abstract 
interpretation for the verification of the GUI of 
software in the literature. However, we found a 
framework called Bandera, which enables the 
automatic extraction of finite-state models from the 
source code of software (Corbett et al., 2000). 
Bandera uses abstract interpretation in order to 
extract the finite-state model. In addition, we noticed 
the use of abstract interpretation by Airbus France in 
hard real-time avionics software, such as flight 
control software which is always expected to react in 
time (Thesing et al., 2003). 

We investigated an abstract interpretation tool 
called Julia to be used in our experiments (Spoto and 
Jensen, 2003). Julia performs abstract interpretation 
of Java software. Julia observes conditional 
statements in the code, collects information about 
methods, and determines when and how they are 
being called (Spoto, 2005). The abstract 
interpretation using Julia is performed through a 
fixpoint calculation, focusing on program points 
called watchpoints (Spoto, 2005). This is done 
through a software component that receives software 
byte code and dumps results into a report file that 
describes the output (Spoto, 2005). Spoto (author of 
Julia) and Jensen observed that the information 
provided by many static analyses is significant or 
useful only at a limited set of software points, which 
they call the watchpoints (Spoto and Jensen, 2003). 
For example, information about a variable which can 
contain zero at run-time is useful only before a 
division (Spoto, 2005). Class analysis includes 
identifying which call leads to a specific target 
method (Spoto, 2005). Hence a watchpoint must be 
put before the call of the software (Spoto, 2005). 
Julia depends on this idea to focus on specific 
software points. 

Julia uses a hierarchy of semantics, which is a 
concept used to classify semantics into two types: 
Trace and watchpoint (Spoto and Jensen, 2003). A 
trace is a sequence of states for a piece of code, while 
a watchpoint is a program point that plays an 
essential role in program behavior. A piece of code 
can be represented by a set of traces to create a 
sequence of states for that code. There is a trace for 
every possible input state for the code. Abstract 
interpretation tries and tests several approximation 
mechanisms (Cousot and Cousot, 1977). However, 
practically, Julia allows the user to add watch point at 
any part of the code she/he wants. 

As for our scope, we use the Julia static analyzer 
as follows. Julia provides a set of features that the 
user can use to analyze the software statically. We 
are interested in a feature that enables us to find 
numerical invariants. This feature has been 
implemented in Julia version 2.3.4. In this 
deployment of Julia, there is a new option named 
termination checker which is available in the Julia 
wizard. This option is usually used in operations 
related to termination of Java programs. This has 
been an issue for some researchers as some Java 
programs do not terminate completely until shutting 
down the Java virtual machine. There is a branch of 
research on this topic that investigates how to make 
sure that a program has terminated (Spoto et al., 
2010). However, in our scope of verification of 
software, we are interested in an option called 
dumpNumericalAssertions. By turning it on through 
clicking the check box in the Julia wizard, Julia 
generates an output text file with numerical 
invariants at user-defined program points.  

Julia observes conditional statements in the code. 
It also collects information about the software 
methods such as when and how they are being called. 
Julia also tries to find an activation frame, which is a 
description on when and how a software method is 
called. Then, Julia uses a lookup procedure to find 
the target software method (software function) of the 
call. Then, Julia creates an activation frame for the 
called method (Spoto, 2005). The activation frame 
for a method is a setting that simulates the 
circumstances when a call happens. Finally, Julia 
moves the output of the called method into the stack 
of the caller. 

Abstract interpretation using Julia is performed 
through software components that receive software 
bytecode and dump results into a report file that 
describes the output. One component is a code 
preprocessor. A fixpoint engine is another 
component that uses an external module to abstract 
bytecode. It also has its own fixpoint strategies. A 
third component is a library that works as a low-level 
interface to .class files (Spoto, 2005). 

3 INPUT-OUTPUT RELATION 

We refer to as input variable any variable in the GUI 
code that receives a value from the user. We refer to 
as argument variable any variable in the header of a 
method in a Control class. We use the term input-
output relation to refer to the relation between these 
two kinds of variables. The input data is received 
from a human actor and assigned to an input variable. 
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Through some control flow in the UI code this data 
reaches an argument variable. This is a way to model 
the flow followed by data when a Boundary class 
converts data received from a human actor into a 
form that can be dealt with in a Control class. 

We distinguish between six different kinds of 
multiplicities. In the Many to One (N-1) multiplicity, 
several input variables to Boundary classes are used 
to form (i.e. compute) one argument variable to a 
function in a Control class. In a One to One (1-1) 
multiplicity, one input variable to a Boundary class 
becomes one argument variable to a Control method. 
In a Many to Many (N-M) multiplicity, many input 
variables to Boundary classes contribute to many 
argument variables. In a Many or One to zero (1..N-
0) multiplicity, one or more variables do not 
contribute to any argument variable to the Control 
class. In a One to Many (1-M) multiplicity there is 
one input variable to the GUI that contributes to 
many arguments of methods in Control classes. In a 
Zero to one or Many (0-1..M) multiplicity, there is no 
input variable to the GUI but one or many arguments 
to Control methods. 

4 PROPOSED SOLUTION 

We use Julia static analyzer (Spoto, 2005). Our 
objective of using Julia is to obtain a mathematical 
formula (invariant) that represents the code. 
Specifically, the GUI code handles the user input to 
obtain an output that will be given to the 
functionality of the logic code. We want to extract a 
mathematical function from the code which 
implements operations from the input to the output. 
We can then compare the obtained mathematical 
function with the expected one. The expected 
function is the predicted one. The software developer 
or tester predicts that a code (related to input-output 
relation) implements such a function. If the actual 
and predicated mathematical functions are the same, 
there is no fault in the code. Hence, we can verify the 
GUI. Subsection 4.1 describes an illustrative example 
using Julia. Subsection 0 describes our tries for 
obtaining the invariant. Subsection 0 describes our 
tries to write the invariant as Java code. 

4.1 Simple, Illustrative Example 

Figure 1 shows the main window of our example 
software when the user enters an input, using the text 
field, and presses the copy button. We use a simple 
software which we use to explain how we utilize 
abstract interpretation. The software that we design 

uses the Entity-Control-Boundary (ECB) design 
principle (Bruegge and Dutoit, 2000). Boundary 
represents the GUI and Control represents the logic 
(implementing use cases) while Entity classes hold 
data/state. 
 

 

Figure 1: The main window of simple software after typing 
the input and clicking the copy button. 

The Entity class is MyTextEntity, which has a 
functionality for creating some text files on the hard 
disk and printing text on the standard output stream. 
TextControl is a Control class that receives inputs 
from the Boundary class and makes a call to the 
Entity class. RadioComponent, 
CopyTextComponent, and MainExeFrame are 
Boundary classes which receive the input from the 
user, process it and pass it to the Control class.  

The software takes the user input, adds the value 
1 to it, and then shows it in the label under the radio 
buttons. The output is 2 in this case. In this specific 
example, the CopyTextComponent instance 
receives the input value "1" from the MainExeFrame 
instance. The class CopyTextComponent adds a 
value of "1" to it, and then it passes it to the Control 
class. This code intentionally introduces a fault. In 
the normal execution, this software should show the 
input on the output without any semantic change. 
The code which increases the input value breaks the 
ECB principle; the Control class should do this. Figur 
shows a sample of the code from class 
CopyTextComponent. 

 

 

Figure 2: The part of the source code of the GUI that 
changes the input value. 

1 int userInput = 
Integer.parseInt(inputExpression.ge
tText()); // get the user input 
from the text field 

2 int callArgument = userInput + 1; 
// process the entered value by 
simply adding 1 to it. 

3 TextControl t = new 
TextControl(Integer.toString(callAr
gument));// passing the value to a 
constructor of class TextControl in 
the Control package 

4 t.printCopyMessage(evt.toString(),0
); 
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The CopyTextComponent instance obtains a 
value from the GUI (line 1) and stores it in the 
userInput variable. Then (line 2), it declares a 
variable called callArgument. The callArgument 
variable takes the value of userInput and adds the 
value 1 to it. Then, it passes it to the Control class 
instance. When the user enters a value in the text 
field and presses the copy button, the click by the 
user triggers the method actionPerformed, which 
creates an instance of the TextControl class. Then, 
the call proceeds to the method 
printCopyMessage(). The method 
printCopyMessage() triggers the log() method in 
the Entity class called MyTextEntity.  

We can notice that the value of the input variable 
provided to the GUI is passed to the constructor of 
the Control class when the actor’s action results in a 
call to the actionPreformed method. Hence, we 
need to make sure that the input given to the 
TextControl instance is the right input–in this case, 
the string value received from the text field. The code 
converts the string to an integer and increases the 
output by a value of one. The code converts the value 
(after the increment) to a string. After that, the code 
passes the string to the Control class instance. One 
procedure would be to add a static variable for every 
single input provided by the user. We add a 
watchpoint (Line 3) to the code as shown in Figure. 
Figure shows a part of the class 
CopyTextComponent after adding a watchpoint. 

 
1 int userInput = 

Integer.parseInt(inputExpression.getText
()); // get the user input from the text 
field 

2 int callArgument = userInput + 1; // 
process the entered value by simply 
adding 1 to it. 

3 Watchpoint.analyzeHere(); 
4 TextControl t = new 

TextControl(Integer.toString(callArgumen
t));// passing the value to a 
constructor of class TextControl in the 
Control package 

5 t.printCopyMessage(evt.toString(),0); 

Figure 3: The adding of Julia watchpoint in the source 
code. 

The added line should be in the part of the code 
that we want to analyze. Notice that, even though we 
modify the code, Julia performs a static analysis and 
the code, including the added part, is not executed. 
Usually, this is the part of GUI code that exists 
before the code that making a call to a Control class. 
It is actually at the intersection of Control and GUI. 
The tester can use a tool such as Atlas (Kothari 2017) 

to identify this part in the code. Then, Julia, when 
checking the modified code of Figure, generates an 
output log file with invariants (just one in this 
example since there is only one watchpoint). 

 

 

Figure 4: The content of the file NumericalInvariant.pl 
generated by Julia. 

There is an invariant at the call to 
analyzeHere() at line 3 but applied at the bytecode 
level. There, the constraint inferred by Julia is OL3 - 
OL4 = -1. Specifically, Error! Reference source 
not found. shows the content of a file called 
NumericalInvariant.pl generated by Julia.  

That is, the local variable 3 (OL3) is equal to the 
local variable 4 (OL4) minus 1. Here, Julia refers to 
local variables in the Java bytecode. Julia would help 
by finding the mathematical function that represents 
the input-output relation (the output as a function of 
the input). In this case, the mathematical function is 
the difference between variables (OL3 and OL4) in a 
text file (Error! Reference source not found.). It is: 
OL3 - OL4 = -1. We can understand from the file 
NumericalInvariant.pl that the local variable 
three (OL3) stands for userInput and the local 
variable four (OL4) stands for callArgument. Julia 
does not tell us that OL3 represents userInput. We 
should find out that by ourselves by understanding 
the output text file NumericalInvariant.pl.  

We conclude that we verified the GUI for this 
particular scenario. The fault is discovered by 
reading and analyzing the text file generated by Julia. 
In other words, there is a fault for the variable 
callArgument (it does not have the same value 
entered by the user) thereby breaking the ECB 
principle. 

4.2 Obtaining the Invariant 

The illustrative example shown above is to obtain an 
invariant. Obtaining the invariant is done by using 
the termination checker. 

********** PathLengthAnalysis  
of public 
CopyTextComponent.actionPerformed(java.aw
t.event.ActionEvent):void * 
********* 
normal execution: OL3 - OL4 = -1 
exceptional execution: OS0 >= 1, OL3 - 
OL4 = -1 

    72: open call 
com.juliasoft.julia.checkers.Watchpoint.a

nalyzeHere():void []:public 
CopyTextComponent.actionPerformed(java.aw
t.event.ActionEvent):void:141 (offset: 

72)
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Figure 5: Passing input from GUI to logic. 

We tried the termination checker on a dummy 
case study following the steps that the authors of 
Julia mentioned. However, we faced issues / 
limitations we describe next when we apply static 
analysis using Julia on a real case study. In the 
dummy case study, there is a text field in the GUI. 
The text field receives an input from the user (Error! 
Reference source not found.). Then, the GUI class 
changes the value of that input. The GUI class passes 
the modified input to the logic class of the software 
(non-GUI classes). The following code shows the 
call to Julia at the intersection of a GUI class and a 
logic class. The code is inside a GUI class. We make 
an instance of a Control class TexControl which is 
a logic class. 

1 int 
userInput=Integer.parseInt(inputExpre
ssion.getText()); // get the user 
input from the text field 

2 int callArgument = userInput + 1; // 
process the entered value by simply 
adding 1 to it. 

3 com.juliasoft.julia.checkers.Watchpoi
nt.analyzeHere(); 

4 TextControl t = new 
TextControl(Integer.toString(callArgu
ment));// pass to the logic 

We tried to extend the dummy case study to handle 
two input variables instead of one. Hence, we had 
two text fields on the GUI instead of one. So instead 
of the old code, we had the following new block of 
code: 

1 int userInput = 
Integer.parseInt(inputExpression.getT
ext()); // get the user input from 
the first text field 

2 int userInput1 = 
Integer.parseInt(inputExpression1.get
Text()); // get the user input from 
the second text field 

3 int callArgument = userInput + 
userInput1; // process the entered 
value by simply adding 1 to it. 

4 com.juliasoft.julia.checkers.Watchpoi
nt.analyzeHere(); 

5 TextControl t = new 
TextControl(Integer.toString(callArgu
ment)); // pass to the logic 

We followed Julia online-help by setting the variable 
dumpNumericalInvariant to true. In the first case 
(section 4.1), Julia generates a file named 
dumpNumercialInvariants.pl that has the 
following information: OL3 - OL5 = -1. This 
means that: userInput - callArgument = -1. 
We expected in this new case to obtain: OL6 - OL5= 
- OL3 which means that: userInput1 - 
callArgument = - userInput. Alternatively, an 
acceptable output will be OL3 - OL5 = - OL6 
which means that: userInput - callArgument 
= - userInput1. We mention an acceptable output 
because when we compare the two pieces of code, 
we think that is a plausible output. We found that 
Julia cannot do the second analysis though it can do 
the first one. The file 
NumericalInvariants.pl generated by Julia does 
not include any invariant in the second case. We 
conclude that Julia has limitations when the code 
becomes complex. 

We tried other checkers to solve this issue. For 
example, we tried the injection checker (Burato et al., 
2017). This checker is supposed to report issues 
related to taint analysis (Burato et al., 2017). For 
example, if a parameter of a function is suspected to 
be tainted (e.g., changed by malicious code), the 
injection checker of Julia reports that part of the 
code which contains the parameter that produces a 
risk. Unfortunately, when we used the injection 
checker, we got an error during the analysis. Julia did 
not continue the analysis and reports an error. The 
error message simply says an error while connecting 
to the server. The deployed version of the tool is not 
ready for such an analysis. We tried other options. 
For example, we explored whether we can use an 
option in Julia called the polyhedra for small 
software to study the invariants. The authors of Julia 
suggested the use of the polyhedra option. The 
authors claim that polyhedra has a high 
computational ability. We prepared a very simple 
Java class in which a method a() calls a method b(). 
If we define two integer variables x = 1 and y = 1 
inside a() and then another integer variable z = x + y 
also inside a(), then we pass z to b(), Julia can find 
the invariant using dumpNumericalInvariant = 
true. However, if we move the declaration of x and 
y to the main() function, Julia cannot find the 
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invariant using the dumpNumericalInvariant. So, 
we tried to set onlyPolyhedra to true and run the 
analysis. We got the same error message that we 
obtained when we try the injection checker. In 
summary, Julia helps us with a specific case study, 
but we faced an issue on a complicated case study.  

Julia can also use both bounded differences 
(bugseng, 2017) and polyhedra together, falling back 
to bounded differences when polyhedra are not 
needed. This option is unavailable online due to 
internal issues related to the company that owns 
Julia. One possibility would be to use polyhedra and 
bounded differences for the application under 
analysis and bounded differences only for the 
libraries used by the software developer such as Java 
swing library. However, while Julia authors suggest 
this, they also they confirm that the Julia team has 
never tested the polyhedra.  

The fact that polyhedra does not scale up in some 
cases is due to the amount of code that Julia must 
check. Since static analysis tries to analyze the code 
statically, it does so through approximations. If the 
code uses a lot of libraries, such as any decent Java 
program, then there is simply too much code (and 
especially code that is not necessarily accessible to 
the static analyzer, e.g., in Java libraries) for the 
analyzer to finish in a decent amount of time (if at 
all).  

We searched for ways to proceed in such 
circumstances (limitations) to help the static 
analyzer. In other words, to reduce the computations 
that the static analyzer need to do. For instance, some 
steps can be done to help the analyzer, so that the 
analyzer has fewer computations/assumptions to 
make. If the code we analyze uses a function from a 
library that we (humans) know returns an integer 
between 1 and 10, then, we can inform the analyzer 
of such a situation. Hopefully, such step could help 
the analyzer. We thought of different ways to help 
Julia finds relationships between variables defined in 
the code. Specifically, we believe we could ourselves 
look at the code and identify information that could 
simplify Julia’s analysis. We wondered whether 
other kinds of annotations could be of any help to us, 
including: (1) Annotations to specify bounded ranges 
of values for different types of variables (other than 
numerical variables); (2) Annotations to specify 
specific values for variables. These values could be 
enumerated or continuous; (3) Annotations to specify 
exceptional / illegal values. These values could be 
indicated easily as we already do that for handling 
invalid input. Hence, using annotation, Julia could 
excludes such values from the set of possible values 
of a variable. If we have an option, then, we can 

express bounded ranges, using specific annotations; 
(4) Annotations to tell Julia to ignore some calls 
which we know are irrelevant to the analysis we ask 
Julia to perform; (5) Annotations to tell Julia to 
ignore some variables; (6) Annotations to tell Julia 
that some calls / variables that we (humans) can tell 
would not affect results. Hence, again Julia can 
exclude them from computations. For instance, one 
possibility might be to tell Julia to ignore a specific 
call (e.g., a call to display the UI) in the analysis. 

We did not find annotations in Julia to do the 
listed items above. That might be related to the 
analysis based on bounded difference: there are 
bounded differences that Julia can automatically infer 
from the code, and there are situations where Julia 
needs help to do so. We found annotations for a 
specific example; they are however not interesting to 
us. The example is related to a checker called 
GuardedBy checker. As for the termination checker 
which is totally different from the GuardedBy, we 
did not find if there is a way to use those annotations. 
We only found annotations that Julia understands for 
code synchronization issues.  

4.3 Writing the Invariant as Java Code 

Our objective is to know whether a mathematical 
function does represent the code related to the input-
output relation. Instead of asking Julia to obtain the 
invariant, we can ask Julia to tell us whether our 
predicted invariant is correct. We believe that we 
reduce the computations that Julia needs to do when 
we write the invariant and ask Julia to verify it 
instead of asking Julia to find it. The validation of an 
invariant is easier than finding that invariant. Hence, 
the answer of Julia will be yes or no. Yes: means the 
invariant (mathematical function/condition) is a valid 
one. No: means the invariant is invalid. Since our 
invariant is a predicted one, it may be a subset of the 
real invariant. This could be a limitation of this 
solution.  

In this section, we present a way through which 
we write the invariant as a Java code. Recall that the 
invariant is a condition that should always be 
satisfied regardless of the input of the software.  

We write an if-statement in the Java code that has 
the invariant as a condition. If the condition is 
satisfied, then the if-statement will call an infinite 
loop that we write inside the body of that if-
statement. We ask Julia to analyze the code for a 
possible non-termination of the software. When the 
program goes into an infinite loop, it does not 
terminate. Julia should warn about such a possible 
scenario. The non-termination usually happens due to 
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bad practices by the software developer. The code 
out of such practices leads the software to freeze (i.e., 
stop working, hanging). We highlight the fact that if 
the condition of the added if-statement is satisfied, 
then this leads the program to stop/hang (does not 
terminate), hence, Julia should warn about such a 
possible non-termination. It means that Julia should 
statically evaluate the code to decide whether the 
condition is satisfied. 

Since our condition represents an input-output 
relation, we can use Julia to validate whether this 
mathematical function represents the code. In other 
words, we try to use the termination checker to detect 
if an invariant holds instead of generating the 
invariant. We show next how we add an invariant in 
the Java code. Hence, if the invariant does hold 
(satisfied all the time), the while(true) in the 
following code is called, and the termination checker 
gives us a warning. Unfortunately, we faced a 
limitation of Julia if the variables are uninitialized. 
We show this limitation below.  

We use an example to show up-to-which level 
Julia can help us. The example shows that Julia 
works on the simple case. When we update the 
example to have more complex code, Julia does not 
work well. We show this limitation in an incremental 
way: we start with a working copy of the example 
and ends up with an unsuccessful one. 

For the following code, there is no warning 
reported by Julia. The condition of the if-statement is 
not satisfied. The program does not proceed to the 
while loop. Julia works well with this example (it 
gives no warning). 

public class WhileTrue { 
                public WhileTrue() { 
                } 
                public static void main(String[] args) { 
                                int x = 0; 
                                int y = 0; 
                                if (x == 1 || y== 1) while (true); 
                                System.out.println("Passed while ture"); 
                } 
} 

For the following code, all is fine as well, there is a 
warning reported by Julia. The termination checker 
finds that the program will go into an infinite loop. 
This is expected because the condition in the if-
statement is satisfied. It means the program will not 
terminate. The termination checker warns about a 
possible non-termination. 

public class WhileTrue { 
                public WhileTrue() { 
                } 
                public static void main(String[] args) { 
                                int x = 0; 
                                int y = 0; 

                                if (x == 0 || y== 0) while (true); 
                                System.out.println("Passed while ture"); 
                } 
} 

If we use a dummy case study which takes two inputs 
from the GUI, Julia throws a warning for the 
while(true) whether the condition (invariant) is 
stratified or not. It means that Julia cannot evaluate 
the code. Here is the example: 

public TextControl(String t) { 
                // verification code 
                int guiVariable=Integer.parseInt(t); 
                int expectedGUIvariable=CopyTextComponent. 

getInputExpression() + 
CopyTextComponent.getInputExpression2(); 

                if (guiVariable == expectedGUIvariable) while 
(true); 

                // end of verification code 
                myText = new MyTextEntity(t); 
                } 

The issue that we face is that Julia reports a warning 
in the two cases of invariant: 

guiVariable == expectedGUIvariable 

or: 

guiVariable != expectedGUIvariable  

In our code, whenever we call the constructor of 
TextControl, we pass a value that is equivalent to 
the value inside the expectedGUIvariable. 
Hence, if Julia were to evaluate the code, it should 
warn in the case of equality. Julia does not evaluate 
the whole code so it warns in both cases. Probably, 
Julia works at the level of function and not the whole 
software. In other words, Julia reports a warning in 
both scenarios because it was unable to evaluate the 
condition. The reason for this limitation with Julia is 
that the variables are uninitialized, and they will get 
their values only at run-time. So, Julia cannot 
evaluate them. We conclude that while Julia works 
with a simple example, we however cannot use Julia 
when we have several variables.  

5 CONCLUSION 

We investigated the use of abstract interpretation to 
verify the GUI of a GUI-based software. We discuss 
the possibility of implementing this approach using 
Julia. The technology we suggest has limitations. For 
example, Julia does not generate a mathematical 
function that describes a software method all the 
time. However, this technology is evolving. We 
expect that the technology will overcome these 
limitations shortly. 
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