
Aided OWL Notation (AOWLN): Conceptual Modelling and
Visualisation of Advanced SWRL Rules

Johannes Nguyen, Jannik Geyer, Thomas Farrenkopf and Michael Guckert

KITE - Technische Hochschule Mittelhessen, Wilhelm-Leuschner-Straße 13 , Friedberg, Germany

Keywords: Graphical Rule Representation, SWRL, OWL, Rule Visualisation.

Abstract: Ontologies are a common and generally accepted instrument for the documentation of knowledge in a forma-

lised machine readable form. This paper focuses on ontologies encoded in Web Ontology Language (OWL).

OWL is description-logic based and can be extended by using Semantic Web Rule Language (SWRL) to express

Horn clause like rules that allow the ontology to go beyond the scope of the more object-centric description

logic propositions. The combination of OWL and SWRL has proved to be highly useful in practical appli-

cations. However, SWRL rules soon become complex and confusing in mere textual representations. This

particular issue becomes obvious when ontologies grow in size and the number of rules increases. A solution

for this problem can be an appropriate graphical representation of the rules. This paper proposes a graphical

visualisation concept for SWRL rules that we call Aided OWL Notation (AOWLN). Additionally, we present a

prototypical Protégé plugin that automatically visualises rules.

1 INTRODUCTION

Gruber described ontologies to be an explicit speci-

fication of a conceptualisation which was later re-

formulated by Borst to also be shared (see (Guarino

et al., 2009) for a discussion). Ontologies define con-

cepts together with their properties and interrelations

in a formal and machine readable form. They have

become a common instrument for consistently docu-

menting knowledge to be shared among humans and

machines. Having the idea of supporting interopera-

bility as a major purpose, standardisation is an im-

portant issue. W3C has standardised OWL. Being an

object-centric language OWL has limitations in ex-

press rather simple if-then constructions, e.g. for as-

serting data or object properties. Therefore, the com-

bination of OWL together with Semantic Web Rule

Language (SWRL) is a frequently used set of tools.

1.1 Motivation

SWRL extends OWL with the ability to use Horn

clause like if-then rules. SWRL is a proposed W3C

standard that has gained popularity in recent years.

With a growing developer base, the lack of options to

visualise rules becomes more and more relevant. In

February 2017 Martin O’Connor (creator of Protégé)

and other developers addressed this topic in a web fo-

rum, resulting in an open call for an appropriate vi-

sualisation tool.1 Although this is not a new debate,

most existing solutions have limitations, making the

development of an easy to use visualisation tool for

SWRL a necessity.

1.2 Problem

Rules expressed with SWRL increase the visual com-

plexity of an ontology. With complex mathematical

formulas invoking SWRL built-ins, rules can easily

stretch over several lines which makes reading and

comprehending difficult. However, in practical indus-

trial applications highly complicated rules cannot be

avoided as expressing engineering problems requires

mathematical formulas that lead to extensive use of

built-ins inducing high complexity. This makes it dif-

ficult if not impossible to follow the logical structure

of the rules, even for domain experts. So far, Protégé

only offers limited options to search and identify spe-

cific rules. An integrated graphical visualisation will

lead to higher transparency and a better overview, ma-

king the rules more comprehensible. A new graphical

notation format for SWRL rules with higher transpa-

rency needs to be defined.

1See http://protege-project.136.n4.nabble.com/
Visualisation-tool-for-OWL-and-SWRL-rules-
td4667578.html - (accessed on 06/01/2018)

Nguyen, J., Geyer, J., Farrenkopf, T. and Guckert, M.
Aided OWL Notation (AOWLN): Conceptual Modelling and Visualisation of Advanced SWRL Rules.
DOI: 10.5220/0006917701750182
In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018) - Volume 2: KEOD, pages 175-182
ISBN: 978-989-758-330-8
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

175

1.3 Idea

The contribution of this work is a proposal for a

set of notation elements that are able to portray the

main logical constructs used in SWRL. We will spe-

cify an algorithm that composes the newly defined

notation elements into a diagram. In our initial ap-

proaches we attempted to model SWRL rules using

UML and BPMN notation elements. However, the

elements available there are semantically inappropri-

ate and can lead to BPMN and UML diagrams con-

tradicting the SWRL logic. Furthermore, we present

prototypical visualisation tool that can be implemen-

ted as a Protégé plugin.

1.4 Outline of the Paper

The following section provides a technology review,

giving an overview of the most important existing so-

lutions for visualising SWRL rules, inter alia, Protégé

Axiomé which is a known visualisation plugin for

Protégé. Section 3 introduces a new set of notation

elements for the graphical visualisation and in section

4 an example is presented as proof of concept. This

example demonstrates the transformation of rule gi-

ven in textual description into our graphical notation.

Finally, the implementation of the visualisation plugin

is described.

2 RELATED WORK

In this section, other approaches to visualise rules in

ontologies are discussed.

2.1 Protégé Axiomé

Protégé Axiomé was developed by the creators of

Protégé. It is a plugin that consists of five main functi-

onal areas (Hassanpour et al., 2009). The first functi-

onal area is a rule graph for visualising the interde-

pendencies between individual rules to represent an

entire rule base. The rules are portrayed as nodes

that are connected through directed edges. Besides

this, the tool also offers an option for rule paraphra-

sing. This option enables the creation of English like

text representations for individual rules and catego-

rises them based on their syntactic structure. Addi-

tionally, a rule elicitation function was implemented

that creates templates for adding new rules to the rule

base. Protégé Axiomé visualisation uses a tree struc-

ture created by applying Depth First Search to chain

the variables (Hassanpour et al., 2009). By chaining

variables a simple flowchart diagram which visualises

the basic logical sequence for data and object proper-

ties is derived. However, the tool neither differentiates

between existing SWRL elements nor does it clarify

the application of built-ins (see Fig. 1). A more ap-

propriate modelling concept for visualisation should

include more information about the rule and its con-

stituents. Furthermore, the tool at this stage is not up-

to-date as it has not been ported to the current version

of Protégé 5.0.

Figure 1: Axiomé – individual rule visualisation.

2.2 Poznan University of Technology

Graph-based Editor

In 2013, Jaroslaw Bak and his team from Poznan Uni-

versity of Technology published a prototypical imple-

mentation of a graphed-based editor for SWRL rules.

The editor focuses on the visualisation of individual

SWRL rules. It is based on a set of new modelling

elements for the illustration of rules in diagrams (see

Fig. 2).

Figure 2: Set of notation elements.

This approach distinguishes separate taxonomies for

Classes, Data Properties, and Object Properties (Bak

et al., 2013). The editor creates a diagram for each of

the three taxonomies, allowing the user to choose be-

tween different perspectives. The diagrams are split

into two sections (see Fig. 3) (Bak et al., 2013). The

left-hand section portrays the condition elements (an-

tecedent) of an SWRL rule whereas the right-hand

section shows the conclusion (consequent).

Figure 3: Poznan Graph Editor - SWRL visualisation.

In general, this modelling approach offers a lot of po-

tential as it is visually self-explaining, but it is limi-

ted when trying to show the impact of built-ins or

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

176

restrictions. However, built-ins are essential compo-

nents of SWRL necessary to implement mathematical

operations. The separation of the representation into

different views can be considered a deficiency. A uni-

fied diagram for all three perspectives may improve

general understanding of the rule. Despite this, we

agree that the visual separation of rule antecedent and

consequent is as a good approach.

2.3 Graph Inscribed Logic (Grailog)

Grailog is a combination of generalised graph con-

structs for visualising data, inter alia, Horn logic

(Boley, 2013). The visualisation is adapted to the

industry standard RuleML. With Grailog a new

concept of hypergraphs is introduced which is a

proposed enhancement in comparison to directed

labelled graphs (Boley, 2013). According to Boley,

directed labelled graphs (DLG) are a good starting

point for visual knowledge representation but come

with major disadvantages when trying to illustrate

non-binary relationships (Boley, 2013). This is why

he created hyperarcs as specialised arrows for his

notation. The following graphs show a comparison

of a hypergraph on the left-hand side and a directed

labelled graph on the right-hand side (see Fig. 4).

Figure 4: Hypergraphs in comparison to DLG 1 (Boley,
2013).

Both diagrams in Fig. 4 show the two statements:

”John shows Latin to Kate”

”Mary teaches Latin to Paul”

Using a directed labelled graph has the disadvantage

of losing the context of input and output arrows

(Boley, 2013). This means that the graph may also

be misinterpreted as “John shows Latin to Paul”

and “Mary teaches Latin to Kate”. However, the

hyperarcs provide a means to unmistakably define

the non-binary relationship. When trying to correctly

and unambiguously illustrate the two given sentences

as a DLG, the graph becomes significantly more

complex, demonstrating a major advantage of Grailog

Hypergraphs (see Fig. 5).

Grailog also offers the possibility to formulate advan-

ced logic using the idea of so called complex nodes.

According to Grailog, a graph can consist of elemen-

tary nodes such as John and Kate. Moreover, a com-

plex node is able to contain other graphs, making it an

Figure 5: Hypergraphs in comparison to DLG 2 (Boley,
2013).

enclosing entity. Based on this, it is also possible to

express Horn Logic using a combination of complex

nodes in Grailog (see Fig. 6) (Boley, 2013). Although

Grailog can describe Horn Logic, it is not specialised

for SWRL making it difficult to portray SWRL built-

ins. In this paper, we focus on a more specialised

solution for SWRL rules.

Figure 6: Grailog - Horn logic (Boley, 2013).

2.4 Using UML State Diagrams for

Visualising Business Rules

In 2008, Konrad Kułakowski and Grzegorz J. Na-

lepa published a modelling approach for business ru-

les using UML diagrams. The main idea is to repre-

sent a rule base as a class diagram. Based on this,

each class represents a single rule. The class diagram

then shows dependencies between different rules (Ku-

lakowski and Nalepa, 2008). Furthermore, each class

has its own state diagram which is described as a rule

definition diagram. The paper defines rules as plain

textual if-then statements (Kulakowski and Nalepa,

2008). The rule definition diagram expresses condi-

tions using the UML standard Object Constraint Lan-

guage (OCL). As the proposed modelling format is

designed for business rules in general, the possibili-

ties to visualise more complex SWRL logic rules are

limited.

3 CONCEPTUAL MODELLING

Before we define our notation elements we give a

brief discussion of relevant aspects of ontologies and

rules.

Aided OWL Notation (AOWLN): Conceptual Modelling and Visualisation of Advanced SWRL Rules

177

3.1 OWL/SWRL Elements

OWL is a standardised general knowledge represen-

tation language for creating ontologies (McGuinness

et al., 2004). The elements of OWL are often deno-

minated as atoms when used in rules.

An ontology O is a triple (C ,R ,I). C is a set of con-

cepts, R a set of relations, and I a set of individual

objects. Concepts (i.e. Classes) formally denote sets

of objects. From a perspective of formal logic, these

sets are the extension of concepts while concepts de-

fine the intentional representation of the correspon-

ding set of objects. An object that belongs to a con-

cept is called an instance of that concept. The ele-

ments of R are relations (also called roles or object

properties, as they manifest links on the level of the

instances) having subsets of C as domain and range.

The extension of a role then is a set of pairs (c, d)

with c, d elements of I . Additionally, instances can

have data properties through which they get linked to

primitive data e.g. strings or numbers. Typically, on-

tologies are formulated by means of description lo-

gics with differing levels of expressiveness (Baader,

2003). Usually description logics are proper subsets

of first order logic where expressiveness has been tra-

ded for decidability. Inference knowledge is impli-

citly given by the underlying mechanisms of the avai-

lable reasoning instruments. Apart from this, SWRL

as an extension also includes elements for restricti-

ons and built-ins (McGuinness et al., 2004). Built-ins

can be described as operators similar to methods or

functions respectively in conventional programming

languages. For instance, mathematical operations and

data type restrictions can be expressed through built-

ins. The following table summarises the most signifi-

cant elements and the corresponding syntactic struc-

ture when used in SWRL rules.

Table 1: OWL/SWRL Elements.

OWL/SWRL Element Syntax

Class Person

Individual /
Class instance

Person(bob) /
Person(alice)

Data Property canDrive(bob, true)

Object Property isSon(bob, alice)

Built-ins swrlb:lessThan(?age,18)

Restrictions integer[> 0]

Variable ?age

3.2 SWRL Syntax Diagram

Horrocks (2004) defines a SWRL rule as a pair (A,

C) in which both, antecedent A and consequent C are

sets of atoms SA and SC (see Fig. 7).

Implies()antecedent consequent

Antecedent(

atom

)

Consequent(

atom

)

SWRL Rule

Antecedent

Consequent

Figure 7: SWRL syntax diagram 1.

An atom element rA must be declared with an atom

name ∈ BN ∪CN ∪OP ∪DP ∪DR for which BN is the

set of built-in names, CN the set of class names, OP

the set of object property names, DP the set of data

property names and finally DR the set of data ranges.

A built-in name bN is followed by zero or one built-

inID and at least one or more d-objects. The built-in

ID is a variable in which the built-in output is written.

A d-object can be a data literal or a d-variable which

in the second case is an URI reference to an entity de-

fined in the ontology. A class name CN is followed

by an i-object which can either be an individual-ID or

an i-variable. An i-variable is an URI reference to an

entity defined in the ontology. Apart from this, an ob-

ject property name oP is followed by a pair (i-object,

i-object) and a data property name dP complemented

by a pair (i-object, d-object). A data range dR is fol-

lowed by a single d-object (see Fig. 8).

Atom builtInName (builtInID d-object)

className (i-object

objectPropertyName (i-object

dataRange (d-object

dataPropertyName (i-object

URIreferenceBuiltInID

i-variable

Individual-ID

i-object

d-variable

dataLiteral

d-object

URIreferenceI-variable()

URIreferenceD-variable()d-variable

i-variable

Figure 8: SWRL syntax diagram 2.

3.3 AOWLN Graph Structure

As discussed before, directed labelled graphs are well

suited to visualise logical sequences (see Section 2).

In order to visualise SWRL rules, a corresponding

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

178

graphical symbol for each of the existing semantic

OWL/SWRL elements has been mapped and can be

composed into a graph.

For a given SWRL rule RA we define a Graph G and

map the components of RA to nodes of G. The graph

consists of a heterogeneous set of vertices V = R∪
O∪T ∪D (R being a set of rectangles (class nodes),

O a set of ovals (property nodes), T a set of trapeziums

(variable nodes) and D a set of diamond shapes (built-

in collection nodes) and edges E = DE ∪ OE ∪ BE)
(DE being a set of unlabelled solid arrows (data pro-

perty edges), OE a set of dashed unlabelled arrows

(object property edges) and BE a set of solid and la-

belled arrows (built-in edges). The mapping is des-

cribed in figure 9.

Figure 9: AOWLN elements.

According to this mapping, classes are represented

by rectangle shapes and properties by oval shapes.

Properties associated with classes are connected to

the corresponding class element with an edge. Edges

are unlabelled and directed. While class nodes and

data properties as well as variables are connected

with solid lines, edges associated with object pro-

perties are dashed. Variables are represented by

trapezium shapes. In SWRL data type restrictions

and operations can be expressed with built-ins.

Data type restrictions are written into the lower half

of a property symbol, separated by a dashed line.

Moreover, built-ins are visualised by labelling the

edge that progresses towards the resulting variable.

If multiple built-ins result in the same variable, these

built-ins are summarised into a new diamond shaped

Built-in Collection element.

For both rule antecedent and consequent separate

graphs are created which are displayed in juxtaposi-

tion. The following pseudocode sketches the creation

of the graph.

List aowlnElements
List aowlnEdges

function createAOWLNGraph(RuleFragment rf)
for each classAtom in rf
if classAtom not in aowlnElements
aowlnElements add classAtom
completeLogicalSequence(classAtom, rf)

for each ObjectPropAtom in rf
if classAtom is firstArg:
appendAtom (classAtom, ObjectPropAtom)
classAtom = ObjectPropAtom.SecondArg
completeLogicalSequence(classAtom, rf)

endIf
endIf

endFor
aowlnGraph = new Graph(aowlnElements, aowlnEdges)

function appendAtom (startAtom, nextAtom)
aowlnElements add nextAtom
aowlnEdges add new Edge(startAtom, nextAtom)

function completeLogicalSequence(classAtom, ruleFragment)
for each DataPropAtom in ruleFragment
if classAtom is firstArg:
appendAtom (classAtom, DataPropAtom)
currentAtom = DataPropAtom
while (successorAtom not null) do
successorAtom =
findLogicalSuccessor(successorAtom, ruleFragment)
appendAtom(currentAtom, successorAtom)
currentAtom = successorAtom

endWhile

varElement = currentAtom.getResultingVar()
appendAtom(currentAtom, varElement)

endIf
endFor

By convention, for each variable instance of a

class, a class node is created explicitly. Furthermore,

the last variable of a logical sequence must be

indicated. A logical sequence is the concatenation of

SWRL atoms through joint references to variables.

However, variables that are passed on to consequen-

tial properties or built-ins may be skipped in the

visualisation to avoid redundant graph elements. For

logical sequences that end with a class atom node

(i.e. object properties) the variable node at the end

of the sequence can be omitted as class atoms are

explicitly created for each variable instance of a class.

The algorithm described above requires a sequential

ordering of the atoms in the SWRL rule:

1. Class 1

a. class1DataProperty1

b. class1TransitiveNextProperty1

i. c1TNP1BuiltIn1

ii. c1TNP1BuiltIn2

iii. c1TNP1Restriction

c. class1TNP2

Aided OWL Notation (AOWLN): Conceptual Modelling and Visualisation of Advanced SWRL Rules

179

d. class1TNPN

2. Class2

3. ...

4. ClassN

(1) objectProperty1

(2) objectProperty2

(3) ...

(4) objectPropertyN

⇒ Conclusion

The rule conclusion is processed just like that. The

ordering ensures the affiliation of transitive elements

simplifying the implementation. Built-ins which only

use a single variable in position one will not be visu-

alised. See the following example:

1. add(?ageNew, ?age, 10)

2. add(?ageNew, 6, 10)

The SWRL math built-in, swrlb:add() is used. This

built-in is satisfied if the first argument is equal to the

arithmetic sum of the following arguments (Horrocks

et al., 2004). Hence, the built-in writes the result into

the first variable ?newAge. In the first case, the varia-

ble ?newAge is derived from the variable ?age. In the

second case the operands of the summation are con-

stants and will not be visualised because they are not

part of a logical sequence. This enhances the reada-

bility of the graph by eliminating nodes of low mea-

ningfulness.

4 EXAMPLE OF APPLICATION

The following example demonstrates the use of the

notation elements.

Textual Description:

Individuals under the age of 18 as a potential driver of

a vehicle with a weight of less than 26,000 lbs are able

to drive in California if they possess an out-of-state

driver’s license except for New York and are visiting

the state for less than 10 days. For this, the person

must be the owner of the car.

Table 2: AOWLN Elements Mapping.

Concept / Class Data Property
→ Built-In

Object Property

Person(?p) hasAge(?p,?g)
→ lessThan(18)

ownsCar(?p,?c)

Car(?c) numberOfVisiting-
InDaysInCA(?p,?x)
→ lessThan(10)

hasDriverLicence(?p,?d)

DriverLicense(?d) issuedStateOf(?d,?s)
→ notEqual(s,”CA”)
→ notEqual(s,”NY”)
hasWeightInLBS(?x,?w)

SWRL:

Person(?p)∧hasAge(?p,?g)∧ swrlb : lessT han

(?g,18)∧numberO fVisitngDaysInCA(?p,?x)∧
swrlb : lessT han(?x,10)∧DriverLicense(?d)∧
hasDriverLicense(?p,?d)∧ issuedInStateO f (?d,?s)
∧ swrlb : notEqual(?s,′′CA′′)∧ swrlb : notEqual

(?s,′′ NY ′′) ∧ Car(?c) ∧ hasWeightInLBS(?c,?w) ∧
swrlb : lessT han(?w,26000)∧ownsCar(?p,?c)
⇒ Person(?p)∧Car(?c)∧ canDrive(?p,?c)

AOWLN:

As the Fig. 10 displays, there is a separation of rule

conditions and the rule conclusion similar to the Po-

znan graph editor (see Section 2.2). This separation

helps making the graph more manageable when rules

are getting more complex. However, the visualisation

does not use separate taxonomies. Built-ins are inclu-

ded in the visualisation. The names of the built-ins are

used to label the edges. In case that multiple built-ins

result in the same variable, the built-ins are summa-

rised in a built-in collection symbol. Fig. 10 shows,

that it is possible to reduce the rule illustration to the

most essential and necessary elements to portray the

logical sequence. This makes working with rule ba-

sed systems significantly easier.

Figure 10: Example rule – AOWLN graph.

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

180

5 IMPLEMENTATION

In this section we address the prototypical implemen-

tation of the visualisation plugin for Protégé.

5.1 Design

The plugin will be seamlessly integrated into the

Protégé environment. The application includes a

full-text search to simplify the work with the rule set.

Based on this, the user is given the option to select

rules for which an AOWLN diagram will be created.

The implementation of the visualisation engine is

separated from the display unit and the ontology. This

makes the engine independent for future applications

as shown in the following component diagram. A

completely assembled system can use Protégé as an

ontology editor to document and generate the onto-

logy. The AOWLN modelling engine extracts SWRL

rules through the OWL/SWRL API and produces a

diagram as an image file or as an interactive graph

(see Fig. 11).

<<component>>

Ontology Editor

<<component>>

Ontology

<<component>>

Display Unit

<<component>>

AOWLN Modelling

Engine
OWL/SWRL API

Graph Visualisation FrameworkDisplay Ontology

gets diagram

extracts rules

models ontology

Figure 11: Component diagram.

5.2 Modelling Engine for Graphical

Abstraction (MEGA)

The implementation is based on a three-layer-

approach has been developed to process rule data

from the ontology into the required graph format that

can be visualised (see Fig. 12). In Layer 0, the SWRL

API2 is the fundamental component. The SWRL

API (an extension of the OWL API) reads the on-

tology and provides a set of SWRLAtoms. As the

SWRLAtom class from the SWRL API includes un-

necessary information for the visualisation, a custom

SWRL atom structure has been defined which is il-

lustrated as Layer 1. The createCustomSWRLAtoms()

method transforms the given SWRL atoms from the

SWRL API into the custom SWRL atom structure.

This makes it easier to focus on the most essential

2See https://github.com/protegeproject/swrlapi - (acces-
sed on 06/01/2018)

information for the visualisation. In a second step,

the createAOWLNElements() method creates a sepa-

rate list for both, AOWLN nodes and edges for Layer

2 based on the custom SWRL atoms in Layer 1. Ed-

ges contain references for a start and a target node.

Figure 12: MEGA – three-layer-approach.

5.3 Prototype

The prototype has the following features: search and

select rules from the rule base, visualise the rules as

an AOWLN graph and it includes an option to edit

and update a selected rule in the rule base. The pro-

totypical Protégé plugin is written in Java as both, the

Protégé environment and the SWRL API are also im-

plemented in Java. For the graph visualisation, we

make use of the open source library Graphviz.3

6 CONCLUSION AND FUTURE

WORK

This paper defines a graphical notation format for the

visualisation of SWRL rules and describes a prototy-

pical Protégé plugin for rule visualisation. AOWLN

offers means for visualising all types of components

of SWRL elements especially built-ins. For this, the

form of representation is a pair of directed labelled

graphs to portray rule antecedent and consequent.

The implemented plugin offers options to search and

select rules from the rule base, visualise the rules

as an AOWLN graph and includes an option to edit

and update a selected rule. As proof of concept

the plugin is currently used in an industrial digi-

tisation project which enabled several feedback loops.

Further functions to improve usability and error hand-

ling will make working with the visualisation tool

3See https://www.graphviz.org/ - (accessed on
20/01/2018)

Aided OWL Notation (AOWLN): Conceptual Modelling and Visualisation of Advanced SWRL Rules

181

Figure 13: AOWLN Protégé Plugin – Protoype.

more efficient. Since the prototype was written as a

component independent from both the ontology and

the display unit, it can easily be integrated into lar-

ger systems e.g. the plugin can easily be extended

to a graphical editor that allows for interactive cre-

ation and modification of SWRL rules. Further for-

malisation and generalisation to make the algorithm

work with arbitrary SWRL rules will be carried out.

We will provide the source code for the AOWLN

project on github. The repository can be accessed

under the following URL: https://github.com/KITE-

Cloud/AOWLN

REFERENCES

Baader, F. (2003). The description logic handbook: Theory,
implementation and applications. Cambridge univer-
sity press.

Bak, J., Nowak, M., and Jedrzejek, C. (2013). Graph-based
editor for swrl rule bases. In RuleML (2). Citeseer.

Boley, H. (2013). Grailog 1.0: Graph-Logic Visualization
of Ontologies and Rules. In Proc. 7th International
Web Rule Symposium: Research Based and Industry
Focused (RuleML 2013), Seattle, Washington, USA,
volume 8035 of Lecture Notes in Computer Science,
pages 52–67. Springer.

Guarino, N., Oberle, D., and Staab, S. (2009). What is an
ontology? In Handbook on ontologies, pages 1–17.
Springer.

Hassanpour, S., O’Connor, M. J., and Das, A. K. (2009).
Axiomé: A tool for the elicitation and management

of SWRL rules. In Proceedings of the 5th Internati-
onal Workshop on OWL: Experiences and Directions
(OWLED 2009), Chantilly, VA, United States, October
23-24, 2009.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,
Grosof, B., Dean, M., et al. (2004). Swrl: A semantic
web rule language combining owl and ruleml. W3C
Member submission, 21:79.

Kulakowski, K. and Nalepa, G. J. (2008). Using uml state
diagrams for visual modeling of business rules. In
Computer Science and Information Technology, 2008.
IMCSIT 2008. International Multiconference on, pa-
ges 189–194. IEEE.

McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl
web ontology language overview. W3C recommenda-
tion, 10(10):2004.

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

182

