
RDF Mapper: Easy Conversion of Relational Databases to RDF

Eliot Bytyçi, Lule Ahmedi and Granit Gashi
University of Prishtina “Hasan Prishtina”, 10000, Prishtinë, Kosovo

Keywords: Ontology Engineering, Relational Databases, RDF, Mapping.

Abstract: Nowadays with the raised necessity to serve data through the Web in a rather Linked Data model similar to
the way DBpedia extracts structural information from Wikipedia, it is becoming usual to require existing data
provided as tables to get mapped into RDF. In this paper, a straightforward alternative to mapping of data
from relational database model to RDF is introduced. The mapper has not yet reached its maturity but
nevertheless, reduces greatly the amount of time needed for conversion. Furthermore, it allows the user to
select parts that are needed for conversion, thus preventing from the unnecessary conversion.

1 INTRODUCTION

It is becoming conventional to require existing data to
be provided as tables in order to get mapped into
Resource Description Framework (RDF). That is
similar to the approach that DBpedia1 extracts
structural information from Wikipedia2. Main reason
for that lies in the raised necessity to serve data
through the Web in a rather Linked Data model. Of
course, the reason for that is the model that enables
things and people be described arbitrarily, as opposed
to the presentation of information on the actual web
via HTML pages. Semantic Web and its Linked Data
is capable of the representation of information with
their description on the web via metadata models such
as RDF, a W3C3 recommendation (Carroll, et al.,
2004). Hence, there lies the struggle of relating and
mapping relational database data with RDF conceptual
descriptions. That, and the usage of other tools during
our work, served as motivation for creating another
tool that would overcome barriers presented.

The RDF Mapper introduced in this paper is
responsible for the smooth transition between the two
models, namely the relational database and the
ontology described in RDF. Although, currently the
mapper supports mapping only of databases created
in MySQL, in the future it is planned to extend its
support to other database systems like Oracle, DB2,
MS SQL, and PostgreSQL by keeping an abstraction

1 www.dbpedia.org
2 www.wikipedia.org
3 www.w3.org

between the mapping code and the database layer.
In the RDF Mapper, the user first specifies the

database from which the mapper shall get the data.
After that, the user specifies the ontology that is
expected to be populated with those data. RDF
Mapper is a desktop system developed in JAVA
including the Apache Jena (Carroll and Klyne, 2004)
extension to support working with ontologies, as well
as the Swing toolkit (Eckstein, et al., 1998) for the
user interface components. Its architecture is
presented in Figure 1.

When a user connects to the database, it is initially
the schema of the database that will be read prior to
further processing.

Figure 1: Implementation architecture of the RDF Mapper.

Bytyçi, E., Ahmedi, L. and Gashi, G.
RDF Mapper: Easy Conversion of Relational Databases to RDF.
DOI: 10.5220/0006925501610165
In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST 2018), pages 161-165
ISBN: 978-989-758-324-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

161

Even though this step, i.e., the schema extraction
is done automatically, the user has the possibility to
intervene by choosing himself / herself which
relevant data to be mapped or left out. By default,
every table of the database will be mapped to a Class
in ontology, while every database attribute will be
mapped to a Property in ontology. Further mapping
relations between the database schema and the
ontology are presented in Table 1.

Table 1: Mapping rules.

Relational DB Ontology

Table Class | rdfs:Class

Attribute Property | rdf:Property

Tuple of X table Class X instance

Attributes of a tuple Instance literals

SQL datatypes
RDFS datatypes |
rdfs:Datatype

The remainder of this article is organized as
follows. Section 2 will cover the related work.
Section 3 summarizes the mapping schema, while
section 4 covers a mapping example. Finally, in
section 5, conclusions and future work will be
discussed.

2 RELATED WORK

In (Spanos, et al., 2012), authors have conducted a
survey on the creation of an ontology from an existing
database instance and the discovery of mappings
between an existing database instance and an existing
ontology. Their classification of the approaches falls
into two categories based on database reverse
engineering. Approaches that apply reverse
engineering try to recover the initial conceptual
schema from the relational schema and translate it to
an ontology expressed in a target language
(Aumueller, et al., 2005). On the other hand, there are
methods that, instead of reverse engineering
techniques, apply few basic translation rules from the
relational to the RDF model and/or rely on the human
expert for the definition of complex mappings and the
enrichment of the generated ontology model. The best
representatives of the former approach are: D2RQ,
SPYDER, COMA++ and Virtuoso.

D2RQ (Bizer and Seaborne, 2004) supports both
automatic and manual modes. In the automatic mode,
the ontology is created according to the rules common
among reverse engineering techniques. While in the

user assisted mode, the mapping is completely
specified by the user. It is similar to RDF Mapper
when used in semi-automatic mode, where the user
builds on the automatically generated mapping in
order to modify it at will.

Spyder (Miller and McNeil, 2010) creates an
RDFS view of a relational database, supporting the
entire range of automation levels. The automatic
mode is based on the basic approach and its own
mapping representation languages. Spyder’s mapping
language is rich, while the tool also supports a fair
amount of R2RML features.

COMA++ (Aumueller, et al., 2005) in contrast to
other systems from the same era, COMA++ is built
explicitly also for inter-model matching.

Virtuoso (Blakeley, 2007) offers an RDF view
over a relational database with its RDF Views feature
with similar functionality to D2RQ. It supports both
automatic and manual operation modes. In the
former, an RDFS ontology is created following the
basic approach, while in the latter, a mapping
expressed in the proprietary Virtuoso Meta-Schema
language is manually defined.

Another more recent paper (Sequeda, 2013)
discusses standards of W3C proposed to bridge the
gap between Relational Databases and Semantic
Web. It presents two specifications: mapping of
relational data to RDF and R2RML: RDB to RDF
mapping language. The R2RML subset called
R2RMLcore which has a simpler structure but could be
similar to Direct Mapping (Sequeda, et al., 2012) if
views are allowed as input. Direct Mapping.

3 MAPPING SCHEMA

RDF Mapper relies on the Apache Jena (Carroll, et
al., 2004) open source library for working with
ontologies. That means reading an ontology as well
as creating RDF instances based on that ontology. For
interacting with SQL databases, the corresponding
JDBC driver is used, while for visualizing RDF
graphs it utilizes another open source library, namely
Java Universal Network/Graph Framework
(JUNG)(O’Madadhain, et al., 2003).
Compared to the challenges of other mappers, which
are summarized in (Pinkel, et al., 2015), RDF Mapper
supports the following:

─ naming conflicts are resolved by letting the user
manually intervene during the mapping through
renaming of certain database schema constructs
towards unique naming conventions between
database and ontology,

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

162

─ some of the structural heterogeneity conflicts,
which involve:

─ type conflicts – and in our case the
normalization and denormalization are
supported, albeit with a little work around from
user, by letting the user “relate” those attributes
which belong to several tables to a single class
in case of normalization, and the other way
around for denormalization.

─ key conflicts as well are supported and that both
primary and foreign keys,

In the other hand, RDF Mapper at this stage does not
yet support covering class hierarchies, dependency
conflicts and semantic heterogeneity while mapping,
which will be in the future considered for
implementation.

Every resulting instance in the RDF will have a
rdf:Description tag, which allows grouping of one or
more statements into a single container. Furthermore,
the linkage between a given instance and the class to
which it belongs, in RDF Mapper the rdf:Type
relation will be used.

In order to evaluate methods for ontology
matching, and initiative has been created called
Ontology Alignment Evaluation Initiative (OAEI,
2018) to mandate consensus for evaluation of the
methods. In order to achieve goals such as assessing
strengths and weaknesses of alignment / matching
systems or compare the techniques or even improve
evaluation, the initiative will organize yearly events
and publicize them for further analyses.

4 MAPPING EXAMPLE

In order to emphasize the features and the
characteristics of the RDF Mapper, a walk through
examples will be presented. Initially schema reading
will be discussed, followed by the generation of RDF.

4.1 Connection and Schema Reading

Initially on the start of the RDF mapper, the user
should select the database to connect to. The database
can be a local one or stored in any remote server. In
the latter case, besides the username, password and
database name, the user should also specify the
address where the database is stored. Comparing with
other approaches presented in related work, our
approach against the database is different from most
of database approaches where the schema is typically
not predefined. In our case, the schema is first read

from the database, and as a result, metadata becomes
data. As illustration, one of built-in metadata (system)
relations in MySQL information_schema.columns is
read to extract necessary information regarding
columns such as name, type, etc. of a certain table like
students using the following command:

SELECT * FROM

information_schema.columns

WHERE table_schema = 'students'

Further, for instance, to allow finding out all foreign
keys in the database and their relationship to
corresponding tables and columns, another metadata
relation should be read called
information_schema.key_column_usage, as pre-
sented in example below:

SELECT * FROM
information_schema.key_column_usage

WHERE table_schema = 'students'

AND referenced_table_name

IS NOT NULL

4.2 Mapping through Our Approach

After the above mentioned successful connection to a
given database, the application will read the schema
of that database and show its corresponding tables
and attributes. Those will be shown in tree view, in
order to have a clearer and easier way for the user to
eventually change their names, to show their details
and choose what to include. Including means
everything from the database – all by default, or what
to exclude from mapping. The process can be tried
several times in order to have a different mapping
each time – depending on user selections for inclusion
and exclusion of mapping parameters. Figure 2
represents one view of a certain database ready for
mapping (left-hand side), with a preview of the
generated mapping result (right-hand side), while its
graph representation is shown in Figure 3.

Initially, the user defines the base URI of the
target ontology, and then it is connected to a table
through its name, chosen as well by the user, since the
user can modify the given name. In addition, classes
will have their rdf:type as decided by W3C rdfs:Class.
An example of an RDF/XML output as generated by
the mapper is provided next.

RDF Mapper: Easy Conversion of Relational Databases to RDF

163

<rdf:Description
rdf:about="http://xmlns.com/foaf/sp
ec/20140114.rdf/Person#368">

<foaf:birthday>11/17/1995</foaf:bir
thday>

 <foaf:gender>Male</foaf:gender>

<foaf:surname>Adélie</foaf:surname>

<foaf:lastName>Woods</foaf:lastName
>

<foaf:firstName>Louis</foaf:firstNa
me>

<foaf:geekcode>J1000</foaf:geekcode
>

 <foaf:id
rdf:datatype="http://www.w3.org/200
1/XMLSchema#long"

 >368</foaf:id>

 <foaf:img
rdf:resource="http://xmlns.com/foaf
/spec/20140114.rdf/Image#67"/>

<rdf:type
rdf:resource="http://xmlns.com/foaf
/spec/20140114.rdf/Person"/>

</rdf:Description>

The generation of this RDF by the mapper is
illustrated in Figure 2. From that we can present few
of the examples mentioned in the beginning of this
section such as renaming example, usage of keys,
foreign keys and exclusion of unneeded features.

By consulting Figure 2, we observed class Person
in the FOAF ontology, which is actually mapped by
the user from the table students. Renaming is
performed manually within the mapper so that table
student becomes Person class, and hence correspond
to the target Person ontology.

Again from the Figure 2 as an example of usage
of Keys we observed that the URIs of the instances
are composed of the base URI of the ontology,
followed by class name and then the primary key
value of the given tuple (high-lighted in the Figure 2
case of key 368) of the table.

Similar to the primary keys, the foreign Keys
example can be viewed in Figure 2. The user has
mapped the table profile_pics to the FOAF class
Image and then the many-to-one relationship between
table students and profile_pics to the FOAF object
property img.

Of course, with the tables, which do not have any
meaning in the ontology such as enrolments, user can
choose to exclude them from the mapping.

Figure 2: A ready-for-mapping database example.

4.3 RDF Generator

After the user has performed necessary edit on the
database parameters prior to mapping, the system is
ready for ontology generation. The view of the
mapping result will be in a tree like form, but as well
as a graph for better visualization, as depicted in
Figure 3. The triplets generated by the graph represent
subject, predicate and object.

Figure 3: The graph of the ontology resulting from
mapping.

In the end, a user can choose among several
representation formats of RDF data for exporting the
file like to RDF/XML, N-triples, Turtle and N3.

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

164

5 CONCLUSION

The RDF mapper even though in its first stage, has
proven to be of a value when dealing with MySQL
databases. It offers a straightforward and practical
system for relational database conversion into RDF.
Some of the contributions to mention are the drag and
drop possibilities (add or remove constructs) or even
the renaming of construct names such as classes,
prefixes or properties).

In the future, the system will be further extended
with other new features, making it possible to deal
with other database formats and with more complex
relational databases. Furthermore, the system will be
extended to deal with conflicts not supported at this
stage such as automatic process of normalized
database schema where sometimes we may have a
case that some of the attributes of a record that need
to be mapped to a single RDF instance, are stored in
another table and related with a foreign key. There is
also the case of a denormalized database schema
where we may want to map a record of a table into
more than one RDF instances. Moreover, covering
class hierarchies, de-pendency conflicts and semantic
heterogeneity while mapping, will also be challenges
to be addressed in the future.

REFERENCES

Aumueller, D., Do, H.H., Massmann, S. and Rahm, E.,
2005, June. Schema and ontology matching with
COMA++. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data (pp.
906-908). ACM.

Bizer, C. and Seaborne, A., 2004, November. D2RQ-
treating non-RDF databases as virtual RDF graphs. In
Proceedings of the 3rd international semantic web
conference (ISWC2004) (Vol. 2004). Proceedings of
ISWC2004.

Blakeley, C., 2007. Mapping relational data to RDF with
Virtuoso’s RDF Views. OpenLink Software.

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D.,
Seaborne, A. and Wilkinson, K., 2004, May. Jena:
implementing the semantic web recommendations. In
Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters (pp. 74-
83). ACM

Carroll, J. J. and Klyne, G., 2004. Resource Description
Framework ({RDF}): Concepts and Abstract Syntax.

Eckstein, R., Loy, M. and Wood, D., 1998. Java swing.
O'Reilly & Associates, Inc..

Miller, A. and McNeil, D., 2010. Revelytix RDB Mapping
Language Specification. Revelytix.

O’Madadhain, J., Fisher, D., White, S. and Boey, Y., 2003.
The jung (java universal network/graph) framework.
University of California, Irvine, California.

OAEI, 2018. Ontology Alignment Evaluation Initiative.
[Online] Available at: http://oaei.ontology
matching.org/ [Accessed 20 07 2018].

Pinkel, C., Binnig, C., Jiménez-Ruiz, E., May, W., Ritze,
D., Skjæveland, M.G., Solimando, A. and Kharlamov,
E., 2015, May. RODI: A benchmark for automatic
mapping generation in relational-to-ontology data
integration. In European Semantic Web Conference
(pp. 21-37). Springer, Cham.

Sequeda, J., 2013, October. On the Semantics of R2RML
and its Relationship with the Direct Mapping. In
International Semantic Web Conference (Posters &
Demos) (Vol. 2013, pp. 193-196).

Sequeda, J. F., Arenas, M. and Miranker, D.P., 2012, April.
On directly mapping relational databases to RDF and
OWL. In Proceedings of the 21st international
conference on World Wide Web (pp. 649-658). ACM.

Spanos, D. E., Stavrou, P. and Mitrou, N., 2012. Bringing
relational databases into the semantic web: A survey.
Semantic Web, 3(2), pp.169-209.

RDF Mapper: Easy Conversion of Relational Databases to RDF

165

