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Abstract: A steadily rising share of small, distributed, and volatile energy units like wind energy converters solar panels,
co-generation plants, or similar assigns new tasks and challenges to the smart grid regarding operation and
control. The growing complexity of the grid also imposes a growing complexity of constraints that restrict
the validity of solutions for operation schedules, resource capacity utilization or grid compliance. Using
surrogate models as an abstraction layer has recently become a promising approach for constructing algorithms
independently from any knowledge about the actual device or operation restricting constraints. So called
decoders as a special constraint handling technique allow for systematically generating feasible solutions
directly from a learned surrogate model. Some decoder approaches based on support vector machines have
already been implemented, but suffer from performance issues and a sensible parametrization. We propose
a new type of decoder based on a cascade of χ-shapes to overcome these problems. The applicability is
demonstrated with a simulation study using different types of flexible energy units.

1 INTRODUCTION

Electrical power supply is currently undergoing a
transition towards a decentralized provision by renew-
able resources. Political decisions target a change
from traditional control schemes with rather few,
large power plants to a power grid operated by nu-
merous small (volatile and hardly predictable) renew-
able energy resources (DER). Grid control by decen-
tralized and individually configured units leads to a
need for new algorithms in order to cope with grow-
ing (constraint) complexity. If a huge number of small
devices is responsible for control operations, they will
have to situationally group together to jointly gain po-
tential and flexibility like in virtual power plants (Son-
nenschein et al., 2014).

Individual search spaces of different units – rep-
resenting the individual capabilities within a group
– have to be integrated to a model for the operation
planning at runtime. Each individually operated unit
has its own set of distinct schedules to offer for a
scheduling algorithm. Such flexibility depends on the
current, individual configuration, several (technical)
constraints for operation, current operational state,
and if applicable, on state and requirements of cou-
pled units – e. g. on the thermal demand of a house

in case of a co-generation plant (Bremer et al., 2010).
Thus, a static model is not targeted as it had to be
continuously adapted and corrected.

If a simulation model of an energy unit is regarded
as a characteristic function able to indicate whether
an arbitrary, given schedule is operable by the DER
or not, it can be converted to another model that al-
lows for a standardized access to feasibility informa-
tion. The characteristic function that indicates oper-
ability of schedules may be captured e. g. by machine
learning approaches. Built on top, a so called de-
coder provides a mapping function to turn any given
schedule into a similar feasible one (with respect to
the energy unit model that has been used for train-
ing). As constraint-handling technique such decoder
may be used for solution repair or for guiding any al-
gorithm where to look for feasible solutions (Koziel
and Michalewicz, 1999).

In (Bremer and Sonnenschein, 2013) a decoder
has been proposed based on a 1-class support vector
machine (SVM). This decoder works fine on a wide
range of energy unit types but has drawbacks regard-
ing training time and parametrization for precision in
high-dimensional cases. The works of (Fröhlinger,
2017; Neugebauer et al., 2016) improved precision
by extending the high-dimensional SVM approach to
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a cascade of classifiers for the flexibility model. But,
for this cascading approach no cascading decoder is
known so far.

We present a new approach for flexibility model-
ing and decoder based on χ-shapes that constitute a
concave hull as model for the feasible region of an en-
ergy unit. With this approach performance as well as
precision can be improved by integrating the cascade
architecture. In addition, as the χ-shape model works
directly in data space as oppose to SVM approaches
that model in reproducing kernel Hilbert spaces, new
applications regarding intersection or union of flexi-
bilities from different energy units become possible.

The rest of the paper is organized as follows. We
start with an introduction to flexibility modeling and
recap concave hull techniques. A description of the
new approach based on χ-shapes is complemented by
a hybridization with evolution strategies for demon-
strating integration into optimization. Finally, a sim-
ulation study with evaluation results concludes.

2 RELATED WORK

2.1 Constraints and Flexibility
Modeling

In order to understand, the concept of flexibility sur-
rogate models and derived decoders for constraint-
handling, we first have to look at the constraints and
the representation of schedules.

Usually, a DER might achieve the main task it has
been built for in different alternative ways. For ex-
ample, a CHP (combined heat and power plant) is
supposed to supply the heat for varying demand in a
household at every moment in time. But, heat usage is
often decoupled from heat production by using a ther-
mal buffer store. Thus, different production profiles
may be used for generating the heat. This leads, in
turn, to different respective electric load profiles that
may be offered as choice to a scheduling controller.

A schedule is a data vector xxx P Rd , with number
of periods d. For each period the i-th element of
xxx describes the respective amount of electric energy
produced or consumed in this period or respectively
the mean active power output or input during this pe-
riod. The term operable denotes that a schedule does
not violate any constraint. The term constraint com-
prises hard (usually technically rooted) and soft (of-
ten economically or ecologically rooted or subject to
personal preferences) as well as often non-linear con-
straints resulting from system embedding.

Real world problems often face nonlinear and/ or

p1: load in period 1 (% max. load)

p 2
:l

oa
d

in
pe

ri
od

2
(%

m
ax

.l
oa

d)

C1a

C1b

C2b

C2a

C3

Figure 1: Simplified 2-dimensional example for the scope
of action of a modulating co-generation plant with the su-
perposition of three constraints (cf. (Bremer et al., 2010)).

combined constraints. The set of constraints defines
the shape of a region within the search space (the hy-
percube defined by operation parameter limits) that
contains only feasible solutions. This feasible region
might be arbitrary shaped and discontinuous. It is this
region that defines feasibility and flexibility and that
has to be modeled to allow distinguishing operable
and not operable schedules.

As the feasible region is a sub-vector space, con-
straints can be interpreted geometrically. Without any
constraint, the whole hypercube r0,1sd (active power
between 0 and 100%) would be a model for the region
of feasible schedules. When applying constraints, dif-
ferent parts (sub-regions) of the hypercube drop off
the feasible region, because the respective schedules
are not operable. Only the remaining region (hyper-
cube minus superposition of all regions prohibited by
constraints) is the feasible region of the DER. Fig-
ure 1 shows a simplified, linear, 2-dimensional exam-
ple for a modulating CHP (power may vary between
min. and max. power: constraints C1) with a con-
nected thermal buffer store (state of charge prohibits
region C3); instantaneous changes in production level
are prohibited by inertia (constraints C2a and C2b).
The remaining white region is the feasible region F .
We denote with Fu the feasible region that is specific
to an energy unit u. Examples from a productive sys-
tem would usually comprise 96 dimensions and many
more constraints, heavy non linearity and discontinu-
ity.

A flexibility model is a surrogate model that sub-
stitutes a simulation model and checks whether a
given schedule is operable under current circum-
stances or not. These models are classifiers to tell
feasible and infeasible schedules apart (with regard
to a specific unit and a specific initial operation state)
without needing to simulate.

A decoder is a constraint-handling technique
that imposes a relationship between feasibility and
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decoder solutions. For example, (Koziel and
Michalewicz, 1999) proposed a homomorphous map-
ping between an n-dimensional hypercube and the
feasible region in order to transform the problem into
an topological equivalent one that is easier to handle,
although with a need for extra parameters that have to
be fit empirically and with a need for explicitly given
constraint formulations. Earlier approaches e.g. used
Riemannien mapping (Kim, 1998).

An example for the smart grid domain is given
in (Bremer et al., 2010). There, a flexibility model
based on a one-class support vector data description
(SVDD) (Tax and Duin, 2004) was proposed. The
goal of building such a model is to learn the feasi-
ble region of the schedules of a DER by learning the
enclosing boundary around the set of operable sched-
ules. This task is achieved by determining a mapping
Φ : X Ă Rd ÑH ,xxx ÞÑΦpxxxq such that all data from a
given region X is mapped to a minimal hypersphere
in some high- or indefinite-dimensional Hilbert space
H . The images enclosing ball is used as an abstract
model.

A support vector decoder can harness this rela-
tionship by mapping an arbitrary (infeasible) sched-
ule into this high-dimensional space and moving the
mapped image towards the center of the ball until it
touches the surface. This translated image can then
be mapped back to a now feasible schedule at the bor-
der of the feasible region. In the same way also a
proportional move into the ball is possible to harness
the whole feasible region.

2.2 χ-Shapes

Another general approach for modeling the enclos-
ing envelope around a point cloud is using a con-
cave hull. A concave hull constitutes a polygon that
represents the characteristic shape of a set of input
points (Duckham et al., 2008). One approach to rep-
resenting characteristic shapes of point clouds was
introduced in (Edelsbrunner et al., 2006), where α-
shapes were used. In (Melkemi and Djebali, 2000) A-
shapes where introduced. Both approaches are based
on Delaunay triangulation and Voronoi diagrams and
quickly become intractable with growing number and
dimension of points. Different approaches are based
on putting a lattice on the plane and defining the union
of cells containing points as shape. An improvement
to these so called s-shapes are r-shapes that are consti-
tuted by a union of discs around points from the given
point cloud. In the 2-dimensional plane these shapes
can be calculated in linear time but require a preced-
ing step of finding suitable parameters which cannot
be determined in a closed form. More geographical

information systems related approaches can e. g. be
found in (Park and Oh, 2012; Moreira and Santos,
2007). In (Braune et al., 2016) a multi shape approach
has been developed for clustering. In (Duckham et al.,
2008) so called χ-shapes are proposed that are easy to
calculate and calculation can be done in Opn ¨ lognq.

χ-shapes are defined for finite sets of at least 3
points in R2. χ-shapes model the spatial distribution
of point sets and constitute simple polygons contain-
ing all points and bounding an area inside (or equal
to) the convex hull (Duckham et al., 2008). The poly-
gon is generated based on a convex Delaunay trian-
gulation that is iteratively shrunk to a concave hull by
removing outer edges (Rosen et al., 2014). Figure 2
gives some examples of concave hulls around point
clouds.

So far, none of these methods had been used for
flexibility modeling due to their disability to scale
well with dimensionality. In (Hörding, 2017), a first
attempt was made to combine ideas from (Fröhlinger,
2017; Neugebauer et al., 2016) – where high dimen-
sional training sets have been disintegrated into a set
of lower dimensional ones by using a cascade of clas-
sifiers for flexibility modeling – and concave hulls and
χ-shapes as base model from (Duckham et al., 2008).

3 ALGORITHM

3.1 Model and Decoder

Here, we propose a novel method of generating a
decoder for energy management algorithms that are
based on χ-shape models of the feasible region of
possible operation of an energy unit. The approach
is based on the cascading χ-shape model from (Hörd-
ing, 2017) that also predicted the possible extension
to a fully-fledged decoder method.

In general, the approach works as follows. In a
first step, a training set is generated from an energy
units’ simulation model that serves as a stencil for the
feasible region as in the approach from (Bremer et al.,
2010; Bremer and Sonnenschein, 2013). This train-
ing set contains instances of feasible schedules with a
dimension that covers the whole planning horizon. In
day-ahead scheduling a schedule usually has a dimen-
sion of 96 of 15-minute intervals for 24 hours. This
training set is subdivided into a set of training sets
with schedules of dimension two. With this, we fol-
low the cascading approach for better classification as
proposed in (Fröhlinger, 2017). All sub training sets
are overlapping in one neighboring dimension. In a
second step we calculate a χ-shape for each of these
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sub training sets after (Duckham et al., 2008; Hörd-
ing, 2017). Finally, a decoder is derived. The task
of a decoder is to map points from the exterior of the
concave hull onto a point inside the hull.

Let xxx “ pp1, . . . , pdq P r0,1sd be a schedule for an
energy unit for d time intervals. The elements of xxx de-
note generated or consumed real power in p.u. (per-
centage of rated power) during the respective time in-
terval. Let X “ txxx1, . . . ,xxxnu be a training set with in-
stances xxxi of random, feasible schedules.

Let xxx be an infeasible schedule (point) from the
exterior. We start by mapping the first dimension of
xxx. This has to be done by line search. The first point
along the x-axis x0 that guarantees an intersection of
the line segment px0,0qpx0,1q with the first χ-shape
polygon is taken as an anchor for the mapping.

Let X p jq “ tpp j, p j`1qun with j P t1, . . . ,du Ď N
be a 2-dimensional training set comprising only an in-
tersection plane of the original training set along axis
j and j` 1. We now break down the original high-
dimensional training set X into a set of 2-dimensional
training sets tX p1q,X p2q, . . . ,X pd´1qu.

For each of these 2-dimensional planes a χ-shape
S jpX p jqq is constructed enclosing the values of feasi-
ble power for 2 succeeding time intervals j and j`1
in the schedule. The χ-shape consists of a set of line
segments t`iuiPN` defining a closed polygon enclos-
ing points of feasible power projected onto the respec-
tive plane.

Figure 2: χ-shape model of the 9-dimensional flexibility of
a co-generation plant with hourly resolution.

For a simple polygon like Si it can be easily
checked whether a given point lies inside (or on the
boundary) or outside, e. g. with the ray-casting al-
gorithm (Shimrat, 1962). We denote with xxxp jq “
pp j, p j`1q Ď S j that dimensions j and j` 1 of xxx are
contained in (lie inside) S j or lie on the boundary.

Now we can define a model for the feasible region:
Let M pxxxq be a general indicator function

M pxxxq “
#

true if xxx P F
false else

. (1)

M can be defined with the help of the χ-shape set
tS ju jPt1,...,d´1u:

Mχpxxxq “
#

true if xxxp jq Ď S j@ j P t1, . . . ,d´1u
false else

.

(2)
A schedule is classified feasible iff in every inter-

section plane the respective 2-dimensional intersec-
tion of the schedule lies inside or on the polygon de-
fined by the respective χ-shape. Figure 2 gives an ex-
ample for 9-dimensional schedules of a co-generation
plant on an hourly basis. The feasible region is mod-
eled by 8 intersection planes each modeling two di-
mensions with an overlap of one.

Based on this flexibility model we can now define
a decoder. Let zzz“ pp1, . . . , pdq be an infeasible sched-
ule. For simple solution repair one could harness the
shortest path to the feasible region defined by the set
of χ-shapes. For each intersection plane j one just
had to determine the point on the polygon S j with the
shortes distance to zzzp jq.

For a more sophisticated space mapping decoder
we propose the following approach: For a single, 2-
dimensional intersection plane the following holds.
Let zzzp jq “ pz j,z j`1q be a point in R2 with the first
coordinate fixed and inside the χ-shape S j. Then zzzp jq

can be moved along the line segment pz j,0qpz j,1q (re-
member all values are scaled to r0,1s) until zzzp jq lies
inside S j. Let z̃ j denote the repaired coordinate of zzz j.
As neighboring intersections overlap by 1, the sec-
ond coordinate z j`1 is identical with the first coor-
dinate of the succeeding intersection. Therefore, the
first coordinate there is now fixed (i. e. zi`1 “ z̃i) and
the second can be moved inside. This process may
continue until the last coordinate of the schedule has
been pushed inside the feasible region. Only for the
first coordinate in the first plane a coordinate inside
has to be chosen by line search as an anchor as there
is no predecessor. All other coordinates can be deter-
mined systematically.

Coordinate mapping is done by moving along
pz j,0qpz j,1q. To do this we determine the intersec-
tions of pz j,0qpz j,1q and S j. In case there is just a sin-
gle intersection point ιιι P r0,1s2 between the χ-shape
and the line trajectory, the second coordinate of the
intersection is directly taken: z j`1 “ ιιι2.

In case of multiple intersections
tιιι1, ιιι2, . . . , ιιιmu, m ą 2 we rank them according
to distance δrιιιi,pz̃ j´1,z j`1qs and direction. Let ιιιA
denote the nearest intersection, ιιιB the second nearest
in the same direction as ιιιA and ιιιC the nearest in
the opposite direction. Now we determine z̃zz j`1
by translating P “ pz̃ j´1,z j`1q proportionately in
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Figure 3: Basic scheme for mapping an infeasible coordi-
nate proportionally into the feasible region.

between ιιιA and ιιιB: P˚ “ O ` b
a ¨ ~∆x. Figure 3

illustrates the idea. The center O between ιιιA and ιιιB
and O1 between ιιιA and ιιιC is determined (outer dashed
lines). The aim is to map the region in between P
and midway to ιιιC onto the first half of the nearest
inner part. The length ratio between a “ O12 ´O2
and b “ ιιιA,2´O2 is used to scale ∆x accordingly for
determining P˚ “ pz̃ j´1, z̃p j`1qq overlap“ pz̃ j, z̃ j`1q.

In case of only 2 intersections, pz̃ j´1,0q or
pz̃ j´1,1q is taken as ιιιC depending on the direction of
ιιιA. To wrap it up, a decoder function

χdec : r0,1sd ÑMχ « FU (3)

is defined by (1) line searching an anchor for the first
coordinate and (2) mapping the second and all suc-
ceeding coordinate in every intersection plane propor-
tionally into the nearest part of the respective χ-shape
along a trajectory with fixed first coordinate.

In this way, the complete exterior of the feasible
region F inside r0,1sd is mapped onto F . Prior to
mapping, we first check with the help of the χ-shape
model Mχ. whether a questionable schedule zzz is fea-
sible and thus is already inside F . If this is the case, zzz
is used directly and the mapping step can be omitted.
On the other hand, at least in case of modeling en-
ergy units, studies have shown for the example of co-
generation plants a feasible portion of less than 10´23;
so mapping is the more frequent case (Bremer et al.,
2010).

3.2 Hybridizing with Evolution
Strategies

For evaluation, we need to hybridize the decoder with
an optimization algorithm. The covariance matrix

adaption evolution strategy (Ostermeier et al., 1994;
Hansen, 2006) (CMA-ES) is an evolution strategy
well-known for it’s good performance on multi modal
black box problems (Hansen, 2011).

A good introduction can for example be found in
(Hansen, 2011). CMA-ES is initially not designed
for integrated constraint handling in constrained op-
timization. Nevertheless, some approaches for in-
tegrating constraint handling have been proposed.
In (Kramer et al., 2009) a CMA-ES is introduced
that learns constraint function models and rotates
mutation distributions accordingly. In (Arnold and
Hansen, 2012) an approximation of the directions of
the local normal vectors of the constraint boundaries
is built by accumulating steps that violate the respec-
tive constraints. Then, the variances of these direc-
tions are reduced for mutation.

CMA-ES can be hybridized with decoders as fol-
lows (Bremer and Lehnhoff, 2017; Bremer and Lehn-
hoff, 2018). In every iteration g of CMA-ES a multi-
variate distribution is sampled to generate a new off-
spring solution population:

xxxpg`1q
k „ mmmpgq`σpgqN p0,CCCpgqq, k “ 1, . . . ,λ. (4)

CCCpgq P Rnˆn defines the covariance matrix of the
search distribution at generation (iteration) g with
overall standard deviation σpgq which can also be in-
terpreted in terms of an adaptive step size. The mean
of the multivariate distribution is denoted by mmmpgq,
λě 2 denotes the population size.

The new mean mmmpg`1q for generating the sample
of the next generation in CMA-ES is calculated as
weighted average

mmmpg`1q “
µÿ

i“1

wixxx
pg`1q
i:λ ,

ÿ
wi “ 1, wi ą 0, (5)

of the best (in terms of objective function evaluation)
individuals form the current sample xxxpgqi , . . . ,xxxpgqλ . In
order to introduce the decoder into CMA-ES, ranking
is done with the help of the decoder mapping χdec and
objective function f :

xxxpg`1q
1:λ , . . . ,xxxpg`1q

λ:λ “ f pχdecpxxxpgq1 , . . . ,χdecpxxxpgqλ qq (6)

to define xxxpg`1q
i:λ as the new ith ranked best individual.

For scheduling of energy units, xxx as solution candi-
date is the concatenation of schedules

xxx“ xxx1xxx2 . . .xxxm “ pp11, . . . , p1d , p21, . . . , p2d , . . . , pmdq
(7)

with xxx1, . . . ,xxxm denoting schedules for the energy
units. Finally, the covariance matrix is updated as
usual, but also based on the decoder based ranking
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Eq. 6:

CCCpg`1q
µ “

µÿ

i“1

wi

´
xxxpg`1q

i:λ ´mpgq
¯´

xxxpg`1q
i:λ ´mpgq

¯J
.

(8)
CMA-ES has a set of parameters that can be

tweaked to some degree for a problem specific adap-
tion. Nevertheless, default values that are applicable
for a wide range of problems are usually available.
This also constituted its suitability for use cases in au-
tomation. For our experiments, we used default set-
tings after (Hansen, 2011).

4 EVALUATION

For evaluation, we used simulations with models of
several different energy units. Among them where co-
generations plants with attached thermal buffer stores
(of different size) for heating a detached house, PV
solar panels, ventilation systems, and heat pumps.

Table 1: Comparison of flexibility models using support
vector data description and χ-shapes; npv: negative predic-
tion value; ccr: correct classification rate.

indicator SV χ-shapes
fallout 0.0300 ˘ 0.0018 0.0061 ˘ 0.0003

precision 0.4106 ˘ 0.0095 0.7256 ˘ 0.0097
npv 0.9881 ˘ 0.0005 0.9835 ˘ 0.0006

recall 0.6415 ˘ 0.0143 0.4902 ˘ 0.0163
miss rate 0.3585 ˘ 0.0143 0.5098 ˘ 0.0163
specifity 0.9700 ˘ 0.0018 0.9939 ˘ 0.0003

ccr 0.9597 ˘ 0.0013 0.9780 ˘ 0.0005

For comparison with the χ-shape decoder (XSD),
we used the support vector decoder (SVD) and the
related flexibility model as proposed in (Bremer et al.,
2011; Bremer and Sonnenschein, 2013). In a first test,
we compared the flexibility models.

Table 1 shows the results. As both flexibility mod-
els are basically classifiers, standard indicators for
classifier evaluation can be used. The comparison
is done using a co-generation plant. Due to the tiny
share of feasible schedules for co-generation plants
(Bremer et al., 2010), it is only possible to calcu-
late the confusion matrix for rather small dimensional
cases. Thus, the experiment has been conducted using
8-dimensional schedules in order to generate a suffi-
cient number of true positive instances. The confu-
sion matrix was calculated for both flexibility models
with the help of the simulation models for comparing
classification results respectively. The results show an
almost equally good performance for both flexibility
models types. The χ-shapes model shows some im-

provement regarding the specifity which denotes the
share of correctly classified infeasible schedules and a
better precision but classifies a larger share of actually
feasible schedules falsely as infeasible.
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Figure 4: Quality of reproduces flexibilities with different
training set sizes based on Jaccard index; a value of 1 de-
notes perfect accordance.

As a first test for evaluating the decoders we gen-
erated training sets from different energy units and
respectively trained a support vector and a χ-shape
decoder. We then generated 10000 random sched-
ules (power for each time interval „ Up0,1q) and
mapped each random schedule with both decoders.
The mapped schedules where tested regarding feasi-
bility using the original simulation model. Table 2
shows the result for 96-dimensional schedules. We
used two differently parameterized (regarding shady
phases) PV models and a ventilation system. All three
are perfectly reconstructed by both decoders with the
meaning that all schedules generated by the decoders
were feasible. Nevertheless, the χ-shape decoder per-
forms a little better here with regard to generating also
schedules from the outer regions of the feasible re-
gion. This can better be seen with the specifity in Ta-
ble 1. Nevertheless, for the co-generation plant, the
support vector decoder shows a better performance.
This is rooted in the fact that for the co-generation
plant with thermal buffer store each feasible amount
of energy in a period relays on schedule decisions
from preceding time periods (e. g. early charging of
the buffer reduces options for later operation). Be-
cause the χ-shape decoder has only an overlap of one
(two succeeding time periods), it has trouble encoding
relations over larger chains of time periods. Thus, the
result for the high-dimensional schedules is degrades.
For shorter time frames the performance is still suf-
ficient. Reducing the time dependability by using a
larger thermal store (CHP 2) reduces this effect.

Next, we evaluated the similarity between the re-
produced set of feasible schedules with the actual
feasible region as it is determined by the simulation
model. A comparison is given in Figure 4. We used
the Jaccard index for evaluating similarity between
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Table 2: Comparison of the share of correctly reproduced
feasible schedules for SVD and XSD for 96-dimensional
schedules.

DER SVD XSD
PV 1 1.0000 ˘ 0.0000 1.0000 ˘ 0.0000
PV 2 0.9998 ˘ 0.0001 1.0000 ˘ 0.0000

ventilation 1.0000 ˘ 0.0000 1.0000 ˘ 0.0000
CHP 1 0.9434 ˘ 0.1265 0.3422 ˘ 0.0173
CHP 2 0.7521 ˘ 0.2267 0.7453 ˘ 0.0087
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104
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Figure 5: Comparison of training time of SVD and XSD for
different training set size.

the region that is covered by two point clouds. Thus,
we can compare the similarity between a set of sched-
ules generated by the simulation model and a set of
random schedules that has been mapped by a decoder.
As Figure 4 shows, the χ-shape approach needs a
larger training set than the support vector approach
but then outperforms the SVD in terms of similarity
of the reproduced region to the original one.

Needing larger training sets is always an issue re-
garding performance of the approach. Hence, we
compared the computation times of SVD and XSD
for both training and usage. From analytics it is al-
ready known that training can be done in average case
for the SVD in Opn2q with training set size n, if ap-
proximated and for the XSD in Opd ¨ n ¨ lognq with n
schedules of dimension d (Duckham et al., 2008; Bre-
mer et al., 2011). The impact in practical applications
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Figure 6: Comparison of mapping performance of SVD and
XSD for different training set size (and resulting number of
support vectors and polygon lines).

Figure 7: Example result for planning 750 co-generation
plants with residual error.

can be seen in Figure 5. For usage, the performance
of the SVD is determined by some matrix operations
with a matrix size of ns ăă n; and thus by the num-
ber of support vectors ns. The XSD approach needs
a calculation of the intersection d´ 1 times and thus
depends on the number of edges of the set of poly-
gons. In practice, XSD is only slightly slower than
SVD. Especially for larger training set sizes when the
approximated boundary becomes smoother and thus
fewer line segments have to be intersected; cf. Figure
6. Nevertheless, there is still room for improvement
with concepts e. g. from ray-tracing.

Finally, we tested the XSD in some practical op-
timization problems. Figure 7 shows an exemplary
result for the predictive scheduling problem with 750
co-generation plants. In predictive scheduling for
each unit in a set of energy units, a schedule has to
be found such that a desired target load profile is re-
sembled as close as possible for a given time frame
(Sonnenschein et al., 2014). Because all individual
schedules have to be taken from the individual fea-
sible region of the respective energy units, the opti-
mization algorithm has to use decoders for generating
candidate solutions. More formal, we want to min-
imize the distance δ (e. g. Euclidean) between target
load profile ζ and the sum of individual schedules for
units u: δpřuPU ,ζq Ñ min. For solving this problem
we use the CMA-ES approach as described before.

The upper chart shows the desired target load pro-
file (artificially chosen such that a residual error of
zero is theoretically possible) and as result the ag-
gregated load profile of the co-generation plants; the
lower shows the residual error. The mean absolute
percentage error for the experiment was 0.00451 ˘
0.00479.

5 CONCLUSION

The task of flexibility modelling is an important pre-
requisite to many planning and control tasks in the
smart grid. We presented a novel model and decoder
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approach that well suits a niche of energy resources
where it outperformed the established SVD.

All in all, the XSD has several advantages regard-
ing performance in scenarios where a frequent train-
ing is necessary and it produces a set of schedules for
optimization that better resembles the original feasi-
ble region especially at the boundary. Thus the flex-
ibility of the energy unit is better harnessed. Nev-
ertheless, it has some problems capturing the opera-
tional interdependencies over time with some devices
like an electric vehicle charging station, where a set
of functionals has to be captured by the decoder that
all produce a given value for the integral over the
planning horizon. So, the χ-shape decoder may not
completely replace the support vector decoder but is
a good extension beside it with advantages for many
types of energy units.
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