
A Hybrid Approach to Re-Host and Mix Transactional COBOL and Java
Code in Java EE Web Applications using Open Source Software

Philipp Brune
Neu-Ulm University of Applied Science, Wileystraße 1, 89231 Neu-Ulm, Germany

Keywords: Web Services, Service Orientation, Transaction Processing, COBOL, Java EE, Open Source Software,
Mainframe Computing.

Abstract: Despite the common notion of mainframe-based transactional COBOL applications being an outdated techno-
logy, in many companies they continue to serve as the IT backbone. Therefore, in the era of big data and
cloud services, these applications need to be transformed towards open, service-oriented architectures to pre-
serve their value. This challenge has been tackled by different strategies so far, ranging from adding web
service layers to existing mainframe applications to various products providing emulation on non-mainframe
platforms. In contrast, in this paper this transformation is considered not as a mere COBOL re-hosting issue,
but from the perspective of integrating COBOL in Java EE-based web applications. An open framework is
demonstrated for executing existing transactional COBOL programs as part of Java EE application servers.
It is build on established Open Source Software (OSS) components and executes on any Un*x-like operating
system, in particular also on the mainframe itself.

1 INTRODUCTION

Despite COBOL is considered an outdated language
by many (Khadka et al., 2014), it still plays an im-
portant role in enterprise application development,
in particular on the mainframe platform (Lämmel
and De Schutter, 2005; Vinaja, 2014) (the term
“mainframe platform” here refers to IBM’s S/390 ar-
chitecture and its descendants, as it is commonly un-
derstood). There exist multiple reasons why it is
neither possible nor desirable to replace it completely
(Suganuma et al., 2008; Sagers et al., 2013; Farmer,
2013; Kiefer, 2017).

Mainframe-based transactional COBOL programs
typically handle the core, value-generating business
processes of many companies and store the related
data. As so-called “Systems of Record” they are typi-
cally hosted on-premise by many companies (Moore,
2011). In the era of big data and cloud-based ser-
vices (Hashem et al., 2015), to preserve their value,
the challenge frequently is to convert these mission-
critical applications into open, service-oriented bac-
kends (Khadka et al., 2015). which could be more ea-
sily integrated e.g. in cloud-based “Systems of Enga-
gement” like mobile apps and web frontends, or into
distributed big data processing applications (Moore,
2011; Tommy et al., 2015).

While various approaches to tackle this chal-
lenge have been proposed and used in research and
practice over the years, the re-engineering of ex-
isting, large-scale transactional COBOL applicati-
ons remains an ongoing topic for most mainframe-
centered IT organizations. Depending on the strategic
role of the mainframe platform within an organiza-
tion, this is usually either achieved by migrating and
re-hosting these applications to other non-mainframe
platforms (e.g. Linux) or by modernizing them on the
mainframe platform, thereby typically making use of
the power and unique features of modern mainframes
(Sagers et al., 2013; Farmer, 2013; Vinaja, 2014).

In any case, transactional COBOL applications re-
quire a transaction processing monitor (TPM) midd-
leware such as IBM’s CICS1 (Malaika and Park,
1994) or Fujitsu’s openUTM2 to run in, which the-
refore needs to be either present or emulated on any
target platform used for hosting such applications.
Therefore, previous approaches consider the problem
mainly from the COBOL perspective, trying to pro-
vide a replacement or emulation for the traditional
mainframe TPM software (Talati and Lackie, 1999;
White, 2000).

1https://www.ibm.com/software/products/de/cics-tservers
2http://www.fujitsu.com/de/products/software/middleware/
openseas-oracle/openutm/

Brune, P.
A Hybrid Approach to Re-Host and Mix Transactional COBOL and Java Code in Java EE Web Applications using Open Source Software.
DOI: 10.5220/0006943402390246
In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST 2018), pages 239-246
ISBN: 978-989-758-324-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

239

In contrast, in this paper the topic is looked at
from the perspective of re-using transactional CO-
BOL code as part of modern Java Enterprise Edi-
ion (EE) web applications. Therefore, in this paper
an open framework build purely on established Open
Source Software (OSS) is proposed and demonstra-
ted, which allows to execute existing transactional
COBOL programs as part of Java EE application ser-
vers. The proposed framework supports all Un*x-
like or Linux operating systems, therefore also the
mainframe itself. It is evaluated using a proof-of-
concept implementation to demonstrate its feasibility.

Recently, Java EE has been handed over to the
Eclipse Foundation to manage its future development,
and therefore re-labeled as Jakarta EE3. However, for
sake of simplicity in this paper still only the term Java
EE is used to denote both Java EE and Jakarta EE.

The rest of this paper is organized as follows: In
section 2 the related work is analyzed in detail, while
section 3 describes the software architecture of the
proposed solution. The latter is evaluated by a proof-
of-concept (PoC) Java EE application presented in
section 4 and tested in a demo experiment illustra-
ted in section 5. We conclude with a summary of our
findings.

2 RELATED WORK

The modernization of existing transactional COBOL-
based applications by modularization and encapsula-
tion (Sellink et al., 1999) over the years has been pur-
sued using different strategies, and numerous approa-
ches have been proposed, which can be grouped into
three main categories:

• Modernize the existing applications on the
mainframe platform (Sellink et al., 2002), typi-
cally by wrapping COBOL transaction programs
by web service facades or behind modern Web
user interfaces (Sneed, 2001; Lee et al., 2001) and
integrating them in distributed service-oriented
application architectures (Calladine, 2004; Fergu-
son and Stockton, 2005; Rodriguez et al., 2013;
Mateos et al., 2017). This approach is typically
adopted when the unique features of mainfra-
mes such as extremely high availability and out-
standing transaction throughput are inevitably re-
quired for an application (Farmer, 2013; Vinaja,
2014), and well supported by various software
tools from the mainframe vendors (like e.g. the
current versions of their respective TPM products)

3https://jakarta.ee/about/

(Bainbridge et al., 2001) as well as from multiple
third-party vendors.

• Re-hosting and subsequent modernization of the
existing COBOL applications on other non-
mainframe platforms (including cloud services),
mainly to reduce the perceived high operating
costs of the mainframe platform (Lancia et al.,
2007; Khadka et al., 2015). This typically re-
quires either the original mainframe TPM midd-
leware (Malaika and Park, 1994) to be available
for these non-mainframe platforms (which is the
case for the major mainframe TPM products) or a
kind of third-party emulation technique to be used
to mimic the functionality of the TPM (Talati and
Lackie, 1999; Apte et al., 2017). The latter has
been tried to achieve over the years by numerous
attempts, ranging from vintage computing enthu-
siasts’ hobby projects4 to high-end commercial
offerings5. However, some of these approaches
are not feature-complete, lack development acti-
vity, or rely on proprietary technology. Also legal
issues may affect their success, as many TPM-
retated technologies have been patented over the
decades (Talati and Lackie, 1999; White, 2000;
Lymer et al., 2001; Apte et al., 2017).

• Extraction of the business rules and logic from
the existing COBOL code (e.g. by using spe-
cial analysis tools), and their subsequent re-
implementation using other languages and plat-
forms (Sneed, 1992; Huang et al., 1998; Sneed,
2001; Bodhuin et al., 2002; Lancia et al., 2007;
Suganuma et al., 2008; Zhou et al., 2010; Mai-
netti et al., 2012; El Beggar et al., 2014). This
approach is widely discussed in the scientific lite-
rature on legacy systems modernization, but may
be too expensive or riskful for companies in many
cases, since existing mainframe applications are
typically highly critical (Suganuma et al., 2008).

In general, the mainframe platform offers various
unique features like the support for high availability,
vertical scalability and security (Vinaja, 2014). The-
refore, a re-hosting or re-implementtai on other plat-
forms is not be feasible or useful in all cases (Far-
mer, 2013; Vinaja, 2014). In addition, completely
re-writing existing transactional COBOL applications
using modern languages and platforms might be much
too costly compared to modernizing them (Kanter and
Muscarello, 2005).

In modern enterprise application development, the
role of COBOL has been overtaken by Java to a large

4http://www.kicksfortso.com
5https://www.lzlabs.com/

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

240

extend, and Java Enterprise Edition (EE)6 applica-
tion servers provide functionalities similar to classical
TPM middleware to the Enterprise Java Bean (EJB)
components deployed in them (Bainbridge et al.,
2001; Lancia et al., 2007). In particular, Java EE ap-
plication servers support distributed transactions and
the 2-phase-commit (2PC) protocol through the Java
Transaction API (JTA)7.

Since Java EE application servers are similar to
classical TPM middleware to some extend, it could be
an interesting strategy for moderninzing transactional
COBOL appplications to make these programs run in-
tegrated in a Java EE application server as part of a
JTA tranasction. In this scenario, most of the TPM
functionality required to run these programs (such as
transaction handling, resource access, access to mes-
sage queues, user interfaces, etc.) wouldl be pro-
vided by the Java EE application server out of the
box through the default Java EE features. First, a
dedicated TPM middleware for executing transactio-
nal COBOL programs is not necessary in this appro-
ach, thereby avoiding any dependency on proprietary
software components. Only a thin “glue component
layer” is needed to manage the native COBOL execu-
tion for the Java EE application server. Second, since
Java EE is portable and available on most platforms,
in particular also on mainframes, this approach also
supports mainframe-to.mainframe re-hosting, e.g. on
Linux8.

Since such an approach has not been discussed in
the literature so far, in this paper the question is ad-
dressed how an open software architecture for a re-
spective approach could look like, which uses only
open-source software (OSS) components, and how fe-
asible it is in practice.

3 DESIGN OF THE SOFTWARE
ARCHITECTURE

In figure 1 an overview of the software architecture
of the proposed approach is shown. We refer to it
as the Quick Web-Based Interactive COBOL Service
(QWICS). Its full source code described in the follo-
wing is available as OSS on GitHub9.

As the major components for the design of its soft-
ware architecture, the following OSS solutions have
been selected following a “best of breed” strategy:
6http://www.oracle.com/technetwork/java/javaee/overview/
index.html

7http://www.oracle.com/technetwork/java/javaee/jta/
index.html

8https://www.openmainframeproject.org/
9https://github.com/pbrune1973/qwics

Java EE Application Server
(e.g. JBoss WildFly)

QWICS
COBOL Transaction

Server

Java Persistence API
(JPA)

QWICS
JDBC Driver

Application-specific
EJB

PostgreSQL
DBMS

PostgreSQL
C Client Lib

Server Process

TCP
Connection

(SQL
 and

QWICS
Commands,

Data,
JSON

Maps,...)

Modified GnuCOBOL
 libcob

GnuCOBOL
Load Modules Launches

and
executes
COBOL
Load
Modules
in separate
processes PostgreSQL

JDBC Driver

Web Browser
(Client)

QWICS
JavaScript

Library

WebSockets
Connection

(JSON structures)

Figure 1: Overview of the software architecture of the
proposed approach (called QWICS). The arrows denote
usage/invocation relationships. Yellow boxes describe
the QWICS-specific components and white boxes the
application-specific COBOL or Java code. The integration
between the Java and the COBOL code is achieved using a
specific JDBC driver calling the COBOL server via its own
protocol over a TCP connection.

• The GnuCOBOL compiler10, since it is the most
complete and mature OSS COBOL compiler avai-
lable. In fact, it is a COBOL frontend to the
GNU C compiler, translating COBOL to C first
and then compiling the result using the standard
gcc with its high optimization. Therefore, it sup-
ports the same target architectures as gcc, which
indeed covers most existing platforms, including
the mainframe.

• The PostgreSQL relational database system11 as
replacement for the mainframe databases used by
typical transactional COBOL applications. Post-
greSQL has been selected since it fully supports
2PC and distributed transactions (different from
other OSS databases), which is necessary for en-
terprise applications. Also, its BSD license allows
a completely free commercial use, which might be
important for future applications in practice.

• The JBoss WildFly application server12 as Java
EE runtime, since it is probably the most establis-
hed and mature OSS Java EE implementation with
a long-time history, used in many critical enter-

10https://sourceforge.net/projects/open-cobol
11https://www.postgresql.org
12http://wildfly.org

A Hybrid Approach to Re-Host and Mix Transactional COBOL and Java Code in Java EE Web Applications using Open Source Software

241

int (*performEXEC)(char*, void*) = NULL;

void display_cobfield(cob_field *f, FILE *fp) {
display_common(f,fp);

}

void
cob_display (const int to_stderr,

const int newline, const int varcnt,
...)

{
FILE *fp;
cob_field *f;
int i;
int nlattr;
cob_u32_t disp_redirect;
va_list args;

// BEGIN OF EXEC HANDLER
va_start (args, varcnt);
f = va_arg (args, cob_field *);
if (strstr((char*)f->data,

"TPMI:")) {
char *cmd

= (char*)(f->data+5);
if (varcnt > 1) {

f = va_arg (args,
cob_field *);

}
(*performEXEC)(cmd,(void*)f);
va_end (args);
return;

}
va_end (args);

// END OF EXEC HANDLER

Figure 2: Necessary modification to termio.c of GnuCO-
BOL’s libcob runtime library. Only the lines shown need
to be added, no further modifications are necessary. This
code adds an interception to DISPLAY statements of the
form DISPLAY "TPMI:..., which are used to execute the
EXEC-macros in the original COBOL source.

prise applications in practice.

For the integration of the transactional COBOL
programs in the Java EE container, three main “glue
components” have been designed illustrated in figure
1. These are kept as lightweight as possible, dele-
gating most of the work (e.g. transaction handling,
database connectivity, ...) to the existing and well-
approved components listed above. This “glue layer”
consists of:

• COBOL Transaction Server: A runtime container
to dynamically load and execute the COBOL load
modules (i.e. executable binaries in mainframe
terminology) created by the GnuCOBOL compi-
ler. It is written in C and for each client ses-
sion executes the COBOL load modules in a se-
parate thread. It is linked against a slightly mo-

dified version of GnuCOBOL’s libcob library,
which now intercepts COBOL DISPLAY state-
ments of the form DISPLAY "TPMI:... and calls
a function in the runtime container for these. The
code fragment in figure 2 shows the respective ne-
cessary modification to libcob’s termio.c source
file. By means of this mechanism, the original
EXEC ... END-EXEC macros in the code (Ma-
laika and Park, 1994) are converted to DISPLAY
statements by the preprocessor, and then interpre-
ted by the runtime container. This mechanism
provides maximum flexibility compared to the al-
ternative solution of converting the macros to de-
dicated library calls, since e.g. the preprocessor
needs not to be modified for supporting further
macro statements.
To execute the SQL in the EXEC SQL statements
and the statements send directly by the client, the
runtime container also manages pooled connecti-
ons to the PostgreSQL database by means of Pos-
tgreSQL’s C client library. The EXEC statements
are either transmitted to the client (JDBC driver
in the Java EE application server) or the database
for interpretation. Only statements invoking ot-
her COBOL modules are directly executed by the
transaction server.

• JDBC Driver: A Java Database Connecti-
vity(JDBC)13-compliant driver supporting Non-
XA and XA datasources to handle distributed
transactions. It connects to the COBOL Tran-
saction Server via a TCP connection, acting as a
client to the COBOL programs. The execution of
COBOL programs is controlled by the application
server (e.g. from an EJB) via the JDBC driver
by means of special callable statements and result
sets.

• JavaScript Library: Implements an (optional)
simple web user interface based on the original
TPM’s map defintions (Malaika and Park, 1994),
which are converted beforehand to JavaScript Ob-
ject Notation (JSON) structures by the preproces-
sor (see below). It uses the popular Bootstrap.js
framework14 for providing a responsive and mo-
dern look-and-feel suitable for mobiles, and Web-
Sockets to communicate in a stateful manner with
the application server. A stateful session here is
required to mimic the behaviour of the original
text-based terminal sessions.

In addition, a Java EE application (e.g. consisting
of EJB, servlets, JPA, ...) is needed to actually use

13http://www.oracle.com/technetwork/java/javase/jdbc/ in-
dex.html

14https://getbootstrap.com/

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

242

COBOL Code with COPY/EXEC Macros

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CUSTCHK.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 COPY QCKSET.
 01 ACCTNO PIC X(7).
 PROCEDURE DIVISION.
 MOVE LOW-VALUES TO QCKMAPO.
 EXEC CICS SEND MAP('QCKMAP') MAPSET('QCKSET') MAPONLY
 ERASE

 END-EXEC

 EXEC CICS RECEIVE MAP('QCKMAP') MAPSET('QCKSET')

 INTO(QCKMAPI)

 END-EXEC.

 ...

Preprocessed COBOL Code

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CUSTCHK.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 QCKMAPI.
 05 ACCTNOI PIC 9(7).

 05 SURNAMEI PIC X(15).

 05 FNAMEI PIC X(10).

 05 CHGI PIC X(8).

 05 MSGI PIC X(20).

 01 QCKMAPO.

 05 ACCTNOO PIC 9(7).

 05 SURNAMEO PIC X(15).

 05 FNAMEO PIC X(10).

 05 CHGO PIC X(8).

 05 MSGO PIC X(20).

 01 ACCTNO PIC X(7).
 PROCEDURE DIVISION.
 MOVE LOW-VALUES TO QCKMAPO.

 DISPLAY "TPMI:EXEC".
 DISPLAY "TPMI:CICS".

 DISPLAY "TPMI:SEND".

 DISPLAY "TPMI:MAP".

 ...

COBOL Preprocessor
cobprep

GnuCOBOL Compiler
cobc

COBOL
Copybooks

COBOL
Load

Module

User Interface MAPSET Definition

 QCKSET DFHMSD TYPE=MAP,MODE=INOUT,LANG=COBOL2,STORAGE=AUTO
 QCKMAP DFHMDI SIZE=(24,80),LINE=1,COLUMN=1,CTRL=FREEKB

 DFHMDF POS=(1,1),LENGTH=3,ATTRB=(ASKIP,BRT), X
 INITIAL='QCK'
 DFHMDF POS=(1,26),LENGTH=28,ATTRB=(ASKIP,NORM), X
 INITIAL='QUICK CUSTOMER ACCOUNT CHECK'
 DFHMDF POS=(3,1),LENGTH=8,ATTRB=(ASKIP,NORM), X
 INITIAL='ACCOUNT:‘

 ACCTNO DFHMDF POS=(3,13),LENGTH=7,ATTRB=(UNPROT,NUM,IC)
 ...

MAP Preprocessor
mapprep

JSON
Map

Definitions
for

Web UI

Figure 3: Process of preprocessing the original COBOL source files and map definitions for use by QWICS.

and invoke the COBOL programs within (distributed)
transactions via the JDBC driver. Depending on the
customer requirements, these applications can be of
different kind, e.g. implementing web services to be
called by other applications or full web frontends (e.g.
using the above JavaScript library).

Transactional COBOL programs in traditional
mainframe environments are loaded and executed by
a TPM. All input/output (I/O) operations performed
by these programs need to be handled by the TPM, so
it can always keep track of them to handle the (distri-
buted) transactions. Therefore, all necessary I/O ope-
rations (like e.g. executing SQL statements, sending
or receiving data from the screen, etc.) are embedded
in the COBOL code (or that of any other supported
host language) in terms of TPM- and SQL-specific
EXEC ... END-EXEC macros. These macros are pre-
processed and translated to TPM API calls before the
COBOL program is passed to the COBOL compiler
(Malaika and Park, 1994). In addition, the terminal
UI screen definitions (so-called maps) references by
these macros are translated beforehand to COBOL va-
riable declarations (so-called copybooks), which need
to be copied into the COBOL code before compilation
during this preprocessing stage as well.

Therefore, to be able to re-use the unmodified CO-
BOL source codes including these macros, the pre-
sented approach needs to implement an analogous
preprocessing step. The purpose of this COBOL pre-

processing first is to convert the EXEC macro state-
ments into real COBOL code (in the proposed ap-
proach, i.e. to the special DISPLAY "TPMI:... state-
ments described above), and second to insert the ne-
cessary variable declarations from the respective CO-
BOL copybooks before compilation.

The overall process is illustrated in figure 3: Two
preprocessors have been implemented for that pur-
pose, cobprep for COBOL and mapprep for the
map definitions. Both are written in the C program-
ming language. First, the original map definitions are
preprocessed, generating the corresponding COBOL
copybooks as well as a JSON representation of the
maps, later usable for web frontends. Currently, the
preprocessor only supports EXEC SQL and EXEC CICS
macros, but it easily could be adapted to support anot-
her TPM’s command syntax. Second, the COBOL
code is preprocessed, including the previously gene-
rated copybooks. The resulting COBOL code then
is passed through the GnuCOBOL compiler to obtain
the final executable load modules.

4 PROOF-OF-CONCEPT JAVA
APPLICATION

To test and demonstrate the functionality and in-
terplay of the described components, a Proof-of-

A Hybrid Approach to Re-Host and Mix Transactional COBOL and Java Code in Java EE Web Applications using Open Source Software

243

Figure 4: Screenshot of a map screen converted to JSON
and displayed in web page by the JavaScript library.

Concept (PoC) Java EE application was implemented
and deployed in the JBoss WildFly application server.

It consists of a single stateful session enterprise
Java bean (EJB), accessing the COBOL code using a
Java Transaction API (JTA) XA datasource (to sup-
port distributed transactions) and the JDBC driver
described above. The stateful session bean acts as
websocket backend invoked from the JavaScript li-
brary in the web browser. A stateful session bean
is required, since websockets provide a session-based
connection between the browser and the web server.
This is necessary to make the UI behave similar to
the traditional terminal screens. The EJB uses bean-
managed transctions, since websockets require a se-
parate EJB method call for each new message, cor-
responding to UI interactions here. Since transacti-
ons in a TPM may span multiple screen interacti-
ons, this needs to be recovered here using transactions
spanning multiple method calls of an EJB. Therefore,
JTA’s UserTransaction interface is used to control the
begin and end of transactions by the EJB.

5 EXPERIMENTAL EVALUATION

To evaluate the feasibilty of the proposed approach, in
a first experiment an existing transactional COBOL
application has been ported to the QWICS environ-
ment. To avoid any bias, a third-party application was
required, written for a real mainframe TPM by de-
velopers not related or known to the authors. There-
fore, a demo COBOL CICS application written by a

consulting company for training purposes and being
available online was selected (SimoTime Technolo-
gies and Services,).

Of the demo programs provided there (Simo-
Time Technologies and Services,), the COBOL pro-
grams MN1APP, MN1SQL and CQ2UPD and their
respective map definitions were used for the experi-
ment, since they allow to test UI menu navigation,
program calls and SQL database access.

First, the COBOL source codes and the respective
map definitions were processed by the preprocessor
programs,. Afterwards, the COBOL code was compi-
led using GnuCOBOL.To make the code run properly,
the embedded SQL statements in the original COBOL
code had to be slightly adjusted to conform to the Pos-
tgreSQL SQL syntax. Beside this, the code could be
used without further modifications.

The experiment was carried out two times with
identical results, first by running it completely on an
Apple MacBook Air developer laptop using MacOS
X 10.11.6, thus, a BSD Un*x- derivative as opera-
ting system, and second on a IBM zBC12 mainframe
computer running Linux for z Systems to demonstrate
the potential of the approach for a true mainframe-to-
mainframe migration and modernization of existing
transactional COBOL programs. In both cases, all
components as well as the preprocessing were run-
ning on the respective target platforms.

For the experiment, the COBOL programs were
just used keeping the original transactional structure
and with the UI maps just converted 1:1 automatically
to a web UI using the JavaScript library. This was
straightforward and the resulting application works
correct and is usable. Figure 4 shows a screenshot
of the converted UI map of the program CU2UPD in
a web browser, as it is rendered by the JavaScript li-
brary. Due to the responsiveness of the underlying
Bootstrap.js framework, the UI could be also used on
a mobile device.

However, in a real-world scenario one probably
would adopt a more sophisticated re-hosting appro-
ach, e.g. by transforming the UI to a modern, real
web-like GUI or web service API manually or by im-
plementing additional business functionality in Java
and mixing it with the legacy COBOL code or repla-
cing parts of it. But since all this is provided by the
Java EE application server, it will be feasible without
using further non-standard components.

While other existing approaches for re-hosting
and modernizing transactional COBOL applications
focus mainly on moving mainframe workloads to
other (commodity) platforms by achieving full bi-
nary15 or at least source-level compatibilty (Talati and

15https://www.lzlabs.com/

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

244

Lackie, 1999; Apte et al., 2017), this is not the case in
the present approach. It does not intend to provide a
full emulation of mainframe TPM environments and
requires a partial adaption and recompilation of the
existing sources. Instead, the focus here lies on inte-
grating existing COBOL code into Java EE applicati-
ons and modern web technologies.

The performance and scalability of the proposed
approach still need to be evaluated. The runtime per-
formance of the load modules generated by the Gnu-
COBOL compiler and the PostgreSQL database com-
pared to their original mainframe counterparts has not
ben investigated so far, but it presumably will be lo-
wer. Therefore, the presented approach is probably
best suited for smaller and less critical applications.

Nevertheless, further research is needed to actu-
ally evaluate all this in a real-world case study.

6 CONCLUSION

In conclusion, in this paper an open approach was
presented to modernize and re-host existing transacti-
onal COBOL applications within the context of Java
EE application servers using solely Open Source Soft-
ware (OSS) components. In addition, the appproach
allows also to onvert the existing terminal-based user-
interface maps into modern web UI and to mix CO-
BOL and Java code while extending the application.

Its feasibility was demonstrated and evaluated
using an existing third-party COBOL demo applica-
tion originally written for the IBM CICS application
server. However, the described approach should work
for similar transaction processing monitors with some
adaptations as well.

The OSS-only approach allows to host the ap-
plications on any common Un*x-like platform, in-
cluding Linux on the mainframe. Therefore, a
mainframe-to-mainframe migration of existing CO-
BOL applications is possible, preserving the unique
features of the mainframe platform.

While the feasibility of the approach needs to be
further evaluated and demonstrated in practice, the
presented first evalution indicates its potential. Furt-
her research is needed to empirically evaluate the ap-
proach and to bring the described proof-of-concept
software artifacts to production quality.

REFERENCES

Apte, A., Negi, A., Rao, V., Pundeer, A., Kulkarni, S.,
Ladha, P., Moghe, S., Rallabandi, V., Shankar, R.,

Dhal, L., et al. (2017). Method and apparatus for mi-
gration of application source code. US Patent App.
15/397,473.

Bainbridge, A., Colgrave, J., Colyer, A., and Normington,
G. (2001). CICS and Enterprise JavaBeans. IBM Sys-
tems Journal, 40(1):46–67.

Bodhuin, T., Guardabascio, E., and Tortorella, M. (2002).
Migrating COBOL systems to the web by using the
mvc design pattern. In Reverse Engineering, 2002.
Proceedings. Ninth Working Conference on, pages
329–338. IEEE.

Calladine, J. (2004). Giving legs to the legacyweb servi-
ces integration within the enterprise. BT Technology
Journal, 22(1):87–98.

El Beggar, O., Bousetta, B., and Gadi, T. (2014). Getting
objects methods and interactions by extracting busi-
ness rules from legacy systems. Journal of Systems
Integration, 5(3):32.

Farmer, E. (2013). The reality of rehosting: Understanding
the value of your mainframe.

Ferguson, D. F. and Stockton, M. L. (2005). Service-
oriented architecture: Programming model and pro-
duct architecture. IBM Systems Journal, 44(4):753–
780.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S.,
Gani, A., and Khan, S. U. (2015). The rise of big
data on cloud computing: Review and open research
issues. Information Systems, 47:98–115.

Huang, H., Tsai, W.-T., Bhattacharya, S., Chen, X., Wang,
Y., and Sun, J. (1998). Business rule extraction techni-
ques for COBOL programs. Journal of Software: Evo-
lution and Process, 10(1):3–35.

Kanter, H. A. and Muscarello, T. J. (2005). Reuse versus
rewrite: An empirical study of alternative software de-
velopment methods for web-enabling mission-critical
COBOL/CICS legacy applications. CICS Legacy Ap-
plications: Fujitsu Software.

Khadka, R., Batlajery, B. V., Saeidi, A. M., Jansen, S., and
Hage, J. (2014). How do professionals perceive legacy
systems and software modernization? In Proceedings
of the 36th International Conference on Software En-
gineering, pages 36–47. ACM.

Khadka, R., Shrestha, P., Klein, B., Saeidi, A., Hage, J., Jan-
sen, S., van Dis, E., and Bruntink, M. (2015). Does
software modernization deliver what it aimed for? a
post modernization analysis of five software moder-
nization case studies. In Software Maintenance and
Evolution (ICSME), 2015 IEEE International Confe-
rence on, pages 477–486. IEEE.

Kiefer, C. (2017). COBOL as a modern language. https://
digitalcommons.northgeorgia.edu/honors theses/17/.
Accessed: 2018-07-27.

Lämmel, R. and De Schutter, K. (2005). What does aspect-
oriented programming mean to COBOL? In Procee-
dings of the 4th international conference on Aspect-
oriented software development, pages 99–110. ACM.

Lancia, M., Puccinelli, R., and Lombardi, F. (2007). Fea-
sibility and benefits of migrating towards JEE: a real
life case. In Proceedings of the 5th international sym-

A Hybrid Approach to Re-Host and Mix Transactional COBOL and Java Code in Java EE Web Applications using Open Source Software

245

posium on Principles and practice of programming in
Java, pages 13–20. ACM.

Lee, M.-S., Shin, S.-G., and Yang, Y.-J. (2001). The design
and implementation of Enterprise JavaBean (EJB)
wrapper for legacy system. In Systems, Man, and
Cybernetics, 2001 IEEE International Conference on,
volume 3, pages 1988–1992. IEEE.

Lymer, S. F., Starkey, M., and Stephenson, J. W. (2001). Sy-
stem for automated interface generation for computer
programs operating in different environments. US Pa-
tent 6,230,117.

Mainetti, L., Paiano, R., and Pandurino, A. (2012). Mi-
gros: a model-driven transformation approach of the
user experience of legacy applications. In Internatio-
nal Conference on Web Engineering, pages 490–493.
Springer.

Malaika, S. and Park, H. (1994). A tale of a transaction
monitor. IEEE Data Eng. Bull., 17(1):3–9.

Mateos, C., Zunino, A., Misra, S., Anabalon, D., and Flo-
res, A. (2017). Migration from COBOL to SOA: Me-
asuring the Impact on Web Services Interfaces Com-
plexity, pages 266–279. Springer International Publis-
hing, Cham.

Moore, G. (2011). Systems of engagement and the future
of enterprise IT: A sea change in enterprise IT. AIIM
whitepaper.

Rodriguez, J. M., Crasso, M., Mateos, C., Zunino, A., and
Campo, M. (2013). Bottom-up and top-down co-
bol system migration to web services. IEEE Internet
Computing, 17(2):44–51.

Sagers, G., Ball, K., Hosack, B., Twitchell, D., and Wal-
lace, D. (2013). The mainframe is dead. long live the
mainframe! AIS Transactions on Enterprise Systems,
4:4–10.

Sellink, A., Sneed, H., and Verhoef, C. (1999). Restruc-
turing of COBOL/CICS legacy systems. In Software
Maintenance and Reengineering, 1999. Proceedings
of the Third European Conference on, pages 72–82.
IEEE.

Sellink, A., Sneed, H., and Verhoef, C. (2002). Restruc-
turing of COBOL/CICS legacy systems. Science of
Computer Programming, 45(2-3):193–243.

SimoTime Technologies and Services. The CICS
connection, sample programs for CICS.
http://www.simotime.com/indexcic.htm. Acces-
sed: 2018-02-21.

Sneed, H. M. (1992). Migration of procedurally oriented
cobol programs in an object-oriented architecture. In
Software Maintenance, 1992. Proceerdings., Confe-
rence on, pages 105–116. IEEE.

Sneed, H. M. (2001). Wrapping legacy COBOL programs
behind an XML-interface. In Reverse Engineering,
2001. Proceedings. Eighth Working Conference on,
pages 189–197. IEEE.

Suganuma, T., Yasue, T., Onodera, T., and Nakatani, T.
(2008). Performance pitfalls in large-scale java ap-
plications translated from COBOL. In Companion
to the 23rd ACM SIGPLAN conference on Object-
oriented programming systems languages and appli-
cations, pages 685–696. ACM.

Talati, K. and Lackie, C. W. (1999). Virtual software
machine for enabling CICS application software to
run on unix based computer systems. US Patent
6,006,277.

Tommy, R., Ravi, U., Mohan, D., Luke, J., Krishna, A. S.,
and Subramaniam, G. (2015). Internet of things (IoT)
expanding the horizons of mainframes. In IT Conver-
gence and Security (ICITCS), 2015 5th International
Conference on, pages 1–4. IEEE.

Vinaja, R. (2014). 50 th aniversary of the mainframe com-
puter: a reflective analysis. Journal of Computing
Sciences in Colleges, 30(2):116–124.

White, J. W. (2000). Portable and dynamic distributed tran-
saction management method. US Patent 6,115,710.

Zhou, N., Zhang, L.-J., Chee, Y.-M., and Chen, L. (2010).
Legacy asset analysis and integration in model-driven
SOA solution. In Services Computing (SCC), 2010
IEEE International Conference on, pages 554–561.
IEEE.

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

246

