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1 RESEARCH PROBLEM

The real time information comes from multiple sour-

ces such as wearable sensors, audio signals, GPS, etc.

The idea of multi-sensor data fusion is to combine the

data coming from different sensors to provide more

accurate information than that a single sensor alone.

To contribute to ongoing research in this area, the goal

of my research is to build a shared representation be-

tween data coming from different domains, such as

images, signal audio, heart rate, acceleration, etc., in

order to predict daily activities. In the state of the art,

these arguments are treated individually. Many pa-

pers, such as (Lan et al., 2014; Ma et al., 2016) et al.,

predict daily activity from video or static image. Ot-

hers, such as (Ngiam et al., 2011; Srivastava and Sa-

lakhutdinov, 2014) et al., build a shared representation

then rebuild the inputs or rebuild a missing modality,

or (Nakamura et al., 2017) classifies from multimodal

data.

2 OUTLINE OF OBJECTIVES

In the real world, the information comes from diffe-

rent channels, like videos, sensors, etc. Multimodal

learning aims to build models that are able to pro-

cess information from different modalities, semanti-

cally related, creating a shared representation to im-

prove accuracies than could be achieved by the use a

single input. As shown in Figure 1, given the images

of a butterfly and a tiger and the word “butterfly ”, we

want to project these data in a representation space

that takes account of their correlation.

As reported in (Srivastava and Salakhutdinov,

2014), each modality is characterized by different sta-

tistical properties that don’t allow us to ignore the fact

that it comes from specific input channel. The diffe-

rent inputs have a different representation, therefore,

for a model, it is difficult to find a highly non linear

relationship between different data. A good model of

multimodal learning must satisfy certain properties,

in fact the shared representation must be such that re-

semblance in the space of representation implies simi-

Figure 1: Idea of multimodal learning.

larity of the corresponding inputs, to be easily obtai-

ned, even in the absence of some modalities and to fill

out missing forms, starting from those observed.

The problem concerning how to build a shared re-

presentation is not new (Boström et al., 2007). Fusing

information is a core ability for humans. They com-

bine all senses, sight, smell, sound, taste and touch

data, for example, to understand if a food is hot or

cold or in general to capture information. Sensors

have been proposed also to emulate this human ca-

pability. This allows several applications in robotics,

in surveillance, artificial intelligence and so on. As

already mentioned, we plan to fuse multimodal lear-

ning with prediction of daily activities. The prediction

of the future is a challenge that has always fascina-

ted human people. As reported in (Lan et al., 2014),

given a short video or a image, humans can predict

what is going to happen in the near future. Obser-

ving the previous actions, this is possible. The cre-

ation of machines that anticipate future actions is an

issue in Computer Vision field. In the state of the art,

there are many applications in robotics and health care

that use this predictive characteristic. For example,

(Chan et al., 2017) proposed a RNN model for anti-

cipating accidents in dashcam videos. (Koppula and

Saxena, 2016) studied how to enable robots to anti-

cipate human-object interactions from visual input in

order to provide adequate assistance to the user. (Kop-
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pula et al., 2016; Mainprice and Berenson, 2013; Du-

arte et al., 2018) study how to anticipate human acti-

vities for improving the collaboration between human

and robot.

3 STATE OF THE ART

We focus our review of related works addressing re-

presentation, frame anticipation, object interaction,

action anticipation, multimodal learning, multimodal

dataset and adopted system in the state of the art.

3.1 Representation

In (Vondrick et al., 2015), they explore how to antici-

pate human actions and objects by learning from un-

labeled video. In particular, they proposed a deep net-

works to predict the visual representation of images

in the future. In (Bütepage et al., 2017), it is proposed

a deep learning framework for human motion capture

data that learns a generic representation from a large

corpus of motion capture data and generalizes well

to new, unseen, motions, using an encoding-decoding

network that learns to predict future 3D poses from

the most recent past. (Ryoo et al., 2014) introduces a

new feature representation named pooled time series

that is based on time series pooling of feature descrip-

tors. (Oh et al., 2015) considers spatio-temporal pre-

diction problems where future image-frames depend

on control variables or actions as well as previous fra-

mes.

3.2 Frame Anticipation

In (Vondrick and Torralba, 2017) they develop a mo-

del for generating the immediate future in unconstrai-

ned scenes that generates the future by transforming

pixels in the past. In (Walker et al., 2017), the authors

use the future poses generated to a Generative Adver-

sarial Network (GAN) to predict the future frames of

the video in pixel space. In (Xue et al., 2016), they

propose a novel approach that models future frames

from a single input image in a probabilistic manner.

3.3 Object Interaction

In (Furnari et al., 2017), it is investigated the topic

of next-active-object prediction from First Person vi-

deos. They analysed the role of egocentric object mo-

tion in anticipating object interactions and propose a

suitable evaluation protocol. In (Koppula and Saxena,

2016), the goal is to enable robots to predict human-

object interactions from visual input in order to assist

humans in daily tasks.

3.4 Action Anticipation

The goal of action anticipation is to detect an action

before it happens. In (Gao et al., 2017), it is pro-

posed a Reinforced Encoder-Decoder (RED) network

for action anticipation that takes multiple history re-

presentations as input and learns to anticipate a se-

quence of future representations. These anticipated

representations are processed by a classification net-

work for action classification. In (Lan et al., 2014),

it is presented a hierarchical model that represent the

human movements to infer future actions from a sta-

tic image or a short video clip. In (Ma et al., 2016),

the authors proposed a method to improve training of

temporal deep models to learn activity progression for

activity detection and early recognition tasks.

3.5 Multimodal Learning

The aforementioned papers mostly concern a single

modality such as video. We want to extend these con-

cepts to multimodal inputs. This problem is not only

theoretical but it has already been dealt with machine

learning techniques. One of the firsts paper on Mul-

timodal Learning is (Ngiam et al., 2011) where video

and audio signals are used as input. The aims of this

article are: compress the inputs into a shared repre-

sentation and then rebuild them and rebuild a missing

mode, for example from the video, you want to get the

audio signal and the video signal as output. The cre-

ation of a fused representation has also been treated

in other papers (Srivastava and Salakhutdinov, 2014;

Aytar et al., 2017), in particular they build a represen-

tations that are robust in another way. Indeed, these

representations are very important because they are

fundamental components to understand relationships

between modalities.

In (Nakamura et al., 2017), a model for reasoning

on multimodal data to jointly predict activities and

energy expenditures is proposed. In particular, for

these tasks they consider Egocentric videos augmen-

ted with heart rate and acceleration signals. In (Wu

et al., 2017), it is proposed a on-wrist motion trig-

gered sensing system for anticipating daily intention.

They introduces a Recurrent Neural Network (RNN)

to anticipate intention and a policy network to reduce

computation requirement.
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3.6 Multimodal Dataset

In this section, we discuss about the datasets in the

state-of-the-art. The data are an important point; in

fact these are collected at different sampling frequen-

cies, therefore, before proceeding to extract the featu-

res, it is necessary to synchronize the various inputs

in order to have all the related modalities.

The egocentric multimodal dataset (Stanford-

ECM) (Nakamura et al., 2017) comprises 31 hours of

egocentric video (113 videos) augmented with acce-

leration and heart rate data. The video and triaxial

acceleration were capture with mobile phone with a

720× 1280 resolution and 30 fps and 30Hz, respecti-

vely. The lengths of the individual videos covered a

diverse range from 3 minutes to about 51 minutes in

length. The heart rate was collected with wrist sen-

sor every 5 seconds (0.2 Hz). These data was time-

synchronized through Bluethoot.

The Multimodal Egocentric Activity dataset

(Song et al., 2016) contains 20 distinct life-logging

activities performed by different human subjects and

comprises these data: video, accelerometer, gravity,

gyroscope, linear acceleration, magnetic field and ro-

tation vector. The Google Glass enables to synchro-

nize egocentric video and sensor data. The video was

collected with a 1280× 720 resolution and 29.9 fps

while the sensor data with a lenght of 15 second and

10Hz. Each activity category has 10 sequences of 15

seconds.

Multimodal User-Generated Videos Dataset

(Bano et al., 2015) contains 24 user-generated videos

(70 mins) captured using hand-held mobile phones

in high brightness and low brightness scenarios

(e.g. day and night-time). The video (audio and

visual) along with the inertial sensor (accelerometer,

gyroscope, magnetometer) data is provided for each

video. These recordings are captured using single

camera at distinct timings and locations, changing

lights and varying camera motions. Each captured

video was manually annotated to get labels for

camera motions (pan,tilt, shake) at each second. The

ground-truth labels are included in the dataset.

In (Wu et al., 2017), the authors collected Daily

Intention Dataset that was used for training model to

predict the future and they select 34 daily intentions.

Each of this is associated with a motion and an object.

The video was collected with a 640× 480 resolution.

3.7 Adopted System

In this section, we describe some of the models that

are presented in the state of the art. Many of these are

based on the study of different deeps networks, star-

ting from the Restricted Boltzmann Machines (RBM)

(Ngiam et al., 2011; Srivastava and Salakhutdinov,

2014) to more used Convolutional Neural Networks

(CNN) (Nakamura et al., 2017), accumulated by the

fact that each architecture processes a probability dis-

tribution on all of it multimodal input space.

3.7.1 Boltzmann Machines

The Boltzmann Machines (BM) (Salakhutdinov and

Hinton, 2009) are networks with a symmetrical con-

nections between binary units, called visible variables

v ∈ {0,1}D and hidden variables h ∈ {0,1}P. There

are connections between the visible state and the hid-

den state and between the units of the same type. The

energy of the state {v,h} is defined as

E(v,h;θ) =−1

2
vT Lv− 1

2
hT Jh− vTWh, (1)

where θ = {W,L,J} are the parameters of the model

that represent, respectively, the interactions between

the visible-hidden, visible-visible and hidden-hidden

states. The probability that the model assigns to the

visible variable v is

p(v;θ) =
p∗(v,θ)

Z(θ)
=

1

Z(θ) ∑
h

exp(−E(v,h;θ)), (2)

Z(θ) = ∑
v

∑
h

exp(−E(v,h;θ)). (3)

where p∗ is the non-normalized probability and Z(θ)
the partition function. Updating the parameters neces-

sary to calculate the log-likelihood with the gradient

descent method are obtained from (2):

△W = α(EPdata[vhT ]−EPmodel[vhT ]),
△L = α(EPdata[vvT ]−EPmodel[vvT ]),
△J = α(EPdata[hhT ]−EPmodel[hhT ]),

(4)

where α is the learning rate, EPdata[·] is the data de-

pendency prediction and EPmodel [·] is the prediction

on the model. The learning algorithm of the BMs re-

quires a very long execution time because it is neces-

sary to initialize in a random way the Markov chains

to estimate the predictions on the data and on the

model. Learning is more effective if you use the

Restricted Boltzmann Machines (Srivastava and Sa-

lakhutdinov, 2014; Salakhutdinov and Hinton, 2009)

(RBMs). In such models there are connections bet-

ween the visible layer and the hidden state but there

are no connections between variables of the same

type. The parameters L,J are null. In this case

the algorithm is efficient using the Contrastive Diver-

gence which provides an approximation of the log-

likelihood with a short Markov chain. It is possible

to use a stochastic approximation to approximate the

prediction of the model. θt and Xt , respectively, the

parameter and the status are added as follows:
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• Given Xt , Xt+1 is updated by an operator

Tθ(Xt+1,Xt) leaving pθt unchanged.

• θt+1 is obtained by replacing the predictability of

the intractable model with the prediction against

Xt+1.

A necessary condition for convergence is that the le-

arning rate decreases as time passes
max

∑
t=0

αt =+∞ and

max

∑
t=0

α2
t <+∞. This is satisfied for αt = 1/t.

The models described are the base cell of the

Deep Boltzmann Machines (DBM) (Salakhutdinov

and Hinton, 2009). These latest networks allow us

to learn the potential of internal representations and

allow us to deal with unlabelled or partially labelled

data.

In (Ngiam et al., 2011), RBMs are used to build a

shared representation, as shown in Figure 2. One of

the most linear RBM approaches for audio and video,

as in Figure 2.a, 2.b. The resulting probability can be

used as a new representation of the data. This method

is used as a reference model.

The 2.c model was given input to the concatena-

tion of inputs, but given the nonlinear correlation of

the data, it is difficult for the RBM to provide a mul-

timodal representation. In particular, the units born

have strong connections between the individual mo-

des and weak connections between units that connect

the two modes.

Finally, a model that takes into account the pre-

vious ones is considered; in fact, the modalities are

trained separately and then the results are concatena-

ted. The first level of visualization is a phoneme and

at my levels. The latter model is used to train weights

to use autoencoder models.

3.7.2 RNN

The RNNs (LeCun et al., 2015) are models that pro-

cess an input sequence one element at a time, keeping

in its hidden units a state vector that contains informa-

tion related to the previous elements of the sequence.

These networks use the same parameters, for this re-

ason they perform the same computation at each mo-

ment of time on different inputs of the same sequence.

The training of such networks is affected by the vanis-

hing/exploding gradient problem, in which the calcu-

lated and propagated backward gradients tend to in-

crease or decrease at each moment of time, therefore,

after a certain number of instants of time, the gradient

diverges to infinity or converges to zero. To overcome

this problem, long short-term memory (LSTM) net-

works are used, which are particular RNNs with hid-

den units that recall previous inputs for a long time.

Such units, taking as input, at each instant, the pre-

vious state and the current one and combining them,

decide which information to keep and which to delete

from memory.

The aim of the paper (Nakamura et al., 2017) is

to recognize a daily activity and calculate its energy

expenditure, starting from a multimodal dataset. An

LSTM is introduced that takes in input a multimodal

representation of the video and the acceleration and

returns in output the activity label and the energy con-

sumption for each frames. Heart rate is also integrated

to estimate the energy spent.

In (Wu et al., 2017), a model based on the RNN is

proposed with two LSTM layers in order to be able to

handle the variations, as follows

gt = Emb(Wemb,con( fm,t , fo,t )), (5)

ht = RNN(gt ,ht−1), (6)

pt = So f tmax(Wy,ht), (7)

yt = argmax
y∈Y

pt(y), (8)

where Y is the set of intent indices, pt is the soft-

max probability of each intention in Y, Wy is the pa-

rameter of the model to train, ht is the hidden repre-

sentation coached, gt is the fixed size of the output

of Emb(·), Wemb is the parameter of the embedding

function Emb(·), con(·) is the concatenation opera-

tion and Emb(·) is a linear mapping function.

Policy network π is also introduced to determine

when to process an image in a representation of the fo

object. The network continuously observes the mo-

vement fm,t and the hidden state of the RNN ht to be

able to calculate fo,t+1.

4 EXPECTED OUTCOME

In this section, we describe our pipeline, shown in

Figure 3. Stanford-ECM Dataset (Nakamura et al.,

2017) is considered. It has video, acceleration and he-

art rate data, so the problem is defined as follows: gi-

ven V = {v1,v2, ...,vT} with vi ∈R2 ∀i∈{1,2, ...,T}
a sequence of video frame, A = {a1,a2, ...,aT} with

ai ∈ R3 ∀i ∈ {1,2, ...,T} a sequence of accelera-

tion signals and H R = {hr1,hr2, ...,hrT } with hri ∈
R ∀i ∈ {1,2, ...,T} a sequence of heart rate signal,

(xv
t ,x

a
t ,x

hr
t ) ∀t ∈ {1,2, ...,T} are the feature repre-

sentations of video, acceleration and heart rate sig-

nal and xt = (xv
t ,x

a
t ,x

hr
t )T the features vector. Given

(xt ,xt+1, labelt , labelt+1) as input, we want to predict

next action, observing only data before the activity

starts.
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Figure 2: RBM Pretraining Models.

Figure 3: Pipeline of our model.

Since this dataset was created for classification

task, it is not specific for prediction task. It is adap-

ted for our task and Unknown/Activity transitions are

selected. The dataset is cut around transitions and 64

frames before and after transitions are considered.

Now, we describe how feature representation xv
t , xa

t

and xhr
t for each signal has been obtained.

For visual data, features are extracted from pool5

layer of Inception CNN, pretrained on ImageNet

(Deng et al., 2009). Each video frame has been trans-

formed into a 1024-dimensional feature vector xv
t .

For acceleration data, the features have been ex-

tracted from the raw signal and a sliding window with

size of 32fps has been considered. For time-domain

features, mean, standard deviation, skewness, kurto-

sis, percentiles (10th, 25th, 50th, 75th, 90th), acce-

leration count for each axis and correlation coeffi-

cients between each axis have been computed. For

frequency-domain features, we consider the spectral

entropy J = −
N/2

∑
i=0

P̄i · log2 P̄i where P̄i is the normali-

zed power spectral density computed from Short Time

Fourier Transform (STFT). Then, all features are con-

catenated and xa
t is a 36-dimensional vector.

For hear rate data, the features are extracted from

the time-series of the raw signals. Mean and standard

deviation are computed and xhr
t ∈R2.

Features are represented in a temporal pyramid

(Pirsiavash and Ramanan, 2012) with three levels (le-

vel 0, level 1 and level 2). The top level j = 0 is a

histogram (mean) over the full temporal extent of a

data, the next level (j=1) is the concatenation of two

histograms obtained by temporally segmenting each

modality into two halfs, and so on. In this way, we

have 7 histograms. Therefore, 1024× 7 visual featu-

res, 36× 7 acceleration features, and 2× 7 heart rate

features are obtained. All features are concatenated

into a single vector xt =(xv
t ,x

a
t ,x

hr
t )T and features vec-

tor size is 7434.

Since we have a few data, a data augmentation

technique is used to expand the training set to prevent

over-fitting. As reported in (Krizhevsky et al., 2012)

geometric transformation and RGB channels altera-

tion are the traditional data augmentation approaches,

while (Zhu et al., 2017) proposes a method with GAN

and CycleGAN.

In the current configuration, the permutation is

considered of each piece of unknown with the vari-

ous sections of the activities. For Siamese Network,

each unknown is paired with any activity. In this case,

we created a “false” couples but these are necessary to

implement the Siamese network. The labels of each

transition are changed from 0-8 to 0-1, as follows:

if unknown and the activity belong to the same class

(e.g. unknown related to walking and walking), 1 is

assigned, otherwise 0 is assigned if unknown and the

activity are different (e.g. unknown related to walking

and food preparation).

The obtained dataset is strongly unbalanced, so
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we considered 121 sequences from same unknown

and activity and 154 sequences from different

unknown and activity for each class, in order to ba-

lance activity classes and unknown class. In this way,

dataset has 12177 sequences. This is the input for Sia-

mese network (Koch et al., 2015) that consists of twin

networks which accept distinct inputs but the weig-

hts are shared. During training the two sub-networks

extract features from two inputs, while the joining

neuron measures the distance between the two feature

vectors.

In our experiment, euclidean metrics is used to

calculate the distances between inputs. The contras-

tive loss function has been used. Three convolutio-

nal layers are considered with numbers of filters 32,

64 and 2, respectively, all of size 3 × 1 and a relu

activation function. The output of each convolutional

layer is reduced in size using a max-pooling layer that

halves the number of features. A k-nearest-neighbor

classification algorithm (K-NN) and a support vector

machine (SVM) are used on features for classification

purposes.

5 STAGE OF THE RESEARCH

Our preliminary results prove that we can predict

daily activity from multimodal data. In particular,

Stanford-ECM Dataset has been considered and we

implemented a siamese network to build an embed-

ding space. The performance of the experiment has

been evaluated with a SVM for different kernels and

a K-NN for different values of K.

In future works, we want to improve our pipeline

and test its on other datasets. The result that I expect

and that should validate the problem and the approach

is to overcome the values of accuracy in classification

baseline.
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