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Abstract: An LCA histogram distance is anL1-distance between histograms consisting of triples of two nodes and their
least common ancestor (LCA) in two trees. In this paper, we show that the LCA histogram distance for cater-
pillars is always a metric, whereas that for trees is not. Then, we give experimental results for computing the
LCA histogram distance by comparing with the path histogram distance and the complete subtree histogram
distance for caterpillars.

1 INTRODUCTION and acomplete subtree histogram distance (Akutsu
et al., 2013) are appropriate local frequency distances

Comparing tree-structured data such as HTML and or caterpillars.

XML data for web mining or RNA and glycan data A path histogram distance is anL;-distance be-

for bioinformatics is one of the important tasks for tween histograms consisting of paths from the root to
data mining. Then, we deal with them amted |a- leaves in two trees (Kawaguchi et al., 2018b). It is
beled unordered trees, (trees, for short). In particular, ~ computable in linear time, always a metric for cater-
acaterpillar (cf. (Gallian, 2007)) is a tree transformed  Pillars, which is not a metric for trees in general,
to a path after removing all the leaves in it. Whereas and incomparable with the edit distance (Kawaguchi
the caterpillars are very restricted and simple, there €t al., 2018b). On the other hand, as an extreme case,

are some cases containing many caterpillars in realfor two paths with the same length such that every la-
dataset, see Table 3 in Section 4. bel in one path i® and that in another path ks the

The edit distance (Tai, 1979) is the most famous ~ €dit distance between them is the number of vertices

distance measure between trees. It is formulated asin @ Path but the path histogram distance is one.

the minimum cost ogdit operations, consisting of a A complete subtree histogram distance is anL;-
substitution, a deletion and aninsertion, applied to distance between histograms consisting of complete
transform a tree to another tree and is always a metric.subtrees in two trees (Akutsu et al., 2013). Itis com-
Recently, Murakat al. (Muraka et al., 2018) have de-  putable in linear time, always a metric for trees and
signed the algorithm to compute the edit distance be- greater than or equal to the edit distance (Akutsu et al.,
tween two caterpillars iD(A%h?) time, where\ andh 2013). On the other hand, as an extreme case, for
are the maximum number of leaves and the maximum two paths with the same length such that the labels
height in two caterpillars, respectively. Then, this al- of leaves are different, the edit distance between them
gorithm runs irO(n4) time, wheren is the maximum is one but the complete subtree histogram distance is

number of vertices in two caterpillars. the number of vertices in two paths, which is the max-
A local frequency distance (Aratsu et al., 2009;  imum value.
Kailing et al., 2004; Li et al., 2013) is formulated In this paper, we focus on anCA his

as anLi-distance between histograms concerned with togram distance (Tatikonda and Parthasarathy, 2010),
local information. Whereas we can compute the lo- which is anL;-distance between histograms con-
cal frequency distance efficiently and they sometimes sisting of triples of two vertices and the LCA of
provide the constant factor lower bound of the edit them with their depth. Whereas Tatikonda and
distance, almost all of them is not a metric. In order Parthasarathy (Tatikonda and Parthasarathy, 2010)
to compare caterpillars efficiently by using a metric, have claimed that the LCA histogram distance is a
a path histogram distance (Kawaguchi et al., 2018b)  metric for trees, in this paper, we give a counterex-
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ample that their claim is false, even if the informa- if vis an ancestor ofi andu<vifu<voru=v.

tion of depth is given, which is not well-known. On

We say thatv is theleast common ancestor (LCA, for

the other hand, we show that the LCA histogram dis- short) ofu andv, denoted byiLlv, if u<w, v<wand
tance is a metric for caterpillars. By using the LCA there exists no vertex' € T such thatv <w, u<w
histogram distance, we can avoid not only the above andv < w/'.

extreme cases but also the case that both the path his-

Let T be a rooted tre¢V,E) andv a vertex inT.

togram distance and the complete subtree histogramA complete subtree of T at v, denoted byT |v], is a
distance are their maximum values but the edit dis- rooted treeT’ = (V',E’) such thatr(T') =v, V' =
tance is not. We can compute the LCA histogram dis- {ueV |u<v} andE’ = {(u,w) € E|u,weV'}. For

tance in quadratic time.

Then, by using caterpillars in real data in Table 3

atreeT’, we say thafl’ occursin T atvif T' =T|v].
For a vertew € T, we call the occurrence number

in Section 4, we give experimental results of comput- of v in the preorderrgsp., postorder) traversal on

ing the LCA histogram distance comparing with the the preorder (resp., postorder) number of v and de-
path histogram distance and the complete subtree hisnote it bypre(v) (resp., post(v)). We say that is to
togram distance. Note that the maximum values of the left of v in T if pre(u) < pre(v) and post(u) <

the path histogram distance, the complete subtree his-post(v). We say that a rooted treedsdered if a left-
togram distance and the LCA histogram distance areto-right order among siblings is givemnordered oth-
different. Then, by normalizing the distances to com- erwise. We say that a rooted treelabeled if each
pare them as experimental results, we compare thevertex is assigned a symbol from a fixed finite alpha-
running time, distributions and scatter charts of the betZ. For a vertew, we denote the label afby I (v),

three distances.

2 PRELIMINARIES

A tree T is a connected grapfV, E) without cycles,
whereV is the set of vertices artelis the set of edges.
We denote/ andE by V(T) andE(T). Thesize of
T is |V| and denoted byT|. We sometime denote
veV(T) byveT. We denote an empty tre@, 0)
by 0. A rooted treeis a tree with one vertexchosen
as itsroot. We denote the root of a rooted tréeby
r(T).

Let T be a rooted tree such that=r(T) and
u,v,w e T. We denote the unique path franto v, that
is, the tregV’,E’) such tha¥V’' = {vy,...,w},vi =T,
vk =Vvand(v,vi+1) € E' for everyi (1 <i <k-—1),
by UP;(v). Thedepth of v, denoted byd(v), is the
number of edges iIP; (V).

Theparent of v(# r), which we denote bypar (v),
is its adjacent vertex obP; (v) and theancestors of
v(# r) are the vertices oJP, (v) — {v}. We say that
uis achild of vif vis the parent ofi andu is ade-
scendant of vif vis an ancestor afi. We call a vertex
with no children aleaf and denote the set of all the
leaves inT by Iv(T).

We denote the set of all the childrenwfn T by
ch(v). Thedegreeof v, denoted by(v), is the number
of children ofv, that is, |ch(v)|, and thedegree of T,
denoted byy(T), is maxg(v) | ve T}. Theheight of
v, denoted by(v), is max |UPy(w)| | w € Iv(T[V])},
and theheight of T, denoted byh(T), is maxh(v) |
veT}.

We use the ancestor ordersand<, thatis,u<v
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and sometimes identify with | (v). In this paper, we
call a rooted labeled unordered tretree simply.

As the restricted form of trees, we introduce a
rooted labeled caterpillar (a caterpillar, for short) as
follows, which this paper mainly deals with.

Definition 1 (Caterpillar €f., (Gallian, 2007))) We
say that a tree is eaterpillar if it is transformed to a
path after removing all the leaves in it. For a caterpil-
lar C, we call the remained pathtmckbone of C and
denote it bybb(C).

Next, we introduce ardit distance for trees.

Definition 2 (Edit operations (Tai, 1979))The edit
operations of a treeT are defined as follows.

1. Subgtitution: Change the label of the vertexin
T.

2. Deletion: Delete a non-root vertexin T with par-
entV, making the children of become the chil-
dren ofV. The children are inserted in the place
of v as a subset of the children @f

3. Insertion: The complement of deletion. Insert a
vertexv as a child of’ in T makingv the parent
of a subset of the children of.

Lete ¢ 2 denote a speci@lank symbol and define
> = 2U{e}. Then, we represent each edit operation
by (11— 12), where(l1,12) € (3¢ x Z¢ —{(¢,€)}). The
operation is a substitution if # € andl, # €, a dele-
tion if I, =€, and an insertion if, = €. For vertices
andw, we also denotd (v) — | (w)) by (vi— w). We
define acost functiony: (Z¢ x Z¢ \ {(g,€)}) — R on
pairs of labels. We often constrain a cost functjaa
be ametric, thatis,y(l1,12) > 0,y(I1,12) =0iff 1 =15,
y(l1,12) = y(I2,11) andy(l1,13) <y(l1,12) +y(I2,13). In



particular, we call the cost function thefiy,l2) =1
if 11 2 |2 aunit cost function.

Definition 3 (Edit distance (Tai, 1979))For a cost
functiony, the cost of an edit operatior =11 — I,
is given byy(e) = y(I1,12). Thecost of a sequence
E = ey,...,& of edit operations is given by(E) =
K, y(&). Then, anedit distance Trx (T1,T2) be-
tween treed; andT; is defined as follows:
E is a sequence
of edit operations
transformingry
to Ty

For nj = |Ti| (i = 1,2), it holds that 0<
Tra (T1, T2) < +n2— 1.

Unfortunately, the problem of computing the edit

Trai (T2, T2) = min ¢ y(E)

distance between trees is MAX SNP-hard (Zhang and 2-

Jiang, 1994). On the other hand, Muradaal. (Mu-
raka et al., 2018) have recently shown the following
theorem for caterpillars.

Theorem 1 ((Muraka et al., 2018)) For caterpil-
lars C; and Cp, we can compute Tra (C1,Cp) in
O(A\?h?) time, where A = max{|Iv(C1)|,|Iv(Cz)|} and
h=maxh(Cy),h(Cy)}.

As the previous local frequency distances to com-
pare caterpillars, we introduce thath histogramdis-
tance (Kawaguchiet al., 2018b) and thempl ete sub-
tree histogram distance (Akutsu et al., 2013).

Let T be a tree such that = r(T). Then,
for v € Iv(T), we regard the pattP = UP,(v)
such thatV(P) = {vi,...,%}, v =T, W = Vv and
(vi,Vit1) € E(P) for everyi (1 <i <k-—1) as a string
[(v1)---1(w) on Z and denote it bys(r,v). Also we
say that a stringe * occursin T if there exists a leaf
v € Iv(T) such thas = s(r,v) and denote the number
of occurrences o§in T by f(s,T). Furthermore, we
defines(T) as{s(r,v) | r=r(T),velv(T)}.

Definition 4 (Path histogram distance (Kawaguchi
etal., 2018b)) For a tre€T, apath histogram #p(T)
of T consists of pairgs, f(s,T)) for everyse S(T).

For treesT; and Tp, a path histogram distance
Op(T1,T2) betweenT; and T, is defined as ark-
distance betweef{p(T1) andHp(T2):

6p(T1,T2) = |f(S,T1) — f(S,T2)|.
SeS(TUS(T2)

ForA = |Iv(T)|, itis obvious thatHp(T)| <A and
Ysesm f(ST)=A.

We denote the sefT[v] | ve T} of all the com-
plete subtrees ift by C(T). Forc e C(T), the num-
ber of occurrences afin T by f(c,T).

Definition 5 (Complete subtree histogram dis-
tance (Akutsu et al., 2013))For a treeT, a com-
plete subtree histogram #Hcs(T) consists of pairs
(s, f(s,T)) for everyse C(T).

LCA Histogram Distance for Rooted Labeled Caterpillars

For treesTl; andT,, acomplete subtree histogram
distance d¢cs(T1, T2) between tree$; andT: is defined
as anlL;-distance betweef{ cs(T1) andH cs(T2):

6CS(T1,T2) = Z ‘ f(C, T]_) — f(C, T2)|.

ceC(T)UC(T2)

Forn=T|, it is obvious thaf# cs(T)| < nand
Yeecrm) (€, T)=n.

We summarize the properties@f anddcs as fol-
lows (Akutsu et al., 2013; Kawaguchi et al., 2018a;
Kawaguchi et al., 2018b).

Theorem 2. Let C; and C; be caterpillars such that
n=max|Cy|,|Cz|} and A = max{|Iv(C1)|, |IV(C2)|}.
1. dp isametric for caterpillars but not a metric for
treesin general.

Ocs isa metric for trees, soisfor caterpillars.
We can compute 0p(Cy,Cy) and 0¢cs(Cq,Cp) in
O(n) time.

T1a (C1,C2) < 0cs(Ch,Cp).

There exist C; and C, such that tra (C1,Cp) =
0cs(C1,C2) = 1 but 8p(C1,Cy) = O(A).

There exist C; and C; such that 6p(C1,Cp) = 2 but
Tral (Cl»CZ) = 605(01702) = O(n)'

3.

4.

o

3 LCAHISTOGRAM DISTANCE

Let T be a tree. Then, we say that= ((I1,d;) :
{(l2,d2),(I3,d3)}) is anLCA pivot in T if there ex-
ist mutually distinct vertices andw in T such that
1 =I(vUw), di =d(vUw), l2 =1(v), d2 = d(v),
I3 =1(w) andds = d(w), respectively. We denoteby
a 6-tuple(l1ds : 12d2U13d3) simply. In this case, we
also say thap occursin T and denote by p(v,w).
We denote the number of the occurrencepaf T
by f(p,T). Furthermore, we denote the set of all the
LCA pivots inT by P(T), that is,?(T) = {p(v,w) |
(vw) € T x T,v#w}.

Definition 6 (LCA histogram distance)For a treeT,
an LCA histogram #H c.(T) of T consists of a pair
(p,f(p,T)) foreveryp e P(T).

For two treesT; and T,, an LCA histogram dis-
tance 0, ca(T1, T2) betweenT; andT; is defined as an
Li-distance betweel | ca(T1) andH  ca(T2):

6LCA(T17T2) = Z ‘f(pv Tl) - f(pv TZ)
peP(T1)UP(To)

Forn=|T|, itis obvious that# | c(T)| < n(n—
1)/2 andy pep(r) f(p,T) =n(n—1)/2.

Example 1. Let C; andC; be caterpillars illustrated
in Figure 1.

Then, we obtain the histogramg{| c,(C1)

and Hca(Cp) illustrated in Table 1. Note
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C G

Figure 1: The caterpillar§; andC; in Example 1.

that, since |Ci| = |Cy] = 8, it holds that

z f(p,Ci)=8C,=28 for i = 1,2.
pe?(Ci)

the bold faces illustrate the LCA pivots occurring in
either H | cA(C1) or H ca(C2) and its frequency, or
the frequencies of the LCA pivot if they are different

in Hi ca(Cr) andH  ca(Co).

Also,

Table 1: The histogram®/| ca(C1) andH | ca(Cy).

}[LCA (Cl) }[LCA (CZ)
LCA pivots freq.
LCA pivots freq. (a0:alubl) 1
(a0:allibl) 2 (a0:allla2) 1
(a0:allla2) 2 (a0:alub2) 2
(a0:allLlal) 2 (a0:alulal) 2
(a0: b1ubl) 1 (a0:a0ulal) 1
(a0:blUa2) 2 (a0:a0L/bl) 1
(a0: bllUa3) 2 (a0:a0Lla2) 1
(a0:a0Llal) 1 (a0: a0Lb2) 2
(a0:a0LIbl) 2 (a0 :a0Ula3) 2
(a0:a0Lla2) 2
(a0:al0Lla3) 2 Egi 2225 23?)) ;
(bl:a2lla2) 1 (b1:b2Ub2) 1
(bl:a2L1a3) 2 (bl:b2Ual) 2
(bl:blua2) 2 (bl:blua2) 1
(bl:blua3) 2 (bl:blUb2) 2
(a2:a3ua3) 1 (b1 :b1Lia3) 2
(a2:a2Laj) 2 (b2:a3ua3) 1
(b2:b2UUal3) 2
Hence, it holds that:
6LCA (Cl,CZ)
= ; |f(p7Cl)_f(p7C2)|
peP(Cy)UP(Cy)
= z f(paC1)+ f(pch)
peP(C1)\P(C2) peP(C2)\P(Cy)
+ z |f(p,C1)—f(p,C2)|
PEP(C1)NP(C2)
= 9+414+5=28

Whereas the LCA histogram distance seems to be

Theorem 3. There exist trees T; and T> such that
histogramdistanceis not a metric for treesin general.

Proof. Consider the treef; andT; in Figure 2.

(a)
OWNONSO
o ©© ©© G ©© ©
T1
(&)

(b (b) ®)
© O ©© © ©© ©
T2

Figure 2: Tree§; andT>.

Then, we obtain the histogrant{ c.(Ti)(=
Hica(T)) illustrated in Table 2.

Table 2: The histogram{| ca(T1)(= Hica(T2)).

LCA pivots  freq.

(a0:c2uc2) 9
(a0:bluc2) 12
(a0:blubl) 3
(a0 :a0LIbl) 3

LCA pivots  freq.

(a0:a0Lic2) 6
(bl:c2uUc2) 6
(bl:c2Ubl) 6

Here, since|Ti|] = |T2| = 10, it holds that
f(p,Ti) = 10C2 = 45 fori = 1,2. Furthermore,

pe?(Ti)
since the labels are not essential, this statement also
holds for unlabeled trees. O

On the other hand, note that neitiigrnor T> in
Figure 2 is a caterpillar. In the remainder of this sec-
tion, we discuss the LCA histogram distance between
caterpillars.

For caterpillars, the following lemma is obvious.

Lemma 1. Let p(v,w) = (I1d; : I2daUl3d3) € P(C)
an LCA pivot in C. Then, the following statements
hold.

1. It holdsthat viLIw € bb(C).

2. If vyw € Iv(C), then it holds that di =
min{dy,ds} — 1. Also it holdsthat vLIw = par (v)
if d2 < ds, viw = par(w) ifdz < dy andvUw=
par (v) = par(w) if dp = ds.

a metric, for example, Theorem 3.2 in (Tatikondaand 3. If v,w € bb(C), then it holds that di =

Parthasarathy, 2010), we show that it is not a metric

for trees as follows.
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min{dy,dsz}. Alsoit holdsthat vLiw=vif d> < d3
andviUw=wifd3 < d».



4. Supposethat v e Iv(C) andw € bb(C). If dz < ds,
then it holds that d; = d3 and v w = w. Other-
wise, that is, d» > ds, it holdsthat d; = d, — 1 and
vUw = par (V).

Then, the following theorem holds.

Theorem 4. For caterpillars, the LCA histogramdis-
tanceis a metric.

Proof. By the definition, it is sufficient to show
that two caterpillarsC; and C, are isomorphic iff
OLca(C1,C2) = 0. In other words, it is sufficient
to show that we can transform a caterpil@rfrom
H\ ca(C) uniquely.

By Lemma 1.1, we can uniquely determioteC)
from 2(C) because of; andd; in p(v,w). Since
Iv(C) = C\ bb(C), we can determink/(C). Then, by

LCA Histogram Distance for Rooted Labeled Caterpillars

where every vertex ilC; and in a path irC; is la-
beled bya and every leaf irC; by b. Then,|Cq| =

|C2| =h+A =n. Itis obvious thadp(Cy1,Cp) = 2A
and dcs(C1,C2) = 2(A + h) = 2n, so they are the
maximum values. On the other hand, it holds that
T1ai (C1,C2) = A anddca(Cq,C2) = 2A(n— 1), where
their maximum values arei2-1and Zy(n—1). O

By selecting every pair of vertices in two cater-
pillars, we can computd _c(Cy,Cp) in O(nz) time,
becauseH| ¢, (C) = O(n?).

Note that the inequality th@b < dcs < d_ca tends
to hold by the values odp, 8cs andd ca. Then, we
normalizedp, 0cs andd ¢, by dividing their maxi-
mum values when comparing distances. We denote
the normalized distances &, dcs andd,ca by 8f,

Ot and o) .,, respectively. Then, the following ex-

Lemma 1.2, we can determine the set of leaves with ample shows that the inequality tht < 85 < & ¢,

depthi for everyi (1 <i < d(C)). O

For Aj = |Iv(G)| andn; = |G| (i = 1,2), it holds
that 0< 8p(C1,C2) < A1+ A2, 0 < 8cs(Cp,C) <
N+ nz and 0< 8 ca(C1,Co) < (Ng(ng—1) +na(ny—

1))/2. Then, consider the extreme cases in Section 1.

Example 2. Let C; andC; be paths with length.

Suppose that every vertex@ is labeled bya and
that inCy by b. Then, it holds that, (C1,C2) = n,
6P(C1,C2) =1, 5CS(C1,C2) =2n andéLCA(Cl,Cg) E
2n(n—1). Note thatdp(Cy,Cy), 8cs(Ci,C) and
OLca(C1,Cy) are their maximum values.

Suppose that every vertex @ and every non-
leaf vertex inC; is labeled bya and the leaf ofC;
is labeled byb. Then, it holds thatr, (C1,C2) = 1,
Op(C1,C2) = 1, 8¢s(C1,C2) = 2nandd ca(C1,C2) =
2(n—1). Note thatdp(Cy,Cy) and d¢cs(Cq1,Cy) are
their maximum values bl cA(C1,Cz) is not.

In particular6p(Cy,Cy) cannot distinguish the dif-
ference of labels between two patbsandC,.

Furthermore, the following theorem holds.

Theorem 5. There exist caterpillarsC; and C, satis-
fying the following statements.

1. T1a(C1,C2) = 0cs(Cy,C2) = 1 but 8p(Cy,Cy) and
OLca(C1,Cy) aretheir maximum values.

2. Op(C1,Cp) and 8¢s(Cq,Cp) are their maximum
values but T, (C1,Cp) and 8 ca (C1,Cy) arenot.

Proof. 1. LetC; andC; be stars, that igbb(Cy)| =
|bb(Cy)| =1, suchthat(Cq) =r1,r(Cp) =r2,1(r1) #
I(r2), ch(r1) = ch(rz) and|ch(r1)| = |ch(r2)| =n—1.
Then, it is obvious thatr,, (C1,C2) = 8¢s(C1,C2) =

1 anddp(C1,C) = 2(n—1). Also, since?(Cy)N
P(Cy) =0, it holds thatd c4(C1,C2) =2n(n—1).

2. LetCy andC; be caterpillars obtained by con-

nectingA leaves to the leaves of paths with length

does not always hold.

Example 3. Consider caterpillar€;, C; andCs in
Figure 3.

(o) (a)
S oo ©
(@0 @@ @ © (@)
C C Cs

Figure 3: Caterpillar€;, C; andCs in Example 3.

Then, we obtain &(G,Cj), 06cs(G,Cj),
Oca(Gi,Cj), 3p(Ci,Cj), 8cs(Gi,Cj) and oy, (G, C)
for (i, ) = (1,2),(1,3),(2,3) as follows.

(i,]) % dcs Oea O Ots Ofca
(1,2 4 3 10 23 1/3 5/8
(1,3) 2 4 6 13 2/5 3/10
(2,3) 2 3 4 1/3 1/3 1/4

Hence, the following statements hold:

0¢s(C1,C2) < 8/ 4 (C1,C2) < 8p(C1,C2),
étCA(Cl,Cg) < 6;(C1,C3) < 5ES(C1,C3),
O ca(C2,C3) < 85(C2,C3) = 8¢4(C2,Ca).

4 EXPERIMENTAL RESULTS

Table 3 illustrates the number (#cat) of caterpillars in
the datasets in N-glycans and all of the glycans from
KEGG!, CSLOGS and dblp datasets, whose num-
ber of data is denoted by #data.

IKyoto Encyclopedia of Genes and Genomes,
http://lwww.kegg.jp/

Zhttp://www.cs.rpi.edu/~zaki/www-new/pmwiki.php
/Software/Software

Shttp://dblp.uni-trier.de/
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Table 3: The number of caterpillars in N-glycans and all-
glycans from KEGG, CSLOGS and dblp datasets.

dataset #cat #data %
N-glycans 514 2,142 23.996
all-glycans 8,005 10,704 74.785
CSLOGS 41,592 59,691 69.679
dblp 5,154,295 5,154,530 99.995

We deal with caterpillars for N-glycans, all-
glycans, CSLOGS and the selected 50,000 caterpil-
lars in dblp (we refer to dblp). Table 4 illustrates
the information of such caterpillars. Herga, bj;c)
means thaa, b andc are the minimum, the maximum
and the average number.

In the remainder of this section, we compare the
LCA histogram distance with the path histogram dis-

tance and the complete subtree histogram distance for

caterpillars.
Table 5 illustrates the running time of computing
5, O¢s anddy ., for N-glycans, all-glycans, CSLOGS
and dblp .
Table 5 shows that, whereas we compdjteand
& in linear time andd; ., in quadratic time in theo-
retical, the running time of computing ., is within
twice for N-glycans and all-glycans, within thrice for
CSLOGS and about seven times for dblpespec-
tively, of computingdg in experimental. The rea-
son why the running time of computing ., is not
so large is that the number a#| ¢, | is not so large
except dblp; For dblp, | ca| is larger than others

because the number of leaves is large but the height is

small in Table 4.
Figure 4 illustrates the distributions 8§, 8¢5 and
9/ ., for N-glycans, all-glycans, CSLOGS and dblp
Figure 4 shows that almost of the distributions
concentrate near to 1, in particular, CSLOGS and
dblp~. On the other hand, for dbtp the distributions
appear near to 0. For N-glycans and all-glyca&ids
larger thamg anddy is larger thard| .
Figure 5illustrates the detailed distributionsxgf
s and &/, for N-glycans, all-glycans, CSLOGS
and dblp, where the scopes of the distances of N-
glycans, all-glycans, CSLOGS and dblpre[0.8,1],
[0.9,1], [0.995 1] and[0.99.1], respectively.
Note that, for dblp, since the maximum value of
s 1S 0.992308 and the frequency is low, the distribu-
tion is just ofdy andd; .,. Figure 5 shows that, near
to 1 and for N-glycans, all-glycans and CSLOGS, the
inequality ofdp < 8¢ < & ¢, holds.
Figure 6 illustrates the scatter chartpf & and
! .4 for N-glycans and all-glycans and Figure 7 illus-
trates those for CSLOGS and dblpand their cor-
relation coefficientsdc). Here, the representation of
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Figure 5: The detailed distributions 8§, 8- andd/ ., for
N-glycans, all-glycans, CSLOGS and dblp

o; /05 means that the number of pairs of caterpillars
with &} is pointed at thex-axis and that withd is
pointed at the/-axis.

Figures 6 and 7 show that, the scatter charts for N-
glycans and all-glycans in Figure 6 are more sparse
than those for CSLOGS and dblpn Figure 7, be-
cause the number of caterpillars in N-glycans and
all-glycans is much smaller than that in CSLOGS
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Table 4: The information of caterpillars in N-glycans, gixcans, CSLOGS and dbip

dataset #vertices degree height #leaves #labels
N-glycans ([6,15];6.40) ([1,3];1.84) ([1,9];4.22) ([1;2.18) ([2,8];4.50)
all-glycans ([1,24];4.74)  ([0,5];1.49) ([0,15];3.02) 1(L4];1.72) ([1,9];2.84)

CSLOGS ([2,404];5.84) ([1,403];3.05) ([1,70];2.20) @4D3];3.64) ([2,168];5.18)
dblp~  ([7,244];11.96) ([6,243];10.94) ([1,3];1.02) ([6,2430.94) ([7,13];9.86)

Table 5: The running time of computirliy, 8¢5 anddy .,

(msec.).
dataset op e ! ca
N-glycans 142 239 419
all-glycans 34,113 40,364 73,219
CSLOGS 1,017,730 1,361,343 3,439,560
dblp~ 1,980,062 3,534,120 24,633,812

path

N-glycans /8¢
cc=0.402189

N-glycansds/d; ..
cc=0.804891

cs

N-g|ycan8,505/5|_CA
cc = 0.356957

all-glycans /8¢
cc=0.281586

path

all-glycans 35/5; .,
cc = 0.571927

Figure 6. The scatter charts &f, & and d ., for N-

all-glycans d¢./ 6}

LcA

cc=0.413714

L
glycans and all-glycans. A

and dblp. Also for all datasets, the scatter chart
for 8¢/ ca SPreads more widely than those for
8 /8, aNdS; /8.

For Figure 6, the scatter charts for N-glycans have
the values on the line thgt= 1 and, in particular, the
scatter charts dd¢/df ., also have the values on the
line thatx = 1. On the other hand, the scatter charts
for all-glycans have the values on the line that 1,
those ofd) /0, and &t /d -, the vales on the lines
thatx =1 andy = 0.
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Figure 7: The scatter chad, d;¢ andd| ., for CSLOGS
and dblp and their correlation coefficientsd).

dblp_’ 6*Cs/éi‘ic/’-\
cc = 0.644874

313



KDIR 2018 - 10th International Conference on Knowledge Discovery and Information Retrieval

For Figure 7, the scatter charts for CSLOGS have REFERENCES
the values on the line thgt= 1 and those od¢, /O .,
have the values on the line that= 1. On the other  Akutsu, T., Fukagawa, D., Halldorsson, M. M., Takasu, A.,
hand, the scatter charts &f/3; for dblp~ have the and Tanaka, K. (2013). Approximation and parame-
values on the e haf =1 ad those o /&, Sreed agortms for common subtees and i i
have the values on the line that= 1. In particular, ' Pul. <t

th tter charts for dbi) titutes at tt 470:10-22.
e scatter charts tor pconstitutes at most two Aratsu, T., Hirata, K., and Kuboyama, T. (2009). Sibling

clusters, where one lies on the axis. distance for rooted labeled trees. J8Al PAKDD’ 08
For correlation coefficients, which we denote by Post-Workshop Proc. (LNAI 5433), pages 99-110.

cc(d; /8% ), the value Obc(aé/é_tCA) is highest for all Gallian, J. A. (2007). A dynamic survey of graph labeling.
the data. On the other hand, it holds that Electorn. J. Combin., 14:DS6.

CC(Ogs/Of ca) < CC(8p/0s) < cC(dp/Of Kailing, K., Kriegel, H.-P., Schonaur, S., and Seidl, T.

(8cs/Bica) (%/2c,) ( P( Lon) (2004). Efficient similarity search for hierarchical data

for N-glycans and CSLOGS, whereas it holds that in large databases. Proc. EDBT 04, pages 676—693.

cc(Op/0cs) < €C(dgs/ Bl ca) < €C(Bp/Of cp) Kawaguchi, T., Yoshino, T., and Hirata, K. (2018a). Path
for all-glycans and dblp. For the values of corre- histogram distance and complete subtree histogram

lation coefficients, almost of the distances are related distance for rooted labeled caterpillasubmitted).

- Kawaguchi, T., Yoshino, T., and Hirata, K. (2018b). Path
for CSLOGS and dblp, becausec(dy /3, ) is greater histogram distance for rooted labeled caterpillars. In

than 06, justd] ., is related withd for N-glycans, Proc. ACIIDS 18 (LNAI 10751), pages 276—286.
e}nd no dlst*arlces are related for all-glycans. In par- Li, £, Wang, H., Li, J., and Gao, H. (2013). A survey on
ticular, cc(3p3] ¢, ) is greater than @ for N-glycans, tree edit distance lower bound estimation techniques
CSLOGS and dblip. for similarity join on XML data. SGMOD Record,
43:29-39.
Muraka, K., Yoshino, T., and Hirata, K. (2018). Computing
edit distance between rooted labeled caterpillars. In
5 CONCLUSION Proc. FedCS S 18 (to appear).

: ) . Tai, K.-C. (1979). The tree-to-t ti ledn.
In this paper, we have introduced an LCA histogram y ACCM (22: 492)2_432_ o G G
dIStan(.:eBLCA between. tigey ar.]d shown that It IS-not Tatikonda, S. and Parthasarathy, S. (2010). Hashing tree-
a metric for trees but is a metric for caterpillars. Fur- structured data: Methods and applications. Phac.
thermore, we have given experimental results of com- ICDM' 10, pages 429-440.
puting d.ca for caterpillars, by comparing the path  zhang, K. and Jiang, T. (1994). Some MAX SNP-hard re-
histogram distancép and the complete subtree his- sults concerning unordered labeled trdeform. Pro-
togram distancédcs (or their normalized distances cess. Lett., 49:249-254.

{ e Op ANABL).

Itis a future work to design the algorithm to com-
puted, c» more efficiently, without constructing LCA
histograms explicitly, for example. It is also a future
work to analyze the relationship betwe®n,, dp and
dcs (0r g/ ¢, Op anddy) in more detail in experimen-
tal, in particular, as stated in Section 4, to analyze why
the correlation coefficients @ andd} ., have been
high, and that in theoretical.

Furthermore, itis a future work to give experimen-
tal results for other data of caterpillars. Finally, it is
an important future work to analyze the relationship
betweerd, ., andty, (Muraka et al., 2018).
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