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Abstract: An LCA histogram distance is anL1-distance between histograms consisting of triples of two nodes and their
least common ancestor (LCA) in two trees. In this paper, we show that the LCA histogram distance for cater-
pillars is always a metric, whereas that for trees is not. Then, we give experimental results for computing the
LCA histogram distance by comparing with the path histogram distance and the complete subtree histogram
distance for caterpillars.

1 INTRODUCTION

Comparing tree-structured data such as HTML and
XML data for web mining or RNA and glycan data
for bioinformatics is one of the important tasks for
data mining. Then, we deal with them asrooted la-
beled unordered trees, (trees, for short). In particular,
acaterpillar (cf. (Gallian, 2007)) is a tree transformed
to a path after removing all the leaves in it. Whereas
the caterpillars are very restricted and simple, there
are some cases containing many caterpillars in real
dataset, see Table 3 in Section 4.

The edit distance (Tai, 1979) is the most famous
distance measure between trees. It is formulated as
the minimum cost ofedit operations, consisting of a
substitution, a deletion and aninsertion, applied to
transform a tree to another tree and is always a metric.
Recently, Murakaet al. (Muraka et al., 2018) have de-
signed the algorithm to compute the edit distance be-
tween two caterpillars inO(λ2h2) time, whereλ andh
are the maximum number of leaves and the maximum
height in two caterpillars, respectively. Then, this al-
gorithm runs inO(n4) time, wheren is the maximum
number of vertices in two caterpillars.

A local frequency distance (Aratsu et al., 2009;
Kailing et al., 2004; Li et al., 2013) is formulated
as anL1-distance between histograms concerned with
local information. Whereas we can compute the lo-
cal frequency distance efficiently and they sometimes
provide the constant factor lower bound of the edit
distance, almost all of them is not a metric. In order
to compare caterpillars efficiently by using a metric,
a path histogram distance (Kawaguchi et al., 2018b)

and acomplete subtree histogram distance (Akutsu
et al., 2013) are appropriate local frequency distances
for caterpillars.

A path histogram distance is an L1-distance be-
tween histograms consisting of paths from the root to
leaves in two trees (Kawaguchi et al., 2018b). It is
computable in linear time, always a metric for cater-
pillars, which is not a metric for trees in general,
and incomparable with the edit distance (Kawaguchi
et al., 2018b). On the other hand, as an extreme case,
for two paths with the same length such that every la-
bel in one path isa and that in another path isb, the
edit distance between them is the number of vertices
in a path but the path histogram distance is one.

A complete subtree histogram distance is anL1-
distance between histograms consisting of complete
subtrees in two trees (Akutsu et al., 2013). It is com-
putable in linear time, always a metric for trees and
greater than or equal to the edit distance (Akutsu et al.,
2013). On the other hand, as an extreme case, for
two paths with the same length such that the labels
of leaves are different, the edit distance between them
is one but the complete subtree histogram distance is
the number of vertices in two paths, which is the max-
imum value.

In this paper, we focus on anLCA his-
togram distance (Tatikonda and Parthasarathy, 2010),
which is an L1-distance between histograms con-
sisting of triples of two vertices and the LCA of
them with their depth. Whereas Tatikonda and
Parthasarathy (Tatikonda and Parthasarathy, 2010)
have claimed that the LCA histogram distance is a
metric for trees, in this paper, we give a counterex-
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ample that their claim is false, even if the informa-
tion of depth is given, which is not well-known. On
the other hand, we show that the LCA histogram dis-
tance is a metric for caterpillars. By using the LCA
histogram distance, we can avoid not only the above
extreme cases but also the case that both the path his-
togram distance and the complete subtree histogram
distance are their maximum values but the edit dis-
tance is not. We can compute the LCA histogram dis-
tance in quadratic time.

Then, by using caterpillars in real data in Table 3
in Section 4, we give experimental results of comput-
ing the LCA histogram distance comparing with the
path histogram distance and the complete subtree his-
togram distance. Note that the maximum values of
the path histogram distance, the complete subtree his-
togram distance and the LCA histogram distance are
different. Then, by normalizing the distances to com-
pare them as experimental results, we compare the
running time, distributions and scatter charts of the
three distances.

2 PRELIMINARIES

A tree T is a connected graph(V,E) without cycles,
whereV is the set of vertices andE is the set of edges.
We denoteV andE by V (T ) andE(T ). Thesize of
T is |V | and denoted by|T |. We sometime denote
v ∈ V (T ) by v ∈ T . We denote an empty tree( /0, /0)
by /0. A rooted tree is a tree with one vertexr chosen
as itsroot. We denote the root of a rooted treeT by
r(T ).

Let T be a rooted tree such thatr = r(T ) and
u,v,w∈ T . We denote the unique path fromr to v, that
is, the tree(V ′,E ′) such thatV ′ = {v1, . . . ,vk}, v1 = r,
vk = v and(vi,vi+1) ∈ E ′ for everyi (1≤ i ≤ k−1),
by UPr(v). The depth of v, denoted byd(v), is the
number of edges inUPr(v).

Theparent of v(6= r), which we denote bypar(v),
is its adjacent vertex onUPr(v) and theancestors of
v(6= r) are the vertices onUPr(v)−{v}. We say that
u is a child of v if v is the parent ofu andu is a de-
scendant of v if v is an ancestor ofu. We call a vertex
with no children aleaf and denote the set of all the
leaves inT by lv(T ).

We denote the set of all the children ofv in T by
ch(v). Thedegree of v, denoted byg(v), is the number
of children ofv, that is,|ch(v)|, and thedegree of T ,
denoted byg(T ), is max{g(v) | v ∈ T}. Theheight of
v, denoted byh(v), is max{|UPv(w)| | w ∈ lv(T [v])},
and theheight of T , denoted byh(T ), is max{h(v) |
v ∈ T}.

We use the ancestor orders< and≤, that is,u < v

if v is an ancestor ofu andu ≤ v if u < v or u = v.
We say thatw is theleast common ancestor (LCA, for
short) ofu andv, denoted byu⊔v, if u ≤w, v≤ w and
there exists no vertexw′ ∈ T such thatw′ ≤ w, u ≤ w′

andv ≤ w′.
Let T be a rooted tree(V,E) andv a vertex inT .

A complete subtree of T at v, denoted byT [v], is a
rooted treeT ′ = (V ′,E ′) such thatr(T ′) = v, V ′ =
{u ∈V | u ≤ v} andE ′ = {(u,w) ∈ E | u,w ∈V ′}. For
a treeT ′, we say thatT ′ occurs in T at v if T ′ = T [v].

For a vertexv ∈ T , we call the occurrence number
of v in the preorder (resp., postorder) traversal onT
the preorder (resp., postorder) number of v and de-
note it bypre(v) (resp., post(v)). We say thatu is to
the left of v in T if pre(u) ≤ pre(v) and post(u) ≤
post(v). We say that a rooted tree isordered if a left-
to-right order among siblings is given;unordered oth-
erwise. We say that a rooted tree islabeled if each
vertex is assigned a symbol from a fixed finite alpha-
betΣ. For a vertexv, we denote the label ofv by l(v),
and sometimes identifyv with l(v). In this paper, we
call a rooted labeled unordered tree atree simply.

As the restricted form of trees, we introduce a
rooted labeled caterpillar (a caterpillar, for short) as
follows, which this paper mainly deals with.

Definition 1 (Caterpillar (cf., (Gallian, 2007))). We
say that a tree is acaterpillar if it is transformed to a
path after removing all the leaves in it. For a caterpil-
lar C, we call the remained path abackbone of C and
denote it bybb(C).

Next, we introduce anedit distance for trees.

Definition 2 (Edit operations (Tai, 1979)). The edit
operations of a treeT are defined as follows.

1. Substitution: Change the label of the vertexv in
T .

2. Deletion: Delete a non-root vertexv in T with par-
ent v′, making the children ofv become the chil-
dren ofv′. The children are inserted in the place
of v as a subset of the children ofv′.

3. Insertion: The complement of deletion. Insert a
vertexv as a child ofv′ in T makingv the parent
of a subset of the children ofv′.

Let ε 6∈Σ denote a specialblank symbol and define
Σε = Σ∪{ε}. Then, we represent each edit operation
by (l1 7→ l2), where(l1, l2)∈ (Σε×Σε−{(ε,ε)}). The
operation is a substitution ifl1 6= ε andl2 6= ε, a dele-
tion if l2 = ε, and an insertion ifl1 = ε. For verticesv
andw, we also denote(l(v) 7→ l(w)) by (v 7→ w). We
define acost function γ : (Σε ×Σε \{(ε,ε)}) 7→ R+ on
pairs of labels. We often constrain a cost functionγ to
be ametric, that is,γ(l1, l2)≥ 0, γ(l1, l2) =0 iff l1 = l2,
γ(l1, l2) = γ(l2, l1) andγ(l1, l3)≤ γ(l1, l2)+γ(l2, l3). In
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particular, we call the cost function thatγ(l1, l2) = 1
if l1 6= l2 aunit cost function.
Definition 3 (Edit distance (Tai, 1979)). For a cost
function γ, the cost of an edit operatione = l1 7→ l2
is given byγ(e) = γ(l1, l2). The cost of a sequence
E = e1, . . . ,ek of edit operations is given byγ(E) =
∑k

i=1 γ(ei). Then, anedit distance τTAI (T1,T2) be-
tween treesT1 andT2 is defined as follows:

τTAI (T1,T2) = min





γ(E)

∣∣∣∣∣∣∣

E is a sequence
of edit operations
transformingT1
to T2




.

For ni = |Ti| (i = 1,2), it holds that 0≤
τTAI (T1,T2)≤ n1+ n2−1.

Unfortunately, the problem of computing the edit
distance between trees is MAX SNP-hard (Zhang and
Jiang, 1994). On the other hand, Murakaet al. (Mu-
raka et al., 2018) have recently shown the following
theorem for caterpillars.
Theorem 1 ((Muraka et al., 2018)). For caterpil-
lars C1 and C2, we can compute τTAI (C1,C2) in
O(λ2h2) time, where λ = max{|lv(C1)|, |lv(C2)|} and
h = max{h(C1),h(C2)}.

As the previous local frequency distances to com-
pare caterpillars, we introduce thepath histogram dis-
tance (Kawaguchi et al., 2018b) and thecomplete sub-
tree histogram distance (Akutsu et al., 2013).

Let T be a tree such thatr = r(T ). Then,
for v ∈ lv(T ), we regard the pathP = UPr(v)
such thatV (P) = {v1, . . . ,vk}, v1 = r, vk = v and
(vi,vi+1) ∈ E(P) for everyi (1≤ i ≤ k−1) as a string
l(v1) · · · l(vk) on Σ and denote it bys(r,v). Also we
say that a strings∈Σ∗ occurs in T if there exists a leaf
v ∈ lv(T ) such thats = s(r,v) and denote the number
of occurrences ofs in T by f (s,T ). Furthermore, we
defineS(T ) as{s(r,v) | r = r(T ),v ∈ lv(T )}.
Definition 4 (Path histogram distance (Kawaguchi
et al., 2018b)). For a treeT , apath histogram H P(T )
of T consists of pairs〈s, f (s,T )〉 for everys ∈ S(T ).

For treesT1 and T2, a path histogram distance
δP(T1,T2) betweenT1 and T2 is defined as anL1-
distance betweenH P(T1) andH P(T2):

δP(T1,T2) = ∑
s∈S(T1)∪S(T2)

| f (s,T1)− f (s,T2)|.

Forλ= |lv(T )|, it is obvious that|H P(T )| ≤ λ and
∑s∈S (T) f (s,T ) = λ.

We denote the set{T [v] | v ∈ T} of all the com-
plete subtrees inT by C (T ). Forc ∈ C (T ), the num-
ber of occurrences ofc in T by f (c,T ).
Definition 5 (Complete subtree histogram dis-
tance (Akutsu et al., 2013)). For a treeT , a com-
plete subtree histogram H CS(T ) consists of pairs
〈s, f (s,T )〉 for everys ∈ C (T ).

For treesT1 andT2, acomplete subtree histogram
distance δCS(T1,T2) between treesT1 andT2 is defined
as anL1-distance betweenH CS(T1) andH CS(T2):

δCS(T1,T2) = ∑
c∈C (T1)∪C(T2)

| f (c,T1)− f (c,T2)|.

For n = |T |, it is obvious that|H CS(T )| ≤ n and
∑c∈C (T ) f (c,T ) = n.

We summarize the properties ofδP andδCS as fol-
lows (Akutsu et al., 2013; Kawaguchi et al., 2018a;
Kawaguchi et al., 2018b).

Theorem 2. Let C1 and C2 be caterpillars such that
n = max{|C1|, |C2|} and λ = max{|lv(C1)|, |lv(C2)|}.

1. δP is a metric for caterpillars but not a metric for
trees in general.

2. δCS is a metric for trees, so is for caterpillars.
3. We can compute δP(C1,C2) and δCS(C1,C2) in

O(n) time.
4. τTAI (C1,C2)≤ δCS(C1,C2).
5. There exist C1 and C2 such that τTAI (C1,C2) =

δCS(C1,C2) = 1 but δP(C1,C2) = O(λ).
6. There exist C1 and C2 such that δP(C1,C2) = 2 but

τTAI (C1,C2) = δCS(C1,C2) = O(n).

3 LCA HISTOGRAM DISTANCE

Let T be a tree. Then, we say thatp = ((l1,d1) :
{(l2,d2),(l3,d3)}) is anLCA pivot in T if there ex-
ist mutually distinct verticesv andw in T such that
l1 = l(v ⊔ w), d1 = d(v ⊔ w), l2 = l(v), d2 = d(v),
l3 = l(w) andd3 = d(w), respectively. We denotep by
a 6-tuple(l1d1 : l2d2⊔ l3d3) simply. In this case, we
also say thatp occurs in T and denotep by p(v,w).
We denote the number of the occurrences ofp in T
by f (p,T ). Furthermore, we denote the set of all the
LCA pivots in T by P (T ), that is,P (T ) = {p(v,w) |
(v,w) ∈ T ×T,v 6= w}.

Definition 6 (LCA histogram distance). For a treeT ,
an LCA histogram H LCA(T ) of T consists of a pair
〈p, f (p,T )〉 for everyp ∈ P (T ).

For two treesT1 and T2, an LCA histogram dis-
tance δLCA(T1,T2) betweenT1 andT2 is defined as an
L1-distance betweenH LCA(T1) andH LCA(T2):

δLCA(T1,T2) = ∑
p∈P(T1)∪P (T2)

| f (p,T1)− f (p,T2)|.

For n = |T |, it is obvious that|H LCA(T )| ≤ n(n−
1)/2 and∑p∈P (T ) f (p,T ) = n(n−1)/2.

Example 1. Let C1 andC2 be caterpillars illustrated
in Figure 1.

Then, we obtain the histogramsH LCA(C1)
and H LCA(C2) illustrated in Table 1. Note
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Figure 1: The caterpillarsC1 andC2 in Example 1.

that, since |C1| = |C2| = 8, it holds that
∑

p∈P (Ci)

f (p,Ci) = 8C2 = 28 for i = 1,2. Also,

the bold faces illustrate the LCA pivots occurring in
eitherH LCA(C1) or H LCA(C2) and its frequency, or
the frequencies of the LCA pivot if they are different
in H LCA(C1) andH LCA(C2).

Table 1: The histogramsH LCA(C1) andH LCA(C2).

H LCA(C1) H LCA(C2)

LCA pivots freq.

(a0 : a1⊔b1) 2
(a0 : a1⊔a2) 2
(a0 : a1⊔a3) 2
(a0 : b1⊔b1) 1
(a0 : b1⊔a2) 2
(a0 : b1⊔a3) 2
(a0 : a0⊔a1) 1
(a0 : a0⊔b1) 2
(a0 : a0⊔a2) 2
(a0 : a0⊔a3) 2

(b1 : a2⊔a2) 1
(b1 : a2⊔a3) 2
(b1 : b1⊔a2) 2
(b1 : b1⊔a3) 2

(a2 : a3⊔a3) 1
(a2 : a2⊔a3) 2

LCA pivots freq.

(a0 : a1⊔b1) 1
(a0 : a1⊔a2) 1
(a0 : a1⊔b2) 2
(a0 : a1⊔a3) 2
(a0 : a0⊔a1) 1
(a0 : a0⊔b1) 1
(a0 : a0⊔a2) 1
(a0 : a0⊔b2) 2
(a0 : a0⊔a3) 2

(b1 : a2⊔b2) 2
(b1 : a2⊔a3) 2
(b1 : b2⊔b2) 1
(b1 : b2⊔a3) 2
(b1 : b1⊔a2) 1
(b1 : b1⊔b2) 2
(b1 : b1⊔a3) 2

(b2 : a3⊔a3) 1
(b2 : b2⊔a3) 2

Hence, it holds that:

δLCA(C1,C2)
= ∑

p∈P (C1)∪P (C2)

| f (p,C1)− f (p,C2)|

= ∑
p∈P (C1)\P (C2)

f (p,C1)+ ∑
p∈P(C2)\P (C1)

f (p,C2)

+ ∑
p∈P(C1)∩P (C2)

| f (p,C1)− f (p,C2)|

= 9+14+5= 28.

Whereas the LCA histogram distance seems to be
a metric, for example, Theorem 3.2 in (Tatikonda and
Parthasarathy, 2010), we show that it is not a metric
for trees as follows.

Theorem 3. There exist trees T1 and T2 such that
H LCA(T1) = H LCA(T2) but T1 6= T2. Hence, the LCA
histogram distance is not a metric for trees in general.

Proof. Consider the treesT1 andT2 in Figure 2.

a

b


 
 


b b


 
 


T1

a

b




b


 
 
 


b




T2

Figure 2: TreesT1 andT2.

Then, we obtain the histogramH LCA(T1)(=
H LCA(T2)) illustrated in Table 2.

Table 2: The histogramH LCA(T1)(= H LCA(T2)).

LCA pivots freq.

(a0 : c2⊔ c2) 9
(a0 : b1⊔ c2) 12
(a0 : b1⊔b1) 3
(a0 : a0⊔b1) 3

LCA pivots freq.

(a0 : a0⊔ c2) 6
(b1 : c2⊔ c2) 6
(b1 : c2⊔b1) 6

Here, since |T1| = |T2| = 10, it holds that
∑

p∈P (Ti)

f (p,Ti) = 10C2 = 45 for i = 1,2. Furthermore,

since the labels are not essential, this statement also
holds for unlabeled trees.

On the other hand, note that neitherT1 nor T2 in
Figure 2 is a caterpillar. In the remainder of this sec-
tion, we discuss the LCA histogram distance between
caterpillars.

For caterpillars, the following lemma is obvious.

Lemma 1. Let p(v,w) = (l1d1 : l2d2⊔ l3d3) ∈ P (C)
an LCA pivot in C. Then, the following statements
hold.

1. It holds that v⊔w ∈ bb(C).

2. If v,w ∈ lv(C), then it holds that d1 =
min{d2,d3}−1. Also it holds that v⊔w = par(v)
if d2 < d3, v⊔w = par(w) if d3 < d2 and v⊔w =
par(v) = par(w) if d2 = d3.

3. If v,w ∈ bb(C), then it holds that d1 =
min{d2,d3}. Also it holds that v⊔w = v if d2 < d3
and v⊔w = w if d3 < d2.
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4. Suppose that v ∈ lv(C) and w ∈ bb(C). If d2 < d3,
then it holds that d1 = d3 and v⊔w = w. Other-
wise, that is, d2 ≥ d3, it holds that d1 = d2−1 and
v⊔w = par(v).

Then, the following theorem holds.

Theorem 4. For caterpillars, the LCA histogram dis-
tance is a metric.

Proof. By the definition, it is sufficient to show
that two caterpillarsC1 and C2 are isomorphic iff
δLCA(C1,C2) = 0. In other words, it is sufficient
to show that we can transform a caterpillarC from
H LCA(C) uniquely.

By Lemma 1.1, we can uniquely determinebb(C)
from P (C) because ofl1 and d1 in p(v,w). Since
lv(C) =C \ bb(C), we can determinelv(C). Then, by
Lemma 1.2, we can determine the set of leaves with
depthi for everyi (1≤ i ≤ d(C)).

For λi = |lv(Ci)| andni = |Ci| (i = 1,2), it holds
that 0≤ δP(C1,C2) ≤ λ1 + λ2, 0 ≤ δCS(C1,C2) ≤
n1+n2 and 0≤ δLCA(C1,C2)≤ (n1(n1−1)+n2(n2−
1))/2. Then, consider the extreme cases in Section 1.

Example 2. Let C1 andC2 be paths with lengthn.
Suppose that every vertex inC1 is labeled bya and

that inC2 by b. Then, it holds thatτTAI (C1,C2) = n,
δP(C1,C2) = 1, δCS(C1,C2) = 2n andδLCA(C1,C2) =
2n(n − 1). Note that δP(C1,C2), δCS(C1,C2) and
δLCA(C1,C2) are their maximum values.

Suppose that every vertex inC1 and every non-
leaf vertex inC2 is labeled bya and the leaf ofC2
is labeled byb. Then, it holds thatτTAI (C1,C2) = 1,
δP(C1,C2) = 1, δCS(C1,C2) = 2n andδLCA(C1,C2) =
2(n − 1). Note thatδP(C1,C2) and δCS(C1,C2) are
their maximum values butδLCA(C1,C2) is not.

In particular,δP(C1,C2) cannot distinguish the dif-
ference of labels between two pathsC1 andC2.

Furthermore, the following theorem holds.

Theorem 5. There exist caterpillars C1 and C2 satis-
fying the following statements.

1. τTAI (C1,C2) = δCS(C1,C2) = 1 but δP(C1,C2) and
δLCA(C1,C2) are their maximum values.

2. δP(C1,C2) and δCS(C1,C2) are their maximum
values but τTAI (C1,C2) and δLCA(C1,C2) are not.

Proof. 1. LetC1 andC2 be stars, that is,|bb(C1)| =
|bb(C2)|= 1, such thatr(C1) = r1, r(C2) = r2, l(r1) 6=
l(r2), ch(r1) = ch(r2) and|ch(r1)|= |ch(r2)|= n−1.
Then, it is obvious thatτTAI (C1,C2) = δCS(C1,C2) =
1 andδP(C1,C2) = 2(n − 1). Also, sinceP (C1) ∩
P (C2) = /0, it holds thatδLCA(C1,C2) = 2n(n−1).

2. LetC1 andC2 be caterpillars obtained by con-
nectingλ leaves to the leaves of paths with lengthh,

where every vertex inC1 and in a path inC2 is la-
beled bya and every leaf inC2 by b. Then,|C1| =
|C2| = h+ λ = n. It is obvious thatδP(C1,C2) = 2λ
and δCS(C1,C2) = 2(λ + h) = 2n, so they are the
maximum values. On the other hand, it holds that
τTAI (C1,C2) = λ andδLCA(C1,C2) = 2λ(n−1), where
their maximum values are 2n−1 and 2n(n−1).

By selecting every pair of vertices in two cater-
pillars, we can computeδLCA(C1,C2) in O(n2) time,
becauseH LCA(C) = O(n2).

Note that the inequality thatδP< δCS < δLCA tends
to hold by the values ofδP, δCS andδLCA. Then, we
normalizeδP, δCS and δLCA by dividing their maxi-
mum values when comparing distances. We denote
the normalized distances ofδP, δCS andδLCA by δ∗P,
δ∗CS andδ∗LCA , respectively. Then, the following ex-
ample shows that the inequality thatδ∗P < δ∗CS < δ∗LCA

does not always hold.

Example 3. Consider caterpillarsC1, C2 andC3 in
Figure 3.

a

a a

a a

a

a a a

a

a a a

a

C1 C2 C3

Figure 3: CaterpillarsC1, C2 andC3 in Example 3.

Then, we obtain δP(Ci,C j), δCS(Ci,C j),
δLCA(Ci,C j), δ∗P(Ci,C j), δ∗CS(Ci,C j) andδ∗LCA(Ci,C j)
for (i, j) = (1,2),(1,3),(2,3) as follows.

(i, j) δP δCS δLCA δ∗P δ∗CS δ∗LCA

(1,2) 4 3 10 2/3 1/3 5/8
(1,3) 2 4 6 1/3 2/5 3/10
(2,3) 2 3 4 1/3 1/3 1/4

Hence, the following statements hold:

δ∗CS(C1,C2)< δ∗LCA(C1,C2)< δ∗P(C1,C2),
δ∗LCA(C1,C3)< δ∗P(C1,C3)< δ∗CS(C1,C3),
δ∗LCA(C2,C3)< δ∗P(C2,C3) = δ∗CS(C2,C3).

4 EXPERIMENTAL RESULTS

Table 3 illustrates the number (#cat) of caterpillars in
the datasets in N-glycans and all of the glycans from
KEGG1, CSLOGS2 and dblp3 datasets, whose num-
ber of data is denoted by #data.

1Kyoto Encyclopedia of Genes and Genomes,
http://www.kegg.jp/

2http://www.cs.rpi.edu/˜zaki/www-new/pmwiki.php
/Software/Software

3http://dblp.uni-trier.de/
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Table 3: The number of caterpillars in N-glycans and all-
glycans from KEGG, CSLOGS and dblp datasets.

dataset #cat #data %

N-glycans 514 2,142 23.996
all-glycans 8,005 10,704 74.785
CSLOGS 41,592 59,691 69.679
dblp 5,154,295 5,154,530 99.995

We deal with caterpillars for N-glycans, all-
glycans, CSLOGS and the selected 50,000 caterpil-
lars in dblp (we refer to dblp−). Table 4 illustrates
the information of such caterpillars. Here,([a,b];c)
means thata, b andc are the minimum, the maximum
and the average number.

In the remainder of this section, we compare the
LCA histogram distance with the path histogram dis-
tance and the complete subtree histogram distance for
caterpillars.

Table 5 illustrates the running time of computing
δ∗P, δ∗CS andδ∗LCA for N-glycans, all-glycans, CSLOGS
and dblp−.

Table 5 shows that, whereas we computeδ∗P and
δ∗CS in linear time andδ∗LCA in quadratic time in theo-
retical, the running time of computingδ∗LCA is within
twice for N-glycans and all-glycans, within thrice for
CSLOGS and about seven times for dblp−, respec-
tively, of computingδ∗CS in experimental. The rea-
son why the running time of computingδ∗LCA is not
so large is that the number of|H LCA | is not so large
except dblp−; For dblp−, |H LCA | is larger than others
because the number of leaves is large but the height is
small in Table 4.

Figure 4 illustrates the distributions ofδ∗P, δ∗CS and
δ∗LCA for N-glycans, all-glycans, CSLOGS and dblp−.

Figure 4 shows that almost of the distributions
concentrate near to 1, in particular, CSLOGS and
dblp−. On the other hand, for dblp−, the distributions
appear near to 0. For N-glycans and all-glycans,δ∗P is
larger thanδ∗CS andδ∗CS is larger thanδ∗LCA .

Figure 5 illustrates the detailed distributions ofδ∗P,
δ∗CS and δ∗LCA for N-glycans, all-glycans, CSLOGS
and dblp−, where the scopes of the distances of N-
glycans, all-glycans, CSLOGS and dblp− are[0.8,1],
[0.9,1], [0.995,1] and[0.99.1], respectively.

Note that, for dblp−, since the maximum value of
δ∗CS is 0.992308 and the frequency is low, the distribu-
tion is just ofδ∗P andδ∗LCA . Figure 5 shows that, near
to 1 and for N-glycans, all-glycans and CSLOGS, the
inequality ofδ∗P < δ∗CS < δ∗LCA holds.

Figure 6 illustrates the scatter charts ofδ∗P, δ∗CS and
δ∗LCA for N-glycans and all-glycans and Figure 7 illus-
trates those for CSLOGS and dblp−, and their cor-
relation coefficients (cc). Here, the representation of
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Figure 4: The distributions ofδ∗P, δ∗CS and δ∗LCA for N-
glycans, all-glycans, CSLOGS and dblp−.
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Figure 5: The detailed distributions ofδ∗P, δ∗CS andδ∗LCA for
N-glycans, all-glycans, CSLOGS and dblp−.

δ∗Y/δ∗X means that the number of pairs of caterpillars
with δ∗X is pointed at thex-axis and that withδ∗Y is
pointed at they-axis.

Figures 6 and 7 show that, the scatter charts for N-
glycans and all-glycans in Figure 6 are more sparse
than those for CSLOGS and dblp− in Figure 7, be-
cause the number of caterpillars in N-glycans and
all-glycans is much smaller than that in CSLOGS
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Table 4: The information of caterpillars in N-glycans, all-glycans, CSLOGS and dblp−.

dataset #vertices degree height #leaves #labels

N-glycans ([6,15];6.40) ([1,3];1.84) ([1,9];4.22) ([1,7];2.18) ([2,8];4.50)
all-glycans ([1,24];4.74) ([0,5];1.49) ([0,15];3.02) ([1,14];1.72) ([1,9];2.84)
CSLOGS ([2,404];5.84) ([1,403];3.05) ([1,70];2.20) ([1,403];3.64) ([2,168];5.18)
dblp− ([7,244];11.96) ([6,243];10.94) ([1,3];1.02) ([6,243];10.94) ([7,13];9.86)

Table 5: The running time of computingδ∗P, δ∗CS andδ∗LCA
(msec.).

dataset δ∗P δ∗CS δ∗LCA

N-glycans 142 239 419
all-glycans 34,113 40,364 73,219
CSLOGS 1,017,730 1,361,343 3,439,560
dblp− 1,980,062 3,534,120 24,633,812
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Figure 6: The scatter charts ofδ∗P, δ∗CS and δ∗LCA for N-
glycans and all-glycans.

and dblp−. Also for all datasets, the scatter chart
for δ∗CS/δ∗LCA spreads more widely than those for
δ∗P/δ∗LCA andδ∗P/δ∗CS.

For Figure 6, the scatter charts for N-glycans have
the values on the line thaty = 1 and, in particular, the
scatter charts ofδ∗CS/δ∗LCA also have the values on the
line thatx = 1. On the other hand, the scatter charts
for all-glycans have the values on the line thaty = 1,
those ofδ∗P/δ∗CS andδ∗CS/δ∗LCA the vales on the lines
thatx = 1 andy = 0.
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Figure 7: The scatter chartsδ∗P, δ∗CS andδ∗LCA for CSLOGS
and dblp− and their correlation coefficients (cc).
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For Figure 7, the scatter charts for CSLOGS have
the values on the line thaty= 1 and those ofδ∗CS/δ∗LCA

have the values on the line thatx = 1. On the other
hand, the scatter charts ofδ∗P/δ∗CS for dblp− have the
values on the line thaty = 1 and those ofδ∗CS/δ∗LCA

have the values on the line thatx = 1. In particular,
the scatter charts for dblp− constitutes at most two
clusters, where one lies on the axis.

For correlation coefficients, which we denote by
cc(δ∗Y/δ∗X), the value ofcc(δ∗P/δ∗LCA) is highest for all
the data. On the other hand, it holds that

cc(δ∗CS/δ∗LCA)< cc(δ∗P/δ∗CS)< cc(δ∗P/δ∗LCA)

for N-glycans and CSLOGS, whereas it holds that

cc(δ∗P/δ∗CS)< cc(δ∗CS/δ∗LCA)< cc(δ∗P/δ∗LCA)

for all-glycans and dblp−. For the values of corre-
lation coefficients, almost of the distances are related
for CSLOGS and dblp−, becausecc(δX/δY) is greater
than 0.6, just δ∗LCA is related withδ∗P for N-glycans,
and no distances are related for all-glycans. In par-
ticular, cc(δ∗Pδ∗LCA) is greater than 0.8 for N-glycans,
CSLOGS and dblp−.

5 CONCLUSION

In this paper, we have introduced an LCA histogram
distanceδLCA between trees and shown that it is not
a metric for trees but is a metric for caterpillars. Fur-
thermore, we have given experimental results of com-
puting δLCA for caterpillars, by comparing the path
histogram distanceδP and the complete subtree his-
togram distanceδCS (or their normalized distances
δ∗LCA , δ∗P andδ∗CS).

It is a future work to design the algorithm to com-
puteδLCA more efficiently, without constructing LCA
histograms explicitly, for example. It is also a future
work to analyze the relationship betweenδLCA , δP and
δCS (or δ∗LCA , δ∗P andδ∗CS) in more detail in experimen-
tal, in particular, as stated in Section 4, to analyze why
the correlation coefficients ofδ∗P andδ∗LCA have been
high, and that in theoretical.

Furthermore, it is a future work to give experimen-
tal results for other data of caterpillars. Finally, it is
an important future work to analyze the relationship
betweenδLCA andτTAI (Muraka et al., 2018).
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