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Abstract: Population structure strongly affects the dynamic behavior and performance of the particle swarm 
optimization (PSO) algorithm. Most of PSOs use one of two simple sociometric principles for defining the 
structure. One connects all the members of the swarm to one another. This strategy is often called gbest and 
results in a connectivity degree ݇	 = 	݊, where ݊ is the population size. The other connects the population in 
a ring with ݇	 = 	3. Between these upper and lower bounds there are a vast number of strategies that can be 
explored for enhancing the performance and adaptability of the algorithm. This paper investigates the 
convergence speed, accuracy, robustness and scalability of PSOs structured by regular and random graphs 
with 3 ≤ ݇ ≤ ݊. The main conclusion is that regular and random graphs with the same averaged 
connectivity ݇ may result in significantly different performance, namely when ݇ is low. 

1 INTRODUCTION 

Particle Swarm Optimization (PSO) is a collective 
intelligence model for optimization and learning 
(Kennedy and Eberhart, 1995) that uses a set of 
position vectors (called particles) to represent 
candidate solutions to a specific problem. These 
particles move through the fitness landscape of a 
specified target-problem following a set of behavioral 
equations that define their velocity at each time step. 
After updating the velocity and position of each 
particle as well as to the global and local information 
about the search, the fitness of every particle is 
computed. The process repeats until a stop criterion is 
met.  

Information on the current and previous state of 
the search flows through the graph that connects the 
particles, informing them on the best solutions found 
by their neighbors. The graph can be of any form and 
affects the balance between exploration and 
exploitation and consequently the convergence speed 
and accuracy of the algorithm. The reason why 
particles are interconnected is the core of the 
algorithm: particles communicate so that they acquire 
information on the regions explored by other 
particles. In fact, it has been claimed that the 

uniqueness of the PSO algorithm lies in the inter-
actions of the particles (Kennedy and Mendes, 2002).  

As stated, the population can be structured on any 
possible topology, from sparse to dense (or even fully 
connected) graphs), with different levels of 
connectivity and clustering. The classical and most 
used population structures are the lbest with ring 
topology (which connects the individuals to a local 
neighborhood) and the gbest (in which each particle is 
connected to every other individual). These topologies 
are well-studied and the major conclusions are that 
gbest is fast but is frequently trapped in local optima, 
while lbest is slower but converges more often to the 
neighborhood of the global optima. 

Studies have tried to understand what makes a 
good structure. For instance, Kennedy and Mendes 
(Kennedy and Mendes, 2002) investigated several 
types of topologies and recommend the use of a lattice 
with von Neumann neighborhood (which results in a 
connectivity degree between that of lbest and gbest). 
Others, like (Parsopoulos and Vrahatis, 2005), have 
tried to design networks that hold the best traits given 
by each structure.  

This paper revisits the study in (Kennedy and 
Mendes, 2002). Although the authors provided 
significant insight on the relationship between 
population structure and PSO performance, the study 
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was mainly dedicated to random topologies and few 
levels of connectivity were inspected. Some aspects 
of the research subject that were overlooked are now 
worth investigating, namely the importance of graph 
regularity and the performance of regular and random 
graphs with the same level of connectivity. This paper 
investigates and compares the convergence speed, 
accuracy, robustness and scalability of PSOs 
structured by regular and random graphs with 
different connectivity. Finally, the topologies were 
not only tested on standard fixed-parameters PSOs, 
but also on a PSO with time-varying parameters.  

The present work is organized as follows. Section 
2 gives a background review on PSO and population 
structures. Section 3 describes the experiment setup 
and Section 4 discusses the results. Finally, Section 5 
concludes the paper and outlines future lines of 
research. 

2 BACKGROUND REVIEW 

PSO is described by a simple set of equations that 
define the velocity and position of each particle. The 
position vector of the i-th particle is given by Ԧܺ ,,ଵݔ)= ,,ଶݔ …  is the dimension of the ܦ ଵ,), whereݔ

search space. The velocity is given by ሬܸԦ ,,ଵݒ)= ,,ଶݒ …  ଵ,). The particles are evaluated with aݒ

fitness function ݂( Ԧܺ) and then their positions and 
velocities are updated by: ݒ,ௗ(ݐ) = ݐ),ௗݒ − 1) + ܿଵݎଵ൫,ௗ − ݐ),ௗݔ − 1)൯+ ܿଶݎଶ൫,ௗ − ݐ),ௗݔ − 1)൯ (1)

(ݐ),ௗݔ = ݐ),ௗݔ − 1) + (2) (ݐ),ௗݒ

were  is the best solution found so far by particle ݅ 
and  is the best solution found so far by the 
neighborhood. Parameters ݎଵand ݎଶ are vectors of 
random values uniformly distributed in the range [0, 1] and ܿଵand ܿଶ are acceleration coefficients.  

In order to prevent particles from moving out of 
the limits of the search space, the positions ݔ,ௗ(ݐ) of 
the particles are limited by constants that, in general, 
correspond to the domain of the problem: ݔ,ௗ(ݐ) ,ݔܽ݉ܺ−]∍  ሿ. Velocity may also be limitedݔܽ݉ܺ
within a range in order to prevent the explosion of the 
velocity vector: ݒ,ௗ(ݐ) ∊ ,ݔܸܽ݉−] ݔܽ݉ܺ ,ሿ. Usuallyݔܸܽ݉ =  .ݔܸܽ݉

Although the classical PSO can be very efficient 
on numerical optimization, it requires a proper 
balance between local and global search, as it often 

gets trapped in local optima. In order to achieve a 
better balancing mechanism, (Shi and Eberhart, 1998) 
added the inertia weight	߱ for fine-tuning the local 
and global search abilities of the algorithm.  

By adjusting ߱ (usually within the range [0, 1.0]) 
together with the constants ܿଵ and  ܿଶ, it is possible to 
balance exploration and exploitation abilities of the 
PSO. The modified velocity equation is:  ݒ,ௗ(ݐ) = ߱. ݐ),ௗݒ − 1) + ܿଵݎଵ൫,ௗ − ݐ),ௗݔ − 1)൯+ ܿଶݎଶ൫,ௗ − ݐ),ௗݔ − 1)൯ (3)

The neighborhood of the particle defines in each 
time-step the value of  and is a key factor for the 
performance of the algorithm. Most of the PSOs use 
one of two simple principles for defining the 
neighborhood network. One connects all the members 
of the swarm to one another and is called gbest, where 
g stands for global. The degree of connectivity of 
gbest is ݇ = ݊, where n is the number of particles. 
The other typical configuration, called lbest (l stands 
for local), creates a neighborhood that comprises the 
particle itself and its nearest neighbors. The most 
common lbest topology is the ring structure.  

As stated above, the topology of the population 
affects the performance of the PSO and the 
configuration must be chosen according to the target-
problem and the performance requirements (i.e., the 
acceptable compromise between convergence speed 
and accuracy). Since all the particles are connected to 
every other and information spreads easily through 
the network, the gbest topology usually converges fast 
but unreliably (it often converges to local optima). 
The lbest converges slower than gbest because 
average path length of the network is higher and 
information spreads slower, but, for the same reason, 
it is also less prone to converge prematurely to local 
optima. 

In-between the ring structure with ݇	 = 	3 and the 
gbest with ݇	 = ݊ there are several possibilities, each 
one with its advantages and drawbacks. Very often it 
is not possible to choose beforehand the optimal or 
near-optimal configuration: for instance, when the 
properties of the problem are unknown or the time 
requirements do not permit preliminary tests. 
Therefore, substantial research efforts have been 
dedicated to PSO’s population structures. 

In 2002, (Kennedy and Mendes, 2002) tested 
several types of structures, including lbest, gbest and 
von Neumann configurations. They also tested 
populations arranged in graphs that were randomly 
generated and optimized to meet some criteria. The 
authors concluded that when the configurations were 
ranked by the performance at 1000 iterations the 
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structures with k = 5 perform better, but when ranked 
according to the number of iterations needed to meet 
the criteria, configurations with higher degree of 
connectivity perform better. These results are 
consistent with the premise that low connectivity 
favors robustness, while higher connectivity favors 
convergence speed (at the expense of reliability). 

The unified PSO (UPSO) (Parsopoulos and 
Vrahatis, 2005) combines gbest and lbest 
configurations. Equation 1 is modified in order to 
include a term with  and a term with  while a 
parameter balances the weight of each term. The 
authors argue that the proposed scheme exploits the 
good properties of gbest and lbest. 

(Peram et al., 2003) proposed the fitness–distance-
ratio-based PSO (FDR-PSO). The algorithm defines 
the neighborhood of a particle as its ݇ closest particles 
in the population (measured in Euclidean distance). A 
selective scheme is also included: the particle selects 
near particles that have also visited a position of 
higher fitness. The authors claim that FDR-PSO 
performs better than the standard PSO on several test 
functions. However, FDR-PSO is compared only to 
the gbest configuration. Recently, (Ni et al., 2014) 
proposed a dynamic probabilistic PSO. The authors 
generate random topologies for the PSO that they use 
at different stages of the search. 

3 EXPERIMENTAL SETUP 

First, several regular graphs have been constructed 
using the following procedure: starting from a ring 
structure with ݇ = 3 the degree is increased by 
linking each individual to its neighbors’ neighbors, 
thus creating a set of regular graphs with ݇ ={3,5,7,9, 11… , ݊}, as exemplified in Figure 1 for a 
swarm with 8 particles (the configuration is easily 
generalized to other population sizes). 

  ݇ = 3 ݇ = 5 ݇ = ݊
Figure 1: Regular graphs with population size  = ૡ. 

For the experiments discussed in this paper, PSOs 
with population size ݊	 = 	33 have been used and 
regular graphs with ݇ = {3,5,7,9, 13, 17, 25, 33}  
were constructed. Please note that the regular graph 

with ݇ = 33 corresponds to the gbest topology. Then, 
random graphs with 33, 66, 99, 132, 198, 264 and 396 
bi-directional edges were also generated, 
corresponding to an average level of connectivity ݇′ = {3,5,7,9, 13, 17, 25, 33}. Again, the random 
graph with ݇′ = 33 is equivalent to the gbest 
structure. 

The acceleration coefficients of the fixed-
parameters PSO were set to 1.49618 and the inertia 
weight is 0.729844 (Rada-Vilela et al., 2013). An 
alternative approach to fixed parameter tuning is to let 
the values change during the run, according to 
deterministic or adaptive rules. (Shi and Eberhart, 
1998) proposed a linearly time-varying inertia weight. 
The variation rule is given by Equation (4). 

(ݐ)߱ = (߱ଵ − ߱ଶ) × (max	_ݐ − ݐ_	max(ݐ + ߱ଶ (4)

where ݐ is the current iteration, ݉ܽݐ_ݔ is the 
maximum number of iterations, ߱ଵ the inertia weigh 
initial value and ߱ଶ its final value. 

Later, (Ratnaweera et al., 2004) proposed to 
improve Shi and Eberhart’s PSO with time-varying 
inertia weight (PSO-TVIW) using a similar concept 
applied to the acceleration coefficients. In the PSO 
with time-varying acceleration coefficients PSO 
(PSO-TVAC) the parameters ܿଵ and ܿଶ change during 
the run according to the following equations: 

ܿଵ = ൫ܿଵ − ܿଵ൯ × ݐ_	maxݐ + ܿଵ (5)

ܿଶ = ൫ܿଶ − ܿଶ൯ × ݐ_	maxݐ + ܿଶ (6)

where ܿଵ, ܿଵ, ܿଶ,ܿଶ are the acceleration coefficients 
initial and final values. For the experiments with 
PSO-TVAC in the following section, parameters ߱ଵ 
and ߱ଶ were set to 0.9 and 0.4, the acceleration 
coefficient ܿଵ initial and final values were set to 2.5 
and 0.5 and ܿଶ ranges from 0.5 to 2.5, as suggested in 
(Ratnaweera et al, 2004). 

Table 1: Benchmark functions. 

 mathematical  
representation 

search 
range/ 

initialization

stop 
criterion

sphere 

f1 ଵ݂(ݔԦ) =ݔଶ
ୀଵ  

(−100, 100)
(50, 100) 0.000001

quadric 

f2 ଶ݂(ݔԦ) =ቌݔ
ୀଵ ቍଶ

ୀଵ  
(−100, 100)
(50, 100) 0.01 
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Table 1: Benchmark functions (cont.). 

 mathematical  
representation 

search 
range/ 

initialization

stop 
criterion

hyper 

ellipsoid 

f3 
ଵ݂(ݔԦ) =݅ݔଶ

ୀଵ  
(−100, 100)
(50, 100) 0. 

000001

rastrigin 

f4 
ସ݂(ݔԦ) =(ݔଶ − 10 cos(2ݔߨ) + 10)

ୀଵ  
(−10, 10)(2.56, 5.12) 100 

griewank 

f5 

ହ݂(ݔԦ)= 1 + 14000ݔଶ −ෑcos ൬ݔ√݅൰
ୀଵ


ୀଵ  

(−600, 600)(300, 600) 0.05 

weierstrass 

f6 

݂(ݔԦ)=൭  ቂܽܿݏ ቀ2ܾߨ(ݔ௫
ୀ


ୀଵ+ 0.5)ቁቃ൱

− ܦ  [ܾܽܿߨ2)ݏ ∙ 0.5)ሿ௫
ୀ , 

ܽ = 0.5, ܾ = 3, ݔܽ݉݇ = 20 

(−0.5,0.5)(−0.5, 0.2) 0.01 

ackley 

f7 

଼݂ (Ԧݔ)
= ଶݔܦ0.2ඩ1−ۇۉݔ20݁−

ୀଵ −ۊی ݔ݁ ൭1ܦcos	(2ݔߨ)
ୀଵ ൱ + 20 + ݁ 

(−32.768,32(2.56,5.12) 0.01 

shifted 
quadric 

with noise 

f8 

ଽ݂(ݖԦ)=ቌݖ
ୀଵ ቍଶ

ୀଵ ∗ (1 + 0.4|ܰ(0,1)|), 
Ԧݖ = Ԧݔ	 − Ԧ , Ԧ ,ଵ]= . . :ሿ  ݉ݑ݉݅ݐ	݈ܾ݈ܽ݃	݀݁ݐ݂݄݅ݏ

(−100, 100)
(50, 100) 0.01 

rotated 
griewank 

f9 

ଵ݂(ݖԦ) = 1 + ଵସ ∑ ଶݖ −ୀଵ∏ cos ቀ௭√ቁୀଵ Ԧݖ     , =  ,Ԧݔࡹ
M:ortoghonal matrix 

(−600, 600)(300, 600) 0.05 

 

 

Figure 2: Success rates (50 runs). Regular graphs. Problem 
dimension ܦ	 = 	30. Standard PSO with fixed-parameters. ܺ݉ܽݔ is defined as usual by the domain’s upper 
limit and ܸ݉ܽݔ	 =  A total of 50 runs for .ݔܽ݉ܺ	

each experiment were performed. Nine benchmark 
problems were used. Functions f1-f3 are unimodal; f4-f7 
are multimodal; f8 is the shifted f2 with noise and f9 the 
rotated f5 (f8 global optimum and f9 matrix were taken 
from CEC2005 benchmark). Asymmetrical 
initialization is used (initialization range for each 
function is given in Table 1). 

Two sets of experiments were conducted. First, 
the algorithms were run for a specific amount of 
function evaluations (330000 for ଵ݂ and ଷ݂, 660000 
for the remaining). The best solution was recorded 
after each run. Each algorithm has been executed 50 
times in each function. Statistical measures were 
taken over those 50 runs. In the second set of 
experiments the algorithms were run for 660000 
evaluations or until reaching function-specific stop 
criteria (given in Table 1). A success measure is 
defined as the number of runs in which an algorithm 
attains the criterion. Again, each one has been 
executed 50 times in each function. This setup is as in 
(Kennedy and Mendes, 2002)0.  

The algorithms discussed in this paper are 
available in the OpenPSO package, which offers an 
efficient, modular and multicore-aware framework for 
experimenting with different PSO approaches. The 
package is implemented in C99, and transparently 
parallelized with OpenMP (Dagum and Menon, 
1998). The library components can be interfaced with 
other programs and programming languages, making 
OpenPSO a flexible and adaptable framework for 
PSO research. The source code is at 
https://github.com/laseeb/openpso. 

4 RESULTS AND DISCUSSION 

The main objectives of the experiments are to 
examine how fixed-parameters PSOs perform with 
different levels of connectivity and investigate if the 
relative performance varies with problem dimension.  

 
Figure 3: Evaluations required to meet criteria: median 
values (50 runs). Regular graphs. Problem dimension ܦ	 =	30. Fixed-parameters PSO. 
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Then, study the differences between the performance 
of PSOs with regular and random graphs. Finally, 
confirm if the same general conclusions apply to 
time-varying strategies for parameter setting. 

4.1 Regular Graphs 

The first experiment compares the success rates, 
convergence speed and accuracy (best solutions) of 
fixed-parameters PSO on regular graphs. Problem 
dimension is ܦ	 = 	30. Figure 2 shows the success 
rates of the algorithm on each function with each 
regular graph. In general, better success rates are 
attained with lower connectivity, but there are two 
exceptions: functions ସ݂ and ଼݂ . However, these 
results are in general terms in accordance with those 
in (Kennedy and Mendes, 2002): configurations with 
lower connectivity attain better success rates.  

Figure 3 represents the median values of the 
evaluations required to meet the stop criteria. Clearly, 
the convergence speed increases with connectivity 
degree ݇. These findings are in different from those in 
(Kennedy and Mendes, 2002), where it is reported 
that the configurations with ݇	 = 5 (from a set with ݇ = 3, ݇	 = 5 and ݇ = 10 graphs) required less 
evaluations to meet the stop criteria. However, those 
experiments were conducted under different 
conditions, like population size and, namely, graph 
types: here, we are testing PSO on regular graphs with 
varying size. 

Table 2 shows the median values of the best 
fitness attained in each of the 50 runs, for each 
function and each graph. The best graphs according  
 

Table 2: Best fitness. Median values. Regular graphs. 
Problem dimension D = 30. Fixed-parameters PSO. 

 ݇	 = 	3 ݇	 = 	5 ݇	 = 	7 ݇	 = 9 ݇	 = 	13 ݇	 = 	17 ݇	 = 25 ݇ = 33
f1 1.96e-89 7.85e-90 3.93e-90 1.96e-90 1.96e-90 0.00e00 0.00e00 3.93e-90

f2 7.59e-13 1.04e-20 2.49E-25 4.41e-29 3.03e-34 6.04e-37 1.00e+04 2.00e+04

f3 1.67e-88 3.34e-89 5.89e-90 1.96e-90 0.00e00 0.00e00 0.00e00 4.50e+04

f4 1.18e+02 8.71e+01 8.31e+01 7.26e+01 8.31e+01 8.66e+01 8.71e+01 1.28e+02

f5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.11e-02 7.40e-03 9.86e-03 6.85e-02

f6 0.00e+00 0.00e+00 6.17e-03 6.78e-02 1.02e+00 2.03e+00 4.33e+00 6.03e+00

f7 7.55e-15 7.55e-15 7.55e-15 7.55e-15 7.55e-15 7.55e-15 1.25e+00 1.90e+00

f8 2.02e+02 1.32e+01 9.23e-01 3.43e-01 4.98e+03 9.30e+03 2.86e+04 4.74e+04

f9 0.00e00 0.00e00 0.00e00 8.63e-03 1.23e-02 1.72e-02 5.09e-01 4.25e+01

 

Figure 4: Success rates (50 runs). Regular graphs. Problem 
dimension ܦ	 = 	10. Standard PSO with fixed-parameters. 

to the accuracy criteria depend on the type of 
function. For unimodal functions ( ଵ݂, ଶ݂, ଷ݂ and ଼݂ ) 
best results are attained with highly connected graphs, 
while multimodal functions require graphs with lower 
connectivity.  

In (Kennedy and Mendes, 2002), configurations 
with ݇ = 5 yielded the best fitness values and 
required less evaluations to meet the criteria, while ݇ = 3 had the best success rates. The results in this 
paper, although they do not necessarily contradict the 
experiments in (Kennedy and Mendes, 2002) (which 
were conducted under different conditions), provide 
some more insight on the performance of PSO 
populations with different connectivity levels. 

4.2 Problem Dimension 

The next test investigates the behavior of the 
algorithm with different problem dimension. For that 
purpose, ܦ was set to ܦ = 10 and ܦ = 50. The 
algorithms were tested as in the previous experiment.  

Figure 4 and Figure 5 show the success rates for ܦ = 10 and ܦ = 50 respectively. Changing the 
problem dimension does affect the general behavior 
of the PSO on regular graphs with different 
connectivity levels: lower ݇ graphs yield better 
success rates for ܦ = 10 and ܦ = 50 (the most 
notorious exception is ହ݂ when ܦ = 50). Some 
functions behave differently, namely ହ݂ and ଼݂  
(Griewank and rotated Griewank), for which the 
success rates tend to increase with ܦ. However, the 
overall performance scales as expected, as seen in 
Figure 6, which depicts the percentage of successful 
runs of each type of graph for each ܦ averaged over 
the whole set of functions. 
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Figure 5: Success rates (50 runs). Regular graphs. Problem 
dimension ܦ	 = 	50. Standard PSO with fixed-parameters. 

 

Figure 6: Percentage of successful runs averaged over the 
set of functions. Regular graphs.  Fixed-parameters PSO. 

As for the convergence speed and accuracy, the 
results lead to the same conclusions as in Section 4.1 
for ܦ = 30: convergence speed for ܦ = 10 and ܦ =50 increases with ݇ and accuracy depends on the type 
of function: unimodal are better tackled with highly 
connected graphs while multimodal problems require 
graphs with lower connectivity. 

4.3 Time-varying Parameters 

A final experiment implemented and tested the PSO-
TVAC on the set of regular graphs. Success rates are 
shown in  
Figure 7. PSO-TVAC is able to meet the criteria in 
every function (except ଼݂ ) with ݇ = 3 and ݇ = 7. It 
also improves the performance of standard PSO on 
several functions for higher ݇ values. On the other 
hand, it is significantly slower than the standard PSO 
on every function and every ݇. 

Mann-Whitney tests were performed to compare 
the distributions of the number of evaluations to meet 
criteria of each graph in each function confirming that 
the PSO is significantly faster than PSO-TVAC in 
every function and ݇. Comparing Figure 8 and Figure 
3 gives an overall idea on the magnitude of the 
differences in convergence speed. 

Table 3: Best fitness. Median values. Random graphs. 
Problem dimension D = 30. Fixed-parameters PSO. ݇′ = 3 ݇′ = 5 ݇′ = 7 ݇′ = 9 ݇′ = 13 ݇′ = 17 ݇′ = 25

f1 1.57e-89 5.89e-90 3.93e-90 1.96e-90 1.96e-90 0.00e+000.00e+00

f2 5.00e+03 6.39e-26 3.02e-29 1.13e-31 6.85e-35 6.65e-38 1.00e+04

f3 1.21e-88 1.08e-89 5.89e-90 0.00e+000.00e+000.00e+000.00e+00

f4 1.13e+027.56e+016.91e+017.91e+01 8.51e+01 8.31e+019.60e+01

f5 1.23e-02 9.86e-03 3.70e-03 7.40e-03 7.40e-03 1.23e-02 9.86e-03

f6 2.52e+00 1.51e-01 2.00e-01 7.52e-01 1.13e+00 1.92e+003.64e+00

f7 1.78e+00 7.55e-15 7.55e-15 7.55e-15 7.55e-15 1.11e-14 1.16e+00

f8 2.26e+043.16e+02 1.77e-01 3.45e+01 2.58e+02 1.33e+042.20e+04

f9 3.31e-02 9.86e-03 9.86e-03 7.40e-03 2.22e-02 1.23e-02 5.20e-01

 

 
Figure 7: Success rates (50 runs). Regular graphs. 

Problem dimension D = 30. PSO-TVAC. 

5 CONCLUSIONS 

This paper investigates the performance of PSOs 
with regular and random structures. A set of regular 
and random graphs with different levels of 
connectivity were constructed and used as network 
topologies for the algorithms. Success rates, 
convergence speed, accuracy and scalability have 
been investigated. Results show that the probability 
of meeting the stop criteria (success rates) is higher 
when the degree of connectivity ݇ is lower. 
However, convergence speed increases with ݇. As 
for the accuracy, the experiments showed that best 
results on unimodal functions are attained with 
highly connected graphs while lower connectivity is 
more suited for multimodal functions. The general 
behavior maintains when varying the search space 
dimension. Also, PSOs with fixed and time-varying 
parameters behave similarly throughout the range of 
regular graphs.  
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One of the most interesting results concerns the 
comparison between regular and random graphs. 
The experiments demonstrated that switching from a 
regular to a random graph with the same level of 
connectivity degrades PSO success rates and 
accuracy when ݇ is low, while for higher ݇ the 
results are similar. This is probably due to the high 
variance of the average ݇ in graphs with low 
connectivity but further investigation is required to 
confirm this hypothesis.  

 

 

Figure 8: Evaluations required to meet criteria: median 
values (50 runs). Regular graphs. Problem dimension ܦ	 =	30. PSO-TVAC. 

The analysis in this paper has been mainly 
qualitative and supported by graphical depiction of 
the results. In the future, the data will organized and 
normalized in order to perform exhaustive statistical 
tests that will hopefully give more insight on the 
relationship between performance and population 
structure and provide support to the conclusions and 
hypothesis raised by this study. In addition, more 
random graphs will be generated and tested, with 
different standard deviation of ݇ and clustering 
degree. Finally, the effect of dynamic structures in the 
performance of PSO will be investigated. 
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